
J3/08-121 DRAFT INTERPRETATION PAGES

To: J3
From: Malcolm Cohen
Subject: Draft Interpretation Pages
Date: 2008/02/06

This document contains the edits, as insert pages, for the interpretations that are still being worked on. The
status line for interpretations not included in a corrigendum includes the last paper number in the interp’s history.

The following pages are intended for insertion into a loose-leaf binder version of 04-007. This document needs to
be printed single-sided for this to work.

NOTE: This does not include any edit published in a corrigendum, even when there is one on the same page;
thus it is meant to be read in conjunction with standing document 018, it is not a replacement thereof.

Most edits are followed by a “making the whole paragraph read” summary; in such summaries deleted text
appears struck-out like this and new text is wavy-underlined

:::
like

:::::
this. (NB: Some summaries might be missing

this feature.)

Note: This is an ordinary meeting paper at meeting 183; maybe it ought to be a standing document?

1

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0094, Status: Passed by J3 letter ballot.

Ref: 4.5.5, C473, [58:14]

After “The dummy argument shall not”
Change “be INTENT(OUT)”
To “have the INTENT(OUT) or VALUE attribute”,
Making the whole constraint read:

C473 (R454) A final-subroutine-name shall be the name of a module procedure with exactly one dummy argu-
ment. That argument shall be nonoptional and shall be a nonpointer, nonallocatable, nonpolymorphic
variable of the derived type being defined. All length type parameters of the dummy argument shall be
assumed. The dummy argument shall not be

::::
have

::::
the INTENT(OUT)

:
or

:::::::::
VALUE

:::::::::
attribute.

58.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0085, Status: J3 consideration in progress: 06-374.

Ref: 4.5.5.2, 6th paragraph, [59:31-32]

After “When a procedure is invoked,”
Replace “a nonpointer, nonallocatable object that is an actual argument associated with an”
With “an object that becomes argument associated with a nonpointer nonallocatable”,
After “ dummy argument”
Insert “of that procedure”,
Making the whole paragraph read:

When a procedure is invoked, a nonpointer nonallocatable
::
an object that is an actual

::::::::
becomes argument

associated with an
:
a

:::::::::::
nonpointer

:::::::::::::::
nonallocatable INTENT(OUT) dummy argument

::
of

:::::
that

:::::::::::
procedure is

finalized.

59.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0090, Status: Passed by J3 meeting: 07-250r1/272.

Ref: 4.7, C494, [67:21]

Between “same” and “type”
Insert “declared”,
Making the whole constraint read:

C494 (R466) If type-spec is omitted, each ac-value expression in the array-constructor shall have the same

::::::::
declared type and kind type parameters.

NOTE: This interp also has an edit on p68.

67.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0090, Status: Passed by J3 meeting: 07-250r1/272.

Ref: 4.7, 2nd and 3rd paragraphs, [68:9,14+]

The 2nd paragraph begins “If type-spec is omitted,”,
Before “type and”
Insert “declared”,
Making the whole paragraph read:

If type-spec is omitted, each ac-value expression in the array constructor shall have the same length type
parameters; in this case, the

::::::::
declared type and type parameters of the array constructor are those of the

ac-value expressions.

After the 3rd paragraph
(which begins “If type-spec appears,”)
Insert new paragraph as follows:

The dynamic type of the array constructor is the same as its declared type.

NOTE: This interp also has an edit on p67.

68.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0091, Status: J3 consideration in progress: 07-232.

Ref: 5.1.2.5.1, C542, [78:21-22]

After “a function result,”
Insert “a component,”.

NOTE: Result omitted as it clashes with Corrigendum 1.

78.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0099, Status: Passed by J3 meeting: 07-339.

Ref: 5.1.2.16, 3rd paragraph, [85:10]

Between “association status” and “and array bounds”
Insert “, dynamic type and type parameters,”,
Making the whole paragraph read:

A pointer with the VOLATILE attribute may additionally have its association status
:
,
:::::::::
dynamic

:::::
type

::::
and

::::
type

::::::::::::
parameters, and array bounds changed by means not specified by the program.

NOTE: This interp also has edits on pages 415, 421 and 423.

85.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0046, Status: J3 consideration in progress: N1622.

Ref: 5.5.2, 2nd constraint (C588), [98:20]

Before “an allocatable variable”
Insert “a polymorphic pointer,”,
Making the whole constraint read:

C588 (R558) A common-block-object shall not be a dummy argument,
:
a

:::::::::::::
polymorphic

::::::::
pointer, an allocatable

variable, a derived-type object with an ultimate component that is allocatable, an automatic object, a
function name, an entry name, a variable with the BIND attribute, or a result name.

98.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F90/0145, Status: J3 consideration in progress: 96-m136.

Ref: 6.1.1, last paragraph, [104:24]

Append text to paragraph,
making the whole paragraph read:

If the parent is a variable, the substring is also a variable.
:
A

::::::::::
substring

:::::
must

::::
not

:::
be

:::::::::::
referenced

::
or

::::::::
defined

::::::
before

::::
the

:::::::::::
declaration

:::
of

::::
the

:::::
type

:::::
and

:::::
type

:::::::::::
parameters

:::
of

::::
the

:::::::
parent

:::::::
string,

:::::::
unless

::::
the

:::::
type

:::::
and

:::::
type

:::::::::::
parameters

:::
are

::::::::::::
determined

:::
by

:::
the

::::::::
implicit

:::::::
typing

:::::
rules

:::
of

::::
the

::::::
scope.

The editor says: if we need this edit, it ought to be a new paragraph.

NOTE: This interp also contained an edit to 5.1 which has already been applied in F2003, in the 3rd paragraph
following C538, at [74:16-17].

NOTE: This interp also contains edits to pages 107, 126, and 127.

104.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F90/0145, Status: J3 consideration in progress: 96-m136.

Ref: 6.2.2, last paragraph, 1st sentence, [107:26]

After “An array section in an array.”
Insert “An array element or array section must not be referenced or defined before the declaration of the array
bounds.”,
Making the whole paragraph read:

An array element is a scalar. An array section is an array.
::
An

::::::
array

::::::::
element

:::
or

::::::
array

:::::::
section

::::::
must

::::
not

::
be

:::::::::::
referenced

::
or

::::::::
defined

:::::::
before

::::
the

:::::::::::
declaration

::
of

::::
the

::::::
array

::::::::
bounds. If a substring-range is present in an

array-section, each element is the designated substring of the corresponding element of the array section.

NOTE: This interp has other edits, see p104.

107.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0098, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 6.3.1.1, last paragraph, [113:21]

At the end of the sentence
Insert “unless they are defined by a SOURCE= specifier”,
Making the whole paragraph read:

When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate compo-
nents have an allocation status of unallocated

::::::
unless

:::::
they

::::
are

:::::::
defined

:::
by

::
a

::::::::::::
SOURCE=

::::::::
specifier.

NOTE: This interp also has edits on pages 421 and 422.

113.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F90/0145, Status: J3 consideration in progress: 96-m136.

Ref: 7.1.6, last paragraph, 1st sentence, [126:15-16]

Change “specified in the same specification-part”
To “declared in the same scoping unit”,
Change “prior specification of the specification-part”
To “specification prior to the specification expression”,
Making the whole sentence read:

If a specification expression includes a specification inquiry that depends on a type parameter or an array
bound of an entity specified in the same specification-part

::::::::
declared

:::
in

::::
the

:::::
same

::::::::
scoping

:::::
unit, the type

parameter or array bound shall be specified in a prior specification of the specification-part
::::::::::::
specification

:::::
prior

::
to

::::
the

::::::::::::
specification

:::::::::::
expression.

126.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F90/0145, Status: J3 consideration in progress: 96-m136.

Ref: 7.1.7, last paragraph, 1st sentence, [127:31-32]

Change “specified in the same specification-part”
To “specified in the same scoping unit”,
Change “prior specification of the specification-part”
To “specification prior to the initialization expression”,
Making the whole sentence read:

If an initialization expression includes a specification inquiry that depends on a type parameter or an array
bound of an entity specified in the same specification-part

:::::::
scoping

:::::
unit, the type parameter or array bound

shall be specified in a prior specification of the specification-part
::::::::::::
specification

:::::
prior

:::
to

::::
the

:::::::::::::
initialization

::::::::::
expression.

NOTE: This interp contains other edits, see p104.

127.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0102, Status: Passed by J3 meeting: 07-297r2.

Ref: 7.1.8, 3rd paragraph, [128:6]

After “undefinition”
Insert “, or changes the pointer association status or allocation status,”,
Making the whole paragraph read:

The evaluation of a function reference shall neither affect nor be affected by the evaluation of any other
entity within the statement. If a function reference causes definition or undefinition,

:::
or

:::::::::
changes

::::
the

:::::::
pointer

:::::::::::
association

:::::::
status

:::
or

::::::::::
allocation

:::::::
status, of an actual argument of the function, that argument or

any associated entities shall not appear elsewhere in the same statement. However, execution of a function
reference in the logical expression in an IF statement (8.1.2.4), the mask expression in a WHERE statement
(7.4.3.1), or the subscripts and strides in a FORALL statement (7.4.4) is permitted to define variables in
the statement that is conditionally executed.

128.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0093, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 7.4.1.3, 3rd paragraph, [139:22,25]

The paragraph begins “If variable is an allocated allocatable”;
At beginning of paragraph
Insert new sentence “If variable is an unallocated allocatable array, expr shall be an array of the same rank as
variable.”,
In the last sentence of the paragraph,
After “equal to the corresponding type”
Change “parameters” to “parameter”,
Before “with the shape of expr”
Change “,” to “.” and
Insert “If variable is an array and expr is scalar it is allocated with the same bounds as before, otherwise it is
allocated”,
Making the whole paragraph read:

:
If

:::::::::
variable

::
is

::::
an

::::::::::::
unallocated

:::::::::::
allocatable

::::::
array,

:::::
expr

::::::
shall

:::
be

:::
an

::::::
array

:::
of

::::
the

::::::
same

:::::
rank

:::
as

:::::::::
variable. If

variable is an allocated allocatable variable, it is deallocated if expr is an array of different shape or any
of the corresponding length type parameter values of variable and expr differ. If variable is or becomes
an unallocated allocatable variable, then it is allocated with each deferred type parameter equal to the
corresponding type parameters of expr

:
.
:::
If

::::::::
variable

::
is

:::
an

::::::
array

::::
and

::::::
expr

::
is

::::::
scalar

::
it

:::
is

:::::::::
allocated

:::::
with

::::
the

:::::
same

:::::::
bounds

:::
as

:::::::
before,

::::::::::
otherwise

::
it

::
is

::::::::::
allocated with the shape of expr, and with each lower bound equal

to the corresponding element of LBOUND(expr).

NOTE: The editor changed the edit to avoid two consecutive full stops.

139.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0092, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 7.4.2.2, penultimate paragraph, [145:5]

After “the same type”
Insert “or both be unlimited polymorphic”,
Making the whole paragraph read:

If proc-target and proc-pointer-object are functions, they shall have the same type
::
or

:::::
both

:::
be

::::::::::
unlimited

::::::::::::
polymorphic; corresponding type parameters shall either both be deferred or both have the same value.

145.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F95/0102, Status: J3 consideration in progress: 05-180.

Ref: 7.4.3.2, 1st paragraph, last sentence, [147:1]

Change “only once”
To “at most once”,
Making the whole sentence read:

The mask-expr is evaluated only once
::
at

:::::
most

:::::
once.

NOTE: This interpretation also contains a similar edit to F95 that has already been applied to F2003, in the 4th

paragraph of 7.4.3.2, at [147:7].

146.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0021, Status: J3 consideration in progress: 05-146.

Ref: 8.4, BNF R850, after C834, and 1st paragraph, [170:23,24+,27]

Replace “digit [digit [digit [digit [digit]]]]”
By “int-literal-constant”,
Making the whole R850 read:

R850 stop-code is scalar-char-constant
or digit [digit [digit [digit [digit]]]]

::
or int-literal-constant

Insert new constraint,

::::::
C834a

:::::::
(R850)

:::::
The

::::::::::::::::::
int-literal-constant

:::::
shall

::::
not

:::::
have

::
a

::::::::::::
kind-param

::::
and

:::::
shall

::::
not

:::::
have

:::::
more

:::::
than

::
5
:::::::
digits.

In the 3rd sentence of the paragraph, after “significant”,
Insert “and all stop codes are permissible even if not representable in the default integer type”,
Making the whole sentence read:

Leading zero digits in the stop code are not significant
:::
and

:::
all

::::::
stop

::::::
codes

::::
are

:::::::::::
permissible

::::::
even

::
if

::::
not

:::::::::::::
representable

::
in

::::
the

:::::::
default

:::::::
integer

:::::
type.

170.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0105, Status: Passed by J3 meeting: 07-302r1.

Ref: 9.5.1, 2nd paragraph, [188:8]

NOTE from the editor: The position info in this interp is completely wrong – wrong paragraph and wrong line
number. Corrected above.

Paragraph begins “A SIZE= specifier”;
Append new sentence to paragraph,
Making the whole paragraph:

A SIZE= specifier may appear only in an input statement that contains an ADVANCE= specifier with the
value NO.

::
A

:::::::
SIZE=

:::::::::
specifier

:::::
shall

:::
not

::::::::
appear

::
in

::
a

:::::::
parent

::::::
input

::::::::::
statement

::
if

:::
the

::::::::::::
user-defined

:::::::::::::
derived-type

:::::
input

::::::::::
procedure

:::
to

:::
be

::::::::
invoked

:::::::::
performs

::::::
either

::::::::::::
list-directed

:::
or

:::::::::
namelist

:::::
input

:::
on

::::
the

::::::
same

:::::
unit.

188.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0050, Status: Passed by J3 letter ballot: 07-272.

Ref: 9.5.3.4, after the 7th paragraph, [196:29+]

The 7th paragraph begins “If an internal file”; After that paragraph insert two new paragraphs:

During the execution of an output statement that specifies an internal file, no part of that internal file
shall be referenced, defined, or become undefined as the result of evaluating any output list item.

During the execution of an input statement that specifies an internal file, no part of that internal file shall
be defined or become undefined as the result of transferring a value to any input list item.

196.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0048, Status: Passed by J3 meeting: 07-250r1/272.

Ref: 9.5.3.7.2, 7th and 8th paragraphs after Note 9.46, [202:34,36]

The 7th paragraph begins “Because a child data transfer statement does not position the file prior to data
transfer,”;
After “more recently processed effective list item or”
Delete “record positioning”,
At the beginning of the 8th paragraph,
Replace ”A record positioning edit descriptor, such as TL and TR,”
With “The edit descriptors T and TL,”

Making the whole of both paragraphs:

Because a child data transfer statement does not position the file prior to data transfer, the child data
transfer statement starts transferring data from where the file was positioned by the parent data transfer
statement’s most recently processed effective list item or record positioning edit descriptor. This is not
necessarily at the beginning of a record.

A record positioning edit descriptor, such as TL and TR
::::
The

:::::
edit

:::::::::::
descriptors

::
T

:::::
and

::::
TL, used on unit

by a child data transfer statement shall not cause the record position to be positioned before the record
position at the time the user-defined derived-type input/output procedure was invoked.

NOTE: This interp also has edits on pages 430 and 463.

202.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0106, Status: Passed by J3 meeting: 07-309r1.

Ref: 9.9.1.8, 9.9.1.9, 9.9.1.12, [212:15,21,36]

NOTE from the editor: 9.9.1.9 needs to give more context (“file” appears multiple times in this subclause!).

NOTE: This interp also has edits on pages 213-216.

Edit subclauses 9.9.1.8, 9.9.1.9, 9.9.1.12 as shown below:

9.9.1.8 DIRECT= specifier in the INQUIRE statement

The scalar-default-char-variable in the DIRECT= specifier is assigned the value YES if DIRECT is included in
the set of allowed access methods for the file, NO if DIRECT is not included in the set of allowed access methods
for the file, and UNKNOWN if the processor is unable to determine whether or not DIRECT is included in the
set of allowed access methods for the file

::
or

::
if
::::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

::
a

:::
file.

9.9.1.9 ENCODING= specifier in the INQUIRE statement

The scalar-default-char-variable in the ENCODING= specifier is assigned the value UTF-8 if the file is connected
for formatted input/output with an encoding form of UTF-8, and is assigned the value UNDEFINED if the file is
connected for unformatted input/output. If there is no connection, it is assigned the value UTF-8 if the processor
is able to determine that the encoding form of the file is UTF-8. If the processor is unable to determine the
encoding form of the file

:::
or

::
if

::::
the

::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

::
a

:::
file, the variable is assigned the

value UNKNOWN.

NOTE 9.1
The value assigned may be something other than UTF-8, UNDEFINED, or UNKNOWN if the processor
supports other specific encoding forms (e.g. UTF-16BE).

9.9.1.12 FORMATTED= specifier in the INQUIRE statement

The scalar-default-char-variable in the FORMATTED= specifier is assigned the value YES if FORMATTED is
included in the set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed forms
for the file, and UNKNOWN if the processor is unable to determine whether or not FORMATTED is included
in the set of allowed forms for the file

:::
or

::
if

:::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

::
a

:::
file.

212.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0106, Status: Passed by J3 meeting: 07-309r1.

Ref: 9.9.1.16, 9.9.1.17 [213:16,21+]

NOTE from the editor: The edit to 9.9.1.17 does not specify whether this is a new paragraph or not, but
a position indicator of 21+ usually means a new paragraph AFTER line 21, not
appending a new sentence; therefore that is what is done here.

Edit subclauses 9.9.1.16 and 9.9.1.17 as shown below:

9.9.1.16 NEXTREC= specifier in the INQUIRE statement

The scalar-int-variable in the NEXTREC= specifier is assigned the value n + 1, where n is the record number of
the last record read from or written to the file connected for direct access. If the file is connected but no records
have been read or written since the connection

:::
or

::
if

::::
the

::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

:::::::::::
connected

::
to

::
a
::::
file, the

scalar-int-variable is assigned the value 1. If the file is not connected for direct access or if the position of the
file is indeterminate because of a previous error condition, the scalar-int-variable becomes undefined. If there are
pending data transfer operations for the specified unit, the value assigned is computed as if all the pending data
transfers had already completed.

9.9.1.17 NUMBER= specifier in the INQUIRE statement

The scalar-int-variable in the NUMBER= specifier is assigned the value of the external unit number of the unit
that is connected to the file. If there is no unit connected to the file, the value –1 is assigned.

:
If

::::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

:
a
:::::
file,

:::
the

::::::
value

::
is

::::
the

:::::
unit

::::::::
specified

:::
by

:::::::::
UNIT=.

NOTE: This interp has other edits on pages 212-216.

213.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0106, Status: Passed by J3 meeting: 07-309r1.

Ref: 9.9.1.21, [214:20]

Edit subclause 9.9.1.21 as shown below:

9.9.1.21 POS= specifier in the INQUIRE statement

The scalar-int-variable in the POS= specifier is assigned the number of the file storage unit immediately following
the current position of a file connected for stream access. If the file is positioned at its terminal position, the
variable is assigned a value one greater than the number of the highest-numbered file storage unit in the file. If
the file is not connected for stream access or if the position of the file is indeterminate because of previous error
conditions

::
or

::
if
::::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

:
a
::::
file, the variable becomes undefined.

NOTE from the editor: The form A or B or C is not acceptable.

NOTE: This interp has other edits on pages 212-216.

214.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0106, Status: Passed by J3 meeting: 07-309r1.

Ref: 9.9.1.23, 9.9.1.24, 9.9.1.27, 9.9.1.29, [215:2,7,26,34]

Edit subclauses 9.9.1.23, 9.9.1.24, 9.9.1.27 and 9.9.1.29 as shown below:

9.9.1.23 READ= specifier in the INQUIRE statement

The scalar-default-char-variable in the READ= specifier is assigned the value YES if READ is included in the
set of allowed actions for the file, NO if READ is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether or not READ is included in the set of allowed
actions for the file

:::
or

::
if

::::
the

::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

:::::::::::
connected

::
to

::
a

::::
file.

9.9.1.24 READWRITE= specifier in the INQUIRE statement

The scalar-default-char-variable in the READWRITE= specifier is assigned the value YES if READWRITE is
included in the set of allowed actions for the file, NO if READWRITE is not included in the set of allowed actions
for the file, and UNKNOWN if the processor is unable to determine whether or not READWRITE is included in
the set of allowed actions for the file

::
or

::
if
::::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

:
a
::::
file.

9.9.1.27 SEQUENTIAL= specifier in the INQUIRE statement

The scalar-default-char-variable in the SEQUENTIAL= specifier is assigned the value YES if SEQUENTIAL
is included in the set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set
of allowed access methods for the file, and UNKNOWN if the processor is unable to determine whether or not
SEQUENTIAL is included in the set of allowed access methods for the file

::
or

::
if
::::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

:::
not

::::::::::
connected

:::
to

::
a

:::
file.

9.9.1.29 SIZE= specifier in the INQUIRE statement

The scalar-int-variable in the SIZE= specifier is assigned the size of the file in file storage units. If the file size
cannot be determined

:::
or

::
if

::::
the

::::
unit

:::::::::
specified

:::
by

:::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

::
a

:::
file, the variable is assigned the

value -1.

For a file that may be connected for stream access, the file size is the number of the highest-numbered file storage
unit in the file.

For a file that may be connected for sequential or direct access, the file size may be different from the number of
storage units implied by the data in the records; the exact relationship is processor-dependent.

NOTE: This interp has other edits on pages 212-216.

215.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0106, Status: Passed by J3 meeting: 07-309r1.

Ref: 9.9.1.30, 9.9.1.31, 9.9.1.32, [216:5,10,15]

Edit subclauses 9.9.1.30, 9.9.1.31 and 9.9.1.32 as shown below:

9.9.1.30 STREAM= specifier in the INQUIRE statement

The scalar-default-char-variable in the STREAM= specifier is assigned the value YES if STREAM is included in
the set of allowed access methods for the file, NO if STREAM is not included in the set of allowed access methods
for the file, and UNKNOWN if the processor is unable to determine whether or not STREAM is included in the
set of allowed access methods for the file

::
or

::
if
::::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

::::::::::
connected

:::
to

::
a

:::
file.

9.9.1.31 UNFORMATTED= specifier in the INQUIRE statement

The scalar-default-char-variable in the UNFORMATTED= specifier is assigned the value YES if UNFORMAT-
TED is included in the set of allowed forms for the file, NO if UNFORMATTED is not included in the set of
allowed forms for the file, and UNKNOWN if the processor is unable to determine whether or not UNFORMAT-
TED is included in the set of allowed forms for the file

:::
or

::
if

:::
the

:::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

:::::::::::
connected

::
to

::
a

:::
file.

9.9.1.32 WRITE= specifier in the INQUIRE statement

The scalar-default-char-variable in the WRITE= specifier is assigned the value YES if WRITE is included in the
set of allowed actions for the file, NO if WRITE is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether or not WRITE is included in the set of allowed
actions for the file

:::
or

::
if

::::
the

::::
unit

:::::::::
specified

:::
by

::::::::
UNIT=

::
is

::::
not

:::::::::::
connected

::
to

::
a

::::
file.

NOTE: This interp also has other edits on pages 212-215.

216.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0096, Status: J3 consideration in progress: 07-266r1.

Ref: 9.11, 6th paragraph, [219:16]

Between “The value of a” and “specifier”
Insert “FMT=, ID=, IOMSG=, IOSTAT= or SIZE=”,
Making the whole paragraph read:

The value of a
::::::::
FMT=,

:::::
ID=,

:::::::::::
IOMSG=,

::::::::::
IOSTAT=

:::
or

:::::::
SIZE= specifier in an input/output statement shall

not depend on any input-item, io-implied-do do-variable, or on the definition or evaluation of any other
specifier in the io-control-spec-list or inquire-spec-list in that statement.

219.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0079, Status: Passed by J3 meeting: 07-281r2.

Ref: 10.6.1, after item (6), [227:15+]

Insert new list item:

(7) On output of a real zero value, the digits in the exponent field shall all be zero, whether or not a
nonzero scale factor is in effect.

227.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0100, Status: Passed by J3 meeting: 07-340r1.

Ref: 10.6.1.2.1, antepenultimate paragraph, [228:36-37]

Paragraph begins “For an internal value that is an IEEE infinity”;
Replace the last sentence “If ... produced.”
Making the whole paragraph read:

For an internal value that is an IEEE infinity, the output field consists of blanks, if necessary, followed by a
minus sign for negative infinity or an optional plus sign otherwise, followed by the letters ’Inf’ or ’Infinity’,
right justified within the field. If w is less than 3, the field is filled with asterisks; otherwise, if w is less
than 8, ’Inf’ is produced.

::::
The

::::::::::
minimum

::::
field

:::::::
width

::::::::
required

::::
for

:::::::
output

::
of

::::
the

:::::
form

:::::
’Inf’

::
is

::
3

::
if

:::
no

:::::
sign

::
is

:::::::::
produced,

:::::
and

:
4
:::::::::::
otherwise.

::
If

::
w

:::
is

:::::::
greater

:::::
than

:::::
zero

:::
but

::::
less

::::::
than

:::
the

::::::::::
minimum

:::::::::
required,

::::
the

:::::
field

::
is

:::::
filled

::::
with

::::::::::
asterisks.

:::::
The

::::::::::
minimum

::::
field

:::::::
width

:::
for

:::::::
output

:::
of

::::
the

:::::
form

:::::::::
’Infinity’

::
is

::
8

::
if

:::
no

:::::
sign

::
is

::::::::::
produced

::::
and

:
9

::::::::::
otherwise.

:::
If

::
w

:::
is

::::
less

:::::
than

:::
the

:::::::::::
mimimum

::::::::
required

::::
but

::::::
large

:::::::
enough

:::
to

::::::::
produce

::::
the

:::::
form

:::::
’Inf’

:::::
then

::::
the

::::
form

:::::
’Inf’

::
is

::::::::
output.

NOTE from the editor: the edit said to use double-quotes but the rest of the paragraph used single quotes so
that is what I did.

NOTE: This interp also has an edit on page 229.

228.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0100, Status: Passed by J3 meeting: 07-340r1.

Ref: 10.6.1.2.1, penultimate paragraph, [229:2]

Replace the last sentence of the paragraph,
Making the whole paragraph (which begins on the previous page) read:

For an internal value that is an IEEE NaN, the output field consists of blanks, if necessary, followed by
the letters ’NaN’ and optionally followed by one to w − 5 alphanumeric processor-dependent characters
enclosed in parentheses, right justified within the field. If w is

:::::::
greater

:::::
than

:::::
zero

::::
and less than 3, the field

is filled with asterisks.

229.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0051, Status: Passed by J3 meeting: 07-250r1/272.

Ref: 10.9.1, after Note 10.28, [239:18-]

Insert new paragraph:

::::::
When

::::
the

::::
first

::::::
value

:::
of

:::
an

::::
r*c

:::::::::
constant

:::
is

:::::::::::
transferred

:::
to

::
a

::::
list

:::::
item

:::
by

::
a

::::::::::::
list-directed

::::::
input

:::::::::::
statement,

::::
that

::::::
input

::::::::::
statement

:::::
shall

::::::::
transfer

:::
all

::
r

:::::::
values

::
of

:::::
that

::::
r*c

:::::::::
constant

:::
to

:::
list

::::::
items

:::::::
before

::::::::
causing

::::
any

:::::
child

:::::
input

::::::::::
statement

:::
to

:::
be

:::::::::
invoked.

:::
If

:::::
that

::::::::::::
list-directed

::::::
input

::::::::::
statement

:::
is

:::::
itself

::
a
::::::
child

::::::
input

:::::::::::
statement,

::
it

::::
shall

::::::::
transfer

::::
all

:
r
:::::::
values

::
of

:::::
that

::::
r*c

:::::::::
constant

:::
to

:::
list

::::::
items

:::::::
before

::::::::::::
terminating.

239.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0049, Status: Passed by J3 letter ballot: 07-272.

Ref: 10.9.2, 1st paragraph, [241:5]

Append new sentence to paragraph:

::::
Two

::::::::::::
undelimited

::::::::::
character

::::::::::
sequences

::::
are

::::::::::
considered

:::::::::
adjacent

::::::
when

:::::
both

:::::
were

::::::::
written

::::::
using

::::::::::::
list-directed

:::::::::::::
input/output,

:::
no

::::::::::::
intervening

:::::
data

::::::::
transfer

::
or

::::::::::::::
input/output

:::
file

:::::::::::
positioning

:::::::::::
operations

::::::::::
occurred,

::::
and

:::::
both

::::
were

::::::::
written

::::::
either

:::
by

::
a

::::::
single

:::::
data

::::::::
transfer

:::::::::::
statement,

:::
or

:::::::
during

::::
the

::::::::::
execution

::
of

::
a

:::::::
parent

:::::
data

::::::::
transfer

:::::::::
statement

::::::
along

:::::
with

:::
its

::::::
child

:::::
data

::::::::
transfer

:::::::::::
statements.

Interp F03/0101, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 10.9.2, 1st paragraph, [241:5]

Append new sentences to paragraph:

The form of the output produced by a user-defined derived type output routine invoked during list-directed
output is specified by the invoked routine. It need not be compatible with list-directed input.

NOTE: THIS EDIT CONFLICTS WITH INTERP F03/0049.

NOTE: This interp also has edits on page 246.

241.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0097, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 10.10, paragraph before 10.10.1, [243:5]

Replace paragraph in its entirety,
Making it read:

A value separator for namelist formatting is the same as
:
a
::::::
value

::::::::::
separator for list-directed formatting

(10.9),
:::
or

::::
one

::
or

::::::
more

:::::::::::
contiguous

:::::::
blanks

::::::::
between

::
a

:::::::::
nonblank

::::::
value

::::
and

::::
the

:::::::::
following

:::::::
object

::::::::::
designator

:::
or

:::
“!”

:::::::::
comment

:::::::::
initiator.

Interp F03/0059, Status: J3 consideration in progress: 06-133.

Ref: 10.10.1.1, 1st paragraph, [243:24-27]

Replace “If the namelist group object name is the name of a variable of derived type, the name in the input
record may be either the name of the variable or the designator of one of its components, indicated by qualifying
the variable name with the appropriate component name.”
With “If the namelist group object is a variable of derived type, the name in the input record may be the name
of the variable. If the variable would not be processed by a user-defined derived-type input/output procedure,
the name in the input record may also be the designator of one of its components, using the syntax of object
designators.”,
Making the whole paragraph read:

Within the input data, each name shall correspond to a particular namelist group object name. Subscripts,
strides, and substring range expressions used to qualify group object names shall be optionally signed integer
literal constants with no kind type parameters specified. If a namelist group object is an array, the input
record corresponding to it may contain either the array name or the designator of a subobject of that array,
using the syntax of object designators (R603). If the namelist group object name is the name of a variable
of derived type, the name in the input record may be either the name of the variable or the designator of
one of its components, indicated by qualifying the variable name with the appropriate component name.

:
If

::::
the

::::::::
variable

:::::::
would

:::
not

:::
be

::::::::::
processed

:::
by

::
a

::::::::::::
user-defined

::::::::::::
derived-type

:::::::::::::
input/output

:::::::::::
procedure,

::::
the

:::::
name

:::
in

:::
the

::::::
input

::::::
record

:::::
may

::::
also

:::
be

:::
the

:::::::::::
designator

::
of

::::
one

::
of

:::
its

::::::::::::
components,

::::::
using

::::
the

::::::
syntax

:::
of

::::::
object

::::::::::::
designators.

Successive qualifications may be applied as appropriate to the shape and type of the variable represented.

243.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0101, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 10.10.2, 1st paragraph, [246:4,7]

After “and logical values”
Insert “, and output produced by user-defined derived type output”,
Add new sentences to end of paragraph,
Making the whole paragraph read:

The form of the output produced is the same as that required for input, except for the forms of real,
character, and logical values,

:::::
and

:::::::
output

::::::::::
produced

:::
by

:::::::::::::
user-defined

::::::::
derived

:::::
type

:::::::
output. The name in

the output is in upper case. With the exception of adjacent undelimited character values, the values are
separated by one or more blanks or by a comma, or a semicolon if the decimal edit mode is COMMA,
optionally preceded by one or more blanks and optionally followed by one or more blanks.

::::
The

:::::
form

::
of

::::
the

::::::
output

::::::::::
produced

:::
by

::
a

::::::::::::
user-defined

:::::::
derived

:::::
type

:::::::
output

::::::::
routine

:::::::
invoked

:::::::
during

:::::::::
namelist

:::::::
output

::
is

:::::::::
specified

::
by

::::
the

::::::::
invoked

::::::::
routine.

:::
It

:::::
need

::::
not

:::
be

:::::::::::
compatible

:::::
with

:::::::::
namelist

::::::
input.

NOTE from the editor: This edit and the previous one have incorrect hyphenation.

NOTE: This interp also has an edit on page 241.

246.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0063, Status: J3 consideration in progress: N1658.

Ref: 11.3, C1117, [263:12,14]

After “derived-type definitions”
Insert “, abstract interface blocks,”,
Before “and type declaration”
Insert “procedure declaration statements,”,
Making the whole constraint read:

C1117 (R1116) A block-data specification-part shall contain only derived-type definitions,
:::::::::
abstract

:::::::::
interface

:::::::
blocks, and ASYNCHRONOUS, BIND, COMMON, DATA, DIMENSION, EQUIVALENCE, IMPLICIT,
INTRINSIC, PARAMETER, POINTER, SAVE, TARGET, USE, VOLATILE,

::::::::::
procedure

:::::::::::
declaration

:::::::::::
statements, and type declaration statements.

NOTE: This interp also has an edit on p254.

253.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0063, Status: J3 consideration in progress: N1658.

Ref: 11.3, C1118, [264:3]

After “specifiers”
Insert “if it declares a data object”,
Append new sentence “A procedure declaration statement shall not declare an external procedure.”,
Making the whole constraint read:

C1118 (R1116) A type declaration statement in a block-data specification-part shall not contain ALLOCAT-
ABLE, EXTERNAL, or BIND attribute specifiers

:
if

:::
it

::::::::
declares

::
a

:::::
data

::::::
object.

::
A

::::::::::
procedure

:::::::::::
declaration

:::::::::
statement

::::::
shall

:::
not

::::::::
declare

:::
an

::::::::
external

:::::::::::
procedure.

254.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0019, Status: J3 consideration in progress: N1658.

Ref: 12.3.2.1, antepenultimate constraint before the 1st paragraph, [259:18-19]

Delete constraint C1209, i.e.

C1209 (R1206) A procedure-name shall not specify a procedure that is specified previously in any procedure-stmt
in any accessible interface with the same generic identifier.

259.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0088, Status: Passed by J3 letter ballot: 07-272.

Ref: 12.3.2.1.1, 2nd paragraph, [262:16]

Append new sentence to paragraph:

All restrictions and constraints that apply to actual arguments in a reference to the function also apply to
the corresponding operands in the expression as if they were used as actual arguments.

NOTE: This interp also has an edit on p263.

262.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0088, Status: Passed by J3 letter ballot: 07-272.

Ref: 12.3.2.1.2, 2nd paragraph, [263:12]

After “the second argument.”
Insert the following new sentence:

All restrictions and constraints that apply to actual arguments in a reference to the subroutine also apply
to the left-hand-side and to the right-hand-side enclosed in parentheses as if they were used as actual
arguments.

263.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0064, Status: J3 consideration in progress: 06-133.

Ref: 12.3.2.3, C1212, [264:22]

Before “it shall be previously declared.”
Insert “or interface-body”,
Making the whole constraint:

C1212 (R1215) The name shall be the name of an abstract interface or of a procedure that has an explicit
interface. If name is declared by a procedure-declaration-stmt

:
or

:::::::::::::::
interface-body it shall be previously

declared. If name denotes an intrinsic procedure it shall be one that is listed in 13.6 and not marked
with a bullet (•).

264.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0003, Status: Passed by J3 meeting: 07-280r1.

Ref: 12.4, immediately after C1224, [266:24+]

Insert new paragraph:

The data-ref shall not be an undefined pointer, a disassociated pointer, or an unallocated allocatable
variable.

Interp F03/0004, Status: Passed by J3 meeting: 07-337.

Ref: 12.4, immediately after C1224, [266:24+]

Same edit as for F03/0003.

Interp F03/0109, Status: Passed by J3 meeting: 07-338.

Ref: 12.4, immediately after C1224, [266:24+]

Insert new paragraph:

The data-ref shall not be an undefined pointer, a disassociated pointer, an unallocated allocatable variable,
or a dummy data object that is not present (12.4.1.6).

NOTE: This edit conflicts with the edits for F03/0003 and F03/0004.

266.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0073, Status: J3 consideration in progress: 06-105.

Ref: 12.4.1.2, 2nd and 3rd paragraphs, [269:3,5]

Replace both occurrences of “of type default character”
With “of type default character, of type character with the C character kind (15.1),”,
Making the whole two paragraphs read:

The type parameter values of the actual argument shall agree with the corresponding ones of the dummy
argument that are not assumed or deferred, except for the case of the character length parameter of an
actual argument of type default character

:
,
::
of

:::::
type

::::::::::
character

:::::
with

::::
the

::
C

::::::::::
character

:::::
kind

::::::
(15.1), associated

with a dummy argument that is not assumed shape.

If a scalar dummy argument is of type default character
:
,

::
of

:::::
type

:::::::::
character

:::::
with

:::
the

:::
C

:::::::::
character

:::::
kind

::::::
(15.1),,

the length len of the dummy argument shall be less than or equal to the length of the actual argument.
The dummy argument becomes associated with the leftmost len characters of the actual argument. If an
array dummy argument is of type default character and is not assumed shape, it becomes associated with
the leftmost characters of the actual argument element sequence (12.4.1.5) and it shall not extend beyond
the end of that sequence.

Interp F03/0103, Status: Passed by J3 meeting: 07-298r2.

Ref: 12.4.1.2, 2nd paragraph, [269:1-4]

Replace the paragraph in its entirety,
Making it read:

The type parameter values of the actual argument shall agree with the corresponding ones of the dummy argument
that are not assumed or deferred, except for the case of the character length parameter of an

:::::
unless

•
:::
the

::::::::
dummy

::::::::::
argument

::
is

::::
not

:::::::
present

:::::::::::
(12.4.1.6),

::
or

•
:::
the actual argument

::
is of type default character associated with a

::::
and

::::
the dummy argument that is not

assumed shape.

NOTE: THIS EDIT CONFLICTS WITH THE ONE FOR INTERP F03/0073.

269.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0017, Status: J3 consideration in progress: 05-146.

Ref: 12.4.1.3, 2nd paragraph, [271:16,19+]

After “or intrinsic procedure,”
Replace “an associated”
With “a”,
Append sentence to paragraph “Except in references to intrinsic inquiry functions, if the actual argument is a
pointer it shall be associated.”,
Making the whole paragraph read:

If a dummy argument is a dummy procedure without the POINTER attribute, the associated actual
argument shall be the specific name of an external, module, dummy, or intrinsic procedure, an associated

:
a procedure pointer, or a reference to a function that returns an associated procedure pointer. The only
intrinsic procedures permitted are those listed in 13.6 and not marked with a bullet (•). If the specific
name is also a generic name, only the specific procedure is associated with the dummy argument.

:::::::
Except

::
in

::::::::::
references

:::
to

::::::::
intrinsic

:::::::
inquiry

:::::::::::
functions,

::
if

:::
the

:::::::
actual

::::::::::
argument

::
is

::
a

:::::::
pointer

::
it

:::::
shall

:::
be

:::::::::::
associated.

271.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0086, Status: Passed by J3 letter ballot: 07-272.

Ref: 12.5.2.1, C1242, [280:6-7]

Replace C1242 in its entirety with:

C1242 An ELEMENTAL procedure shall not have the BIND attribute.

280.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0087, Status: Passed by J3 meeting: 07-250r1/272.

Ref: 12.5.2.4, C1255, [283:10]

After “Within”
Insert “the scoping unit of”,
Making the whole constraint read:

C1255 (R1235) Within
:::
the

::::::::
scoping

::::
unit

:::
of the subprogram containing the entry-stmt, the entry-name shall not

appear as a dummy argument in the FUNCTION or SUBROUTINE statement or in another ENTRY
statement nor shall it appear in an EXTERNAL, INTRINSIC, or PROCEDURE statement.

283.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0082, Status: J3 consideration in progress: 06-153.

Ref: 12.6, C1266 and C1267, [286:12,13-14]

At the end of C1266,
After “INTENT(IN)”
Insert “or the VALUE attribute”,
Making the whole constraint:

C1266 The specification-part of a pure function subprogram shall specify that all its nonpointer dummy data
objects have INTENT(IN)

::
or

::::
the

::::::::
VALUE

:::::::::
attribute.

Replace C1267 in its entirety with:

C1267 Within the specification-part of a pure subroutine subprogram, for each non-pointer dummy data object,
either its intent shall be explicitly specified or it shall have the VALUE attribute.

286.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0047, Status: J3 consideration in progress: N1622.

Ref: new subclause 13.2.3, [292:18+]

NOTE: The editor, noting that the edit as written doesn’t make sense (you don’t add a new 13.2 immediately
after 13.2 has finished already) and that the topic of the proposed new subclause falls into the remit of the existing
13.2, has chosen to cast this as a new subclause 13.2.3 despite what the interp says. Various other minor edits
have been made to make it make sense.

Insert new subclause as follows:

13.2.4 Polymorphic intrinsic function arguments and results

The following table specifies the intrinsic functions that are allowed to have polymorphic arguments, and the
arguments that are allowed to be polymorphic.

Function name Arguments permitted to be polymorphic
ALLOCATED ARRAY, SCALAR
ASSOCIATED POINTER, TARGET
CSHIFT ARRAY
EOSHIFT ARRAY, BOUNDARY
EXTENDS TYPE OF A, MOLD
LBOUND ARRAY
MERGE TSOURCE, FSOURCE
MOVE ALLOC FROM, TO
PACK ARRAY, VECTOR
RESHAPE SOURCE, PAD
SAME TYPE AS A, B
SHAPE SOURCE
SIZE ARRAY
SPREAD SOURCE
TRANSFER SOURCE
TRANSPOSE MATRIX
UBOUND ARRAY
UNPACK VECTOR, FIELD

The intrinsic functions shown in the following table have a polymorphic result if and only if the specified argument
is polymorphic. Where the result is specified to have the same type and type parameters as the argument specified
in the following table, the result has the same dynamic type as the specified argument. If the specified argument
is unlimited polymorphic the result is unlimited polymorphic; otherwise it has the same declared type as the
specified argument. If another argument is required to have the same type as the specified argument, it shall
be polymorphic if and only if the specified argument is polymorphic, and have the same dynamic type as the
specified argument. If the specified argument is unlimited polymorphic, the other argument shall also be unlimited
polymorphic; otherwise, it shall have the same declared type as the specified argument.

Function name Argument that determines result characteristics
CSHIFT ARRAY
EOSHIFT ARRAY
MERGE TSOURCE
PACK ARRAY
RESHAPE SOURCE
SPREAD SOURCE
TRANSPOSE MATRIX
UNPACK VECTOR

292.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0042, Status: J3 consideration in progress: 05-121r1.

Ref: 13.7.0, penultimate sentence, [300:13-14]

After “If”
Insert “the values of all input arguments are normal or denormal and”,
After “signal; if”
Insert “the values of all input arguments are normal or denormal and”,
Making the whole sentence read:

If
:::
the

:::::::
values

:::
of

:::
all

::::::
input

:::::::::::
arguments

::::
are

:::::::
normal

:::
or

::::::::::
denormal

::::
and an infinite result is returned, the flag

IEEE OVERFLOW or IEEE DIVIDE BY ZERO shall signal; if
:::
the

:::::::
values

:::
of

:::
all

::::::
input

:::::::::::
arguments

::::
are

:::::::
normal

::
or

::::::::::
denormal

::::
and a NaN result is returned, the flag IEEE INVALID shall signal.

300.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0030, Status: J3 consideration in progress: N1622.

Ref: 14.2, 1st paragraph, 1st and 2nd bullet points, [365:13,15,18]

In the 1st bullet point of 14.2,
After both occurrences of “operation or assignment”
Insert “with finite operands”,
In the 2nd bullet point,
Before “nonzero numerator”
Insert “finite”,
Making the whole first two bullet points (with the opening line):

The exceptions are

• IEEE OVERFLOW
This exception occurs when the result for an intrinsic real operation or assignment

::::
with

::::::
finite

::::::::::
operands

has an absolute value greater than a processor-dependent limit, or the real or imaginary part of the result
for an intrinsic complex operation or assignment

::::
with

::::::
finite

:::::::::
operands has an absolute value greater than a

processor-dependent limit.
• IEEE DIVIDE BY ZERO

This exception occurs when a real or complex division has a
:::::
finite nonzero numerator and a zero denomi-

nator.

365.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0107, Status: Passed by J3 meeting: 07-312r2.

Ref: 14.8, at the end, [369:28+]

Insert new note:

NOTE 14.8a
The standard requires that code such as

if (IEEE_SUPPORT_DATATYPE(x)) then
x = IEEE_SCALB(x,2)

else
x = x*4

endif

be executable. The elemental functions in the IEEE ARITHMETIC module (14.9.2) must exist for all
real kinds supported by the processor, even if IEEE SUPPORT DATATYPE returns false for some kinds.
However, if IEEE SUPPORT DATATYPE returns false for a particular kind, these functions must not be
invoked with arguments of that kind. This allows a careful programmer to write programs that work on
processors that do not support IEEE arithmetic for all real kinds.

The processor might provide stub routines which allow the program to link and execute, but which will
abort if they are invoked.

NOTE: This interp also contains an edit to page 370.

369.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0107, Status: Passed by J3 meeting: 07-312r2.

Ref: 14.9.2, 1st paragraph, [370:8-9]

Edit paragraph as shown below:

The module IEEE ARITHMETIC contains the following elemental functions for
::
all reals X and Y for

which IEEE SUPPORT DATATYPE(X) and IEEE SUPPORT DATATYPE(Y) are true:

NOTE: This interp also contains an edit on page 369.

370.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0034, Status: J3 consideration in progress: N1622.

Ref: 14.10.12, Result Value paragraph, [376:15,17+]

In case (i), after “Note:”
Insert “if X is normal,”,
After case (ii)
Insert new case(iii) “If IEEE SUPPORT INF(X) is true and X is infinite, the result is +infinity.”,
Making the whole Result Value paragraph:

Result Value.

Case (i): If the value of X is neither zero, infinity, nor NaN, the result has the value of the unbiased exponent
of X. Note:

:
if

::
X

::
is

::::::::
normal this value is equal to EXPONENT (X)−1.

Case (ii): If X==0, the result is −infinity if IEEE SUPPORT INF (X) is true and −HUGE (X) otherwise;
IEEE DIVIDE BY ZERO signals.

Case (
::
iii):

:
If

::::::
IEEE

::::::::::::
SUPPORT

::::
INF

::::
(X)

:::
is

::::
true

::::
and

:::
X

::
is

::::::::
infinite,

::::
the

::::::
result

::
is

::::::::::
+infinity.

376.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0039, Status: J3 consideration in progress: N1622.

Ref: 14.11, Note 14.17, last paragraph, [389:12,16+]

After “This will work almost every time, but if an”
Insert “overflow or underflow”,
Append new sentence to the paragraph “This HYPOT function does not handle infinite arguments in the same
way that the hypot function in the C International Standard does.”,
Making the whole paragraph read:

An attempt is made to evaluate this function directly in the fastest possible way. This will work almost
every time, but if an

::::::::
overflow

::
or

::::::::::
underflow exception occurs during this fast computation, a safe but slower

way evaluates the function. This slower evaluation might involve scaling and unscaling, and in (very rare)
extreme cases this unscaling can cause overflow (after all, the true result might overflow if X and Y are
both near the overflow limit). If the IEEE OVERFLOW or IEEE UNDERFLOW flag is signaling on entry,
it is reset on return by the processor, so that earlier exceptions are not lost.

:::::
This

::::::::
HYPOT

:::::::::
function

:::::
does

:::
not

:::::::
handle

::::::::
infinite

:::::::::::
arguments

::
in

::::
the

::::::
same

::::
way

:::::
that

::::
the

::::::
hypot

:::::::::
function

:::
in

::::
the

::
C

:::::::::::::
International

::::::::::
Standard

:::::
does.

389.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0053, Status: J3 consideration in progress.

Ref: 15.2.2, 1st paragraph, [397:3]

At the end of the 1st paragraph
Insert new sentence “Each has the BIND attribute but is not interoperable with any C struct type.”,
Making the whole paragraph read:

C PTR and C FUNPTR shall be derived types with pointer components. C PTR is interoperable with
any C object pointer type. C FUNPTR is interoperable with any C function pointer type.

:::::
Each

::::
has

::::
the

::::::
BIND

:::::::::
attribute

::::
but

::
is

::::
not

:::::::::::::
interoperable

:::::
with

::::
any

:::
C

::::::
struct

:::::
type.

397.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0075, Status: J3 consideration in progress: 06-106.

Ref: 15.2.3, C1505, [398:8]

Append new sentence to constraint “If the component is an array, the corresponding C component shall be an
array and the shapes of the two arrays shall be as prescribed in 15.2.5.”,
Making the whole constraint:

C1505 (R429) Each component of a derived type with the BIND attribute shall be a nonpointer, nonallocat-
able data component with interoperable type and type parameters.

:
If

::::
the

::::::::::::
component

::
is

:::
an

::::::
array,

::::
the

:::::::::::::
corresponding

:::
C

:::::::::::
component

:::::
shall

:::
be

:::
an

::::::
array

::::
and

::::
the

:::::::
shapes

::
of

::::
the

::::
two

::::::
arrays

::::::
shall

:::
be

::
as

:::::::::::
prescribed

::
in

::::::
15.2.5.

Interp F03/0089, Status: Passed by J3 letter ballot: 07-272.

Ref: 15.2.3, 2nd paragraph, [398:9]

After “A Fortran derived type is interoperable with a C struct type if”
Insert “and only if”,
Making the whole paragraph:

A Fortran derived type is interoperable with a C struct type if
:::
and

:::::
only

::
if the derived-type definition of

the Fortran type specifies BIND(C) (4.5.1), the Fortran derived type and the C struct type have the same
number of components, and the components of the Fortran derived type have types and type parameters
that are interoperable with the types of the corresponding components of the struct type. A component
of a Fortran derived type and a component of a C struct type correspond if they are declared in the same
relative position in their respective type definitions.

398.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0073, Status: J3 consideration in progress: 06-102.

Ref: 15.2.6, numbered list it, item (5), [400:14-17]

NOTE: The editor has modified the edit as it was editorially wrong.

After “any dummy argument”
Replace “without the VALUE attribute”
With “that is not a procedure and does not have the VALUE attribute”,
Before “pointer type”
Insert “object”,

::::::
Delete

::
“;

::::::
and”,

After item (5)
Insert new item “(5a) any dummy procedure argument corresponds to a formal parameter of the prototype that
is of function pointer type, and the dummy procedure is interoperable with a function of the referenced type of
the formal parameter; and”

Making the whole of items (5) and (5a) read:

(5) any dummy argument without the VALUE attribute
::::
that

::
is

::::
not

::
a
::::::::::
procedure

:::::
and

:::::
does

:::
not

::::::
have

:::
the

::::::::
VALUE

:::::::::
attribute corresponds to a formal parameter of the prototype that is of a pointer type, and

the dummy argument is interoperable with an entity of the referenced type (C standard, 6.2.5, 7.17,
and 7.18.1) of the formal parameter; and

::::
(5a)

:::
any

:::::::::
dummy

::::::::::
procedure

::::::::::
argument

:::::::::::::
corresponds

:::
to

::
a

:::::::
formal

:::::::::::
parameter

::
of

:::::
the

::::::::::
prototype

:::::
that

:::
is

::
of

::::::::
function

:::::::
pointer

::::::
type,

::::
and

::::
the

::::::::
dummy

::::::::::
procedure

:::
is

:::::::::::::
interoperable

:::::
with

::
a

::::::::
function

:::
of

::::
the

::::::::::
referenced

::::
type

:::
of

:::
the

:::::::
formal

:::::::::::
parameter;

:::::
and

400.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0099, Status: Passed by J3 meeting: 07-339.

Ref: 16.4.2.1.4, after last paragraph, [415:27+]

Insert new paragraph:

The association status of a pointer object with the VOLATILE attribute may change by means not specified
by the program. If the association status of such an object changes, its array bounds or deferred type
parameters may change. If in addition it is polymorphic, its dynamic type and additional type parameters
not specified in its declaration may also change.

NOTE: This interp also has edits on pages 85, 421 and 423.

415.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0098, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 16.5.5, list item (19), [421:27-28+]

After “Allocation of an object”
Insert “except by an ALLOCATE statement with a SOURCE= specifier”,
And insert new list item,
Making item (19) and the new item read:

(19) Allocation of an object
::::::
except

:::
by

:::
an

:::::::::::::
ALLOCATE

::::::::::
statement

:::::
with

::
a

:::::::::::
SOURCE=

:::::::::
specifier that has a

nonpointer default-initialized subcomponent causes that subcomponent to become defined.

:::::
(19a)

::::::::::
Successful

:::::::::
execution

:::
of

:::
an

:::::::::::::
ALLOCATE

::::::::::
statement

:::::
with

:
a
::::::::::::
SOURCE=

::::::::
specifier

:::::::
causes

::
a

::::::::::
subobject

::
of

:::
the

:::::::::
allocated

:::::::
object

:::
to

::::::::
become

:::::::
defined

::
if

::::
the

::::::::::::::
corresponding

::::::::::
subobject

::
of

::::
the

::::::::::::
SOURCE=

::::::::::
expression

:
is

:::::::::
defined.

NOTE: This interp also has edits on pages 113 and 422.

Interp F03/0099, Status: Passed by J3 meeting: 07-339.

Ref: 16.5.5, item (26), [421:42-43]

Delete item (26) and insert normal text paragraph as follows:

(26) An object with the VOLATILE attribute that is changed by a means not specified by the program
becomes defined (see 5.1.2.16).

::
In

:::::::::
addition,

:::
an

:::::::
object

:::::
with

:::
the

::::::::::::
VOLATILE

::::::::::
attribute

:::::::::
(5.1.2.16)

:::::::
might

:::::::
become

::::::::
defined

:::
by

:::::::
means

:::
not

:::::::::
specified

:::
by

:::
the

:::::::::
program.

NOTE: This interp also has edits on pages 85, 415 and 423.

421.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0098, Status: Passed by J3 letter ballot: 07-279/321.

Ref: 16.5.6, list item (11), [422:41,43+]

After “ALLOCATE statement”
Insert “with no SOURCE= specifier”,
And insert new list item,
Making item (11) and the new item read:

(11) Successful execution of an ALLOCATE statement
::::
with

:::
no

::::::::::::
SOURCE=

::::::::
specifier for a nonzero-sized

object that has a subcomponent for which default initialization has not been specified causes the
subcomponent to become undefined.

:::::
(11a)

::::::::::
Successful

:::::::::
execution

:::
of

:::
an

:::::::::::::
ALLOCATE

::::::::::
statement

:::::
with

:
a
::::::::::::
SOURCE=

::::::::
specifier

:::::::
causes

::
a

::::::::::
subobject

::
of

:::
the

:::::::::
allocated

:::::::
object

::
to

::::::::
become

::::::::::
undefined

:
if
::::
the

::::::::::::::
corresponding

::::::::::
subobject

::
of

::::
the

:::::::::::
SOURCE=

::::::::::
expression

:
is

:::::::::::
undefined.

NOTE: This interp also has edits on pages 113 and 421.

422.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F03/0099, Status: Passed by J3 meeting: 07-339.

Ref: 16.5.6, after item (18), [423:28+]

Between list item (18) and Note 16.19
Insert new textual paragraph as follows:

::
In

:::::::::
addition,

::::
an

::::::
object

::::::
with

::::
the

::::::::::::
VOLATILE

:::::::::
attribute

::::::::::
(5.1.2.16)

:::::::
might

::::::::
become

::::::::::
undefined

:::
by

:::::::
means

::::
not

::::::::
specified

:::
by

::::
the

:::::::::
program.

NOTE: This interp also has edits on pages 85, 415 and 421.

423.2

DRAFT INTERPRETATION PAGES J3/08-121

Interp F03/0048, Status: Passed by J3 meeting: 07-250r1/272.

Ref: Annex A, alphabetically, [430:4+]

Add the following definition.

file position (9.2.3) : A connected unit has a file position. A unit’s file position typically affects where the
next data transfer operation will begin transferring data into or out of the file. The file position is usually
just before a record, just after a record, within a record, just before the first file storage unit in the file,
just after the last file storage unit in the file, or between two adjacent file storage units.

NOTE: This interp also has edits on pages 202 and 463.

430.2

J3/08-121 DRAFT INTERPRETATION PAGES

Interp F04/0048, Status: Passed by J3 meeting: 07-250r1/272.

Ref: C.6.2, 1st paragraph, [463:4]

Before “ADVANCE= specifier”
Delete “record positioning”,
Making the whole paragraph read:

Data transfer statements affect the positioning of an external file. In Fortran 77, if no error or end-of-
file condition exists, the file is positioned after the record just read or written and that record becomes
the preceding record. This standard contains the record positioning ADVANCE= specifier in a data
transfer statement that provides the capability of maintaining a position within the current record from
one formatted data transfer statement to the next data transfer statement. The value NO provides this
capability. The value YES positions the file after the record just read or written. The default is YES.

NOTE: This interp also has edits on pages 202 and 430.

463.2

	Polymorphic intrinsic function arguments and results

