Modules Extensions — Why?

e Partition large modules to ease maintenance
problems.

e Allow for precompiled main program and
modules, with user-provided submodules.

e Avoid recompilation / recertification cas-
cades.

e Package proprietary software components
to allow easily publishing their interfaces.

e Improve possibilities for library organization.

29 October 2002 J3/02-297r1 Page 1 of 9

Modules Extensions — What?

1. Allow an interface body for a module pro-
cedure.

2. Provide for modules to have submodules.

3. Items 1 — 2 allow interface body and proce-
dure body to be in different program units.

29 October 2002 J3/02-297r1 Page 2 of 9

There is very little

New Syntax

There is a new prefix for a SUBROUTINE or
FUNCTION statement in an interface body:

MODULE [(module-or-submodule-name) |
There are two new statements:

SUBMODULE (parent-name) :: &
& submodule-name

And
END SUBMODULE [submodule-name |

That's Alll

29 October 2002 J3/02-297r1 Page 3 of 9

Interface body
for a module procedure

e Interface body’s subroutine or function state-
ment has a MODULE prefix.

e Such an interface body DOES access its
environment by host association.

e T he interface body can optionally specify
where the procedure body is — for humans
and inter-module inlining optimizers.

e Identical to existing interface bodies in all
other respects.

29 October 2002 J3/02-297r1 Page 4 of 9

Example interface body
for a module procedure

module M ! could be in a submodule

integer, parameter :: RK = kind(0.0e0)
interface [generic stuff if desired]
MODULE(S1) subroutine sub (argl, arg2)
! Notice that RK is accessed by host

! association
real(rk), intent(in) :: argl
real(rk), intent(out) :: arg2

end subroutine sub

end interface

end module M

The processor doesn’t check that SUB is de-
fined in S1. That would cause M to depend
on S1, not vice-versa.

29 October 2002 J3/02-297r1 Page 5 of 9

Separate procedure body
for a module procedure

Repeating the interface in the procedure’s body
IS optional:

subroutine sub

end subroutine sub
or

subroutine sub (argl, arg2)
real(rk), intent(in) :: argl
real(rk), intent(out) :: arg2

end subroutine sub

are both allowed. If any dummy arguments
are declared here, all of the dummy arguments
have to be declared here, and their character-
istics and names have to be the same as in the
interface body.

29 October 2002 J3/02-297r1 Page 6 of 9

Separate procedure body
for a module procedure (cont.)

Characteristics of a function result have to be
specified in the interface body. They can be
repeated in the separate procedure’s body, but
if so they have to be identical to what's de-
clared in the interface body.

Specifying PURE and ELEMENTAL are op-
tional in the separate procedure body’s decla-
ration, but if they're specified, they have to be
specified already in the interface body:. They're
characteristics.

As at present, RECURSIVE or RESULT can be
specified in the interface body, but they have
no effect there: They're not characteristics. If
you really want them, they have to be specified
in the separate procedure body’s declaration.

29 October 2002 J3/02-297r1 Page 7 of 9

Submodules

e A Module can have any nhumber of submod-
ules, including zero (for compatibility).

e Submodules can have any number of sub-
modules, including zero.

e Each submodule specifies its parent mod-
ule or submodule.

e The only place a parent specifies a sub-
module name is optionally in an interface
body for a separate module procedure body —
but it's not checked there: That would
make the parent depend on its submodule,
not vice-versa.

e A submodule accesses its parent program
unit by host association.

29 October 2002 J3/02-297r1 Page 8 of 9

Submodule example

SUBMODULE(M) :: S1 ! Parent program unit is M
! Nothing here is accessible by use
! association, but everything here is
! accessible by host association, here and
! in subsidiary submodules
CONTAINS
subroutine SUB ! args in interface body
! SUB is accessible by use association if
! its interface body is. It is accessible
! by host association in every descendant
! program unit of the one where its
! interface body is declared. The
! processor can check that SUB is in S1,

I as advertised in its interface body.

end subroutine SUB
END SUBMODULE S1

29 October 2002 J3/02-297r1 Page 9 of 9

