
J3/10-151 INTERPRETATION UPDATE PAGES

To: J3
From: Malcolm Cohen
Subject: Updates to SD-018.
Date: 2010/05/17

This document is the update document for SD-018.

SD-018 contains insertions for every interpretation edit that has been published as a corrigendum to
04-007, plus the unpublished corrigendum 5.

This document contains those pages which are additional, or which changed, between the previous
version of SD-018 (09-018r1) and the latest version (10-018). People who have already inserted 09-018r1
into their copy of 04-007 should print out this document and insert its pages (occasionally replacing ones
from 09-018r1) instead of printing the whole 10-018.

The following pages are intended for insertion into a loose-leaf binder version of 04-007. This document
needs to be printed single-sided for this to work.

Most edits are followed by a “making the whole paragraph read” summary; in such summaries deleted
text appears struck-out like this and new text is wavy-underlined

::::
like

::::
this. (NB: Some summaries might

be missing this feature.)

This version includes a minor correction to 09-018r1 as well as unpublished corrigendum 5.

1

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0027, Status: Corrigendum 2.

Ref: 4.4.4.1, constraint C416, [41:9,9+]

At the end of list item (3),
Delete “or”,
And add a new list item immediately afterwards as follows:

(3.5) in the type-spec or derived-type-spec of a type guard statement (8.1.5), or

Interp F95/0098, Status: Corrigendum 5.

Ref: 4.4.4.1, C417, [41:11-12]

Change “unless ... dummy function”
To “unless it is of type CHARACTER and is the name of a dummy function or the name of the result of an

external function”,
Making the whole constraint read:

C417 A function name shall not be declared with an asterisk type-param-value unless it is of type
CHARACTER and is the name of a dummy function or the name of the result of an external function.

Interp F03/0027, Status: Corrigendum 2.

Ref: 4.4.4.1, last paragraph, [41:33+]

After list item (3),
Insert a new list item as follows:

(3.5) If used in the type-spec of a type guard statement, the associating entity assumes its length from
the selector.

Interp F95/0098, Status: Corrigendum 5.

Ref: 4.4.4.1, last paragraph, item (4), [41:34,36]

After “invoking the function”
Insert “or passing it as an actual argument”,
And change “host or use” to “argument, host, or use”, making the whole item read:

(4) If used to specify the character length parameter of a function result, any scoping unit invoking the function
::
or

::::::
passing

::
it

::
as

::
an

:::::
actual

:::::::::
argument shall declare the function name with a character length parameter parameter

value other than * or access such a definition by
::::::::
argument, host, or use association. When the function is

invoked, the length of the result variable in the function is assumed from the value of this type parameter.

41

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0122, Status: Corrigendum 5.

Ref: 4.5.1.3, 2nd paragraph, [47:11]

In the last sentence of the paragraph
Delete “declared to be PRIVATE or”,
Making the whole paragraph read:

Two data entities have the same type if they are declared with reference to the same derived-type
definition. The definition may be accessed from a module or from a host scoping unit. Data
entities in different scoping units also have the same type if they are declared with reference
to different derived-type definitions that specify the same type name, all have the SEQUENCE
property or all have the BIND attribute, have no components with PRIVATE accessibility, and
have type parameters and components that agree in order, name, and attributes. Otherwise, they
are of different derived types. A data entity declared using a type with the SEQUENCE property
or with the BIND attribute is not of the same type as an entity of a type declared to be PRIVATE
or that has any components that are PRIVATE.

47

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0090, Status: Corrigendum 5.

Ref: 4.7, constraint C494, [67:19+,21]

Immediately before constraint C494
Insert new constraint (shown below),
In constraint C494
Change “type and” to “declared type and”,
Making the new constraint and C494 read:

::::::
C493a

:::::::
(R469)

:::
An

:::::::::
ac-value

:::::
shall

::::
not

:::
be

::::::::::
unlimited

:::::::::::::
polymorphic.

C494 (R466) If type-spec is omitted, each ac-value expression in the array-constructor shall have the
same

::::::::
declared type and kind type parameters.

NOTE: This interp also has edits on page 68.

67

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0090, Status: Corrigendum 5.

Ref: 4.7, 2nd and 3rd paragraphs [68:9,11,14+]

After “in this case, the”
Insert “declared”,
After “If type-spec appears, it specifies the”
Insert “declared”,
After paragraph 3 insert new paragraph,
Making the whole 2nd and 3rd paragraphs read:

If type-spec is omitted, each ac-value expression in the array constructor shall have the same length
type parameters; in this case, the

::::::::
declared type and type parameters of the array constructor are

those of the ac-value expressions.

If type-spec appears, it specifies the
::::::::
declared type and type parameters of the array constructor.

Each ac-value expression in the array-constructor shall be compatible with intrinsic assignment
to a variable of this type and type parameters. Each value is converted to the type parameters of
the array-constructor in accordance with the rules of intrinsic assignment (7.4.1.3).

::::
The

:::::::::
dynamic

::::
type

:::
of

::::
the

:::::
array

::::::::::::
constructor

::
is

::::
the

:::::
same

:::
as

:::
its

:::::::::
declared

:::::
type.

NOTE: This interp also has edits on page 67.

68

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0127, Status: Corrigendum 5.

Ref: 5.1.2.7, 2nd and 3rd paragraphs, [81:15,26]

In paragraph 2
Change “during the execution”
To “during the invocation and execution”,
Append new sentence to paragraph 3,
Making the whole two paragraphs read:

The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither
be defined nor become undefined during the

::::::::::
invocation

::::
and execution of the procedure. The

INTENT (IN) attribute for a pointer dummy argument specifies that during the execution of the
procedure its association shall not be changed except that it may become undefined if the target
is deallocated other than through the pointer (16.4.2.1.3).

The INTENT (OUT) attribute for a nonpointer dummy argument specifies that it shall be defined
before a reference to the dummy argument is made within the procedure and any actual argument
that becomes associated with such a dummy argument shall be definable. On invocation of the
procedure, such a dummy argument becomes undefined except for components of an object of
derived type for which default initialization has been specified. The INTENT (OUT) attribute
for a pointer dummy argument specifies that on invocation of the procedure the pointer association
status of the dummy argument becomes undefined. Any actual argument associated with such a
pointer dummy shall be a pointer variable.

::::
Any

::::::::::::
undefinition

:::
or

:::::::::
definition

::::::::
implied

:::
by

:::::::::::
association

::
of

:::
an

::::::
actual

::::::::::
argument

:::::
with

::
an

::::::::::
INTENT

:::::::
(OUT)

::::::::
dummy

:::::::::
argument

:::::
shall

::::
not

::::::
affect

::::
any

:::::
other

::::::
entity

::::::
within

::::
the

::::::::::
statement

:::::
that

:::::::
invokes

::::
the

:::::::::::
procedure.

NOTE: This interp also has edits on page 275.

81

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0134, Status: Corrigendum 5.

Ref: 5.3, 4th paragraph, [93:9]

After “intrinsic function,”
Insert “is not a component,”,
Making the whole paragraph read:

Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic
function,

::
is

::::
not

::
a

::::::::::::
component, and is not made accessible by use association or host association

is declared implicitly to be of the type (and type parameters) mapped from the first letter of its
name, provided the mapping is not null. The mapping for the first letter of the data entity shall
either have been established by a prior IMPLICIT statement or be the default mapping for the
letter. The mapping may be to a derived type that is inaccessible in the local scope if the derived
type is accessible to the host scope. The data entity is treated as if it were declared in an explicit
type declaration in the outermost scoping unit in which it appears. An explicit type specification
in a FUNCTION statement overrides an IMPLICIT statement for the name of the result variable
of that function subprogram.

93

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0131, Status: Corrigendum 5.

Ref: 5.5.1.1, [97;7+]

In “5.5.1.1 Equivalence association”
Insert new paragraph:

If any data object in an equivalence-set has the SAVE attribute, all other objects in the equivalence-
set have the SAVE attribute; this may be confirmed by explicit specification.

97

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0063, Status: Corrigendum 5.

Ref: 5.5.2, R558-C590, [98:17,18,21,25]

Delete the second line of R558,
In C587, delete “or proc-pointer-name”,
In C588, after “allocatable,” insert “a procedure pointer,”,
In C590, delete “or proc-pointer-name”,
See next interp for the end results.

NOTE: This interp also has edits on pages 100, 411 and 416.

Interp F03/0133, Status: Corrigendum 5.

Ref: 5.5.2, constraint C588, [98:22]

After “BIND attribute,”
Insert “an unlimited polymorphic pointer”.

Applying F03/0063 and F03/0133 make all of R558-C590 read:

R558 common-block-object is variable-name [(explicit-shape-spec-list)]
or proc-pointer-name

C587 (R558) Only one appearance of a given variable-name or proc-pointer-name is permitted in all
common-block-object-lists within a scoping unit.

C588 (R558) A common-block-object shall not be a dummy argument, an allocatable variable, a
derived-type object with an ultimate object that is allocatable,

:
a
::::::::::
procedure

::::::::
pointer, an automa-

tic object, a function name, an entry name, a variable with the BIND attribute,
::
an

::::::::::
unlimited

::::::::::::
polymorphic

::::::::
pointer, or a result name.

C589 (R558) If a common-block-object is of a derived type, it shall be a sequence type (4.5.1) or a
type with the BIND attribute and it shall have no default initialization.

C590 (R558) A variable-name or proc-pointer-name shall not be a name made accessible by use
association.

98

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0063, Status: Corrigendum 5.

Ref: 5.5.2.3, penultimate paragraph, [100:12-15]

Delete the sentences “A procedure pointer ... and type parameters.”, Making the whole paragraph read:

A data pointer shall be storage associated only with data pointers of the same type and rank. Data
pointers that are storage associated shall have deferred the same type parameters; corresponding
nondeferred type parameters shall have the same value. A procedure pointer shall be storage
associated only with another procedure pointer; either both interfaces shall be explicit or both
interfaces shall be implicit. If the interfaces are explicit, the characteristics shall be the same. If
the interfaces are implicit, either both shall be subroutines or both shall be functions with the
same type and type parameters.

NOTE: This interp also has edits on pages 98, 411 and 416.

100

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0007, Status: Corrigendum 1.

Ref: 6.3.3.1, 2nd paragraph after Note 6.24, [116:8]

Replace “first executable statement”
By “executable constructs”,
Making the whole paragraph read:

If a specification expression in a scoping unit references a function whose result is either allocatable
or a structure with a subobject that is allocatable, and the function reference is executed, an
allocatable result and any subobject that is an allocated allocatable entity in the result returned by
the function is deallocated before execution of the first executable statement

::::::::::
executable

::::::::::
constructs

in the scoping unit.

Interp F03/0024, Status: Corrigendum 5.

Ref: 6.3.3.2, 2nd paragraph, [116:25]

After “by allocation.”
Insert new sentence,
Making the whole paragraph read:

If a pointer appears in a DEALLOCATE statement, it shall be associated with the whole of an
object that was created by allocation.

::::
The

:::::::
pointer

::::::
shall

:::::
have

::::
the

:::::
same

:::::::::
dynamic

:::::
type

::::
and

:::::
type

:::::::::::
parameters

::
as

::::
the

::::::::::
allocated

:::::::
object,

:::::
and

::
if

::::
the

:::::::::
allocated

:::::::
object

::
is

::::
an

:::::
array

::::
the

::::::::
pointer

:::::
shall

:::
be

::
an

::::::
array

:::::::
whose

:::::::::
elements

::::
are

::::
the

:::::
same

:::
as

::::::
those

:::
of

::::
the

:::::::::
allocated

:::::::
object

:::
in

::::::
array

::::::::
element

::::::
order.

Deallocating a pointer target causes the pointer association status of any other pointer that is
associated with the target or a portion of the target to become undefined.

116

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0138, Status: Corrigendum 5.

Ref: 7.4.2, constraint C727, [144:5-6]

Change “an external, module,”
To “a module”,
Change “or a procedure pointer”
To “a procedure pointer, or an external procedure that is accessed by use or host association and is
referenced in the scoping unit as a procedure, or that has the EXTERNAL attribute”,
Making the whole constraint:

C727 (R742) A procedure-name shall be the name of an external,
:
a module, or dummy procedure, a

specific intrinsic function listed in 13.6 and not marked with a bullet (•), or a procedure pointer
:
,

::
or

:::
an

:::::::::
external

::::::::::
procedure

:::::
that

::
is

:::::::::
accessed

::::
by

:::
use

:::
or

:::::
host

::::::::::::
association

::::
and

::
is

:::::::::::
referenced

:::
in

::::
the

:::::::
scoping

:::::
unit

::
as

::
a

:::::::::::
procedure,

:::
or

::::
that

::::
has

::::
the

:::::::::::::
EXTERNAL

:::::::::
attribute.

144

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0132, Status: Corrigendum 5.

Ref: 9.5.2, 12th paragraph, [193:13-15]

In the paragraph beginning “If a derived-type”
Edit the paragraph as follows:

If a derived-type list item
:
is

::::
not

::::::::::
processed

:::
by

::
a

::::::::::::
user-defined

::::::::::::
derived-type

:::::::::::::
input/output

::::::::::
procedure

::::
and is not treated as a list of its individual components,

:::
all

::::
the

:::::::::::::::
subcomponents

:::
of

:::::
that

::::
list

::::
item

::::::
shall

:::
be

::::::::::
accessible

:::
in

::::
the

::::::::
scoping

:::::
unit

:::::::::::
containing

::::
the

::::::::::::::
input/output

::::::::::
statement

:::::
and

:::::
shall

:::
not

:::
be

:::::::::
pointers

::
or

:::::::::::
allocatablethat list item’s ultimate components shall not have the POINTER

or ALLOCATABLE attribute unless that list item is processed by a user-defined derived-type
input/output procedure.

193

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0141, Status: Corrigendum 5.

Ref: 12.3.2.1, 6th paragraph, [260:2]

After “given scoping unit”
Insert “, except that if the interface is accessed by use association, there may be more than one local
name for the procedure”,
Append new sentence to the end of the paragraph,
Making the whole paragraph (which begins on page 259) read:

If an explicit specific interface is specified by an interface body or a procedure declaration sta-
tement (12.3.2.3) for an external procedure, the characteristics shall be consistent with those
specified in the procedure definition, except that the interface may specify a procedure that is not
pure if the procedure is defined to be pure. An interface for a procedure named by an ENTRY
statement may be specified by using the entry name as the procedure name in the interface body.
An explicit specific interface may be specified by an interface body for an external procedure that
does not exist in the program if the procedure is never used in any way. A procedure shall not
have more than one explicit specific interface in a given scoping unit,

:::::::
except

:::::
that

::
if

::::
the

::::::::
interface

:
is

:::::::::
accessed

:::
by

::::
use

::::::::::::
association,

::::::
there

:::::
may

:::
be

::::::
more

:::::
than

::::
one

:::::
local

::::::
name

::::
for

::::
the

::::::::::
procedure.

:
If

::
a

:::::::::
procedure

:::
is

::::::::
accessed

:::
by

::::
use

::::::::::::
association,

:::::
each

:::::::
access

:::::
shall

:::
be

:::
to

:::
the

::::::
same

::::::::::
procedure

:::::::::::
declaration

::
or

::::::::::
definition.

260

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0071, Status: Corrigendum 5.

Ref: 12.3.2.1, 9th paragraph, [261:3]

Append new sentence to paragraph, Making it read:

A generic interface block specifies a generic interface for each of the procedures in the interface
block. The PROCEDURE statement lists procedure pointers, external procedures, dummy pro-
cedures, or module procedures that have this interface. A generic interface is always specific.

:
If

:
a

::::::::
specific

::::::::::
procedure

:::
in

:
a
::::::::

generic
:::::::::
interface

::::
has

::
a

::::::::
function

::::::::
dummy

:::::::::::
argument,

::::
that

::::::::::
argument

:::::
shall

::::
have

:::
its

:::::
type

:::::
and

::::
type

::::::::::::
parameters

:::::::::
explicitly

:::::::::
declared

::
in

::::
the

::::::::
specific

:::::::::
interface.

261

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0088, Status: Corrigendum 3.

Ref: 12.3.2.1.1, 2nd paragraph, [262:16]

After “the second dummy argument.”
Append new sentence to paragraph:

All restrictions and constraints that apply to actual arguments in a reference to the function also
apply to the corresponding operands in the expression as if they were used as actual arguments.

NOTE: This interp also has an edit on p263.

262

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0069, Status: Corrigendum 2.

Ref: 12.3.2.1.2, 2nd paragraph, 2nd sentence, [263:6]

Replace entire sentence “Each argument shall be nonoptional.”
By “The dummy arguments shall be nonoptional dummy data objects.”,
(See below for resulting paragraph.)

Interp F03/0088, Status: Corrigendum 3.

Ref: 12.3.2.1.2, 2nd paragraph, [263:12]

After “the second argument.”
Insert the following new sentence:

All restrictions and constraints that apply to actual arguments in a reference to the subroutine
also apply to the left-hand-side and to the right-hand-side enclosed in parentheses as if they were
used as actual arguments.

Together with the previous interp on this page, making the whole paragraph read:

Each of these subroutines shall have exactly two dummy arguments. Each argument shall be
nonoptional.

:::
The

::::::::
dummy

:::::::::::
arguments

::::::
shall

:::
be

::::::::::::
nonoptional

::::::::
dummy

:::::
data

:::::::::
objects. The first ar-

gument shall have INTENT (OUT) or INTENT (INOUT) and the second argument shall have
INTENT (IN). Either the second argument shall be an array whose rank differs from that of the
first argument, the declared types and kind type parameters of the arguments shall not conform
as specified in Table 7.8, or the first argument shall be of derived type. A defined assignment
is treated as a reference to the subroutine, with the left-hand side as the first argument and the
right-hand side enclosed in parentheses as the second argument.

:::
All

:::::::::::
restrictions

::::
and

:::::::::::
constraints

::::
that

::::::
apply

:::
to

::::::
actual

:::::::::::
arguments

:::
in

::
a

:::::::::
reference

:::
to

::::
the

:::::::::::
subroutine

::::
also

::::::
apply

:::
to

::::
the

:::::::::::::
left-hand-side

::::
and

::
to

::::
the

:::::::::::::::
right-hand-side

:::::::::
enclosed

::
in

::::::::::::
parentheses

::
as

::
if
:::::
they

:::::
were

:::::
used

:::
as

::::::
actual

::::::::::::
arguments. The

ASSIGNMENT generic specification specifies that assignment is extended or redefined.

Interp F03/0112, Status: Corrigendum 5.

Ref: 12.3.2.1.2, end of subclause, [263:14-]

At the end of subclause “12.3.2.1.2 Defined assignments”,
Insert new note as follows:

NOTE
:::::::
12.10a

:
If

::::
the

::::::::
second

::::::::::
argument

::
of

::
a

::::::::::
procedure

:::::::::
specified

:::
in

::
a

::::::::
defined

:::::::::::
assignment

:::::::::
interface

::::::
block

::::
has

::::
the

::::::::::
POINTER

:::
or

:::::::::::::::::
ALLOCATABLE

::::::::::
attribute,

::
it

::::::::
cannot

:::
be

::::::::
accessed

:::
by

::::::::
defined

::::::::::::
assignment,

:::::
since

::::
the

::::::::::
right-hand

::::
side

:::
of

::::
the

:::::::::::
assignment

::
is

:::::::::
enclosed

:::
in

::::::::::::
parentheses

::::::
before

::::::
being

:::::::::::
associated

::
as

:::
an

:::::::
actual

:::::::::
argument

:::::
with

:::::
the

:::::::
second

:::::::::::
argument.

::::::
This

:::::::
makes

::
it

::::
an

:::::::::::
expression,

:::::::
which

:::::
does

:::::
not

:::::
have

::::
the

::::::::::
POINTER

:::
or

:::::::::::::::::
ALLOCATABLE

::::::::::
attribute.

263

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0137, Status: Corrigendum 5.

Ref: 12.4.1.3, 5th paragraph, [271:28]

Append new sentences to the end of the paragraph,
Making the whole paragraph read:

If the interface of the dummy argument is implicit and either the name of the dummy argument is
explicitly typed or it is referenced as a function, the dummy argument shall not be referenced as
a subroutine and the actual argument shall be a function, function procedure pointer, or dummy
procedure.

:
If

:::::
both

::::
the

::::::
actual

::::::::::
argument

::::
and

:::::::
dummy

::::::::::
argument

:::
are

:::::::
known

::
to

:::
be

::::::::::
functions,

:::::
they

::::
shall

::::
have

::::
the

:::::
same

:::::
type

::::
and

:::::
type

::::::::::::
parameters.

::
If

:::::
only

::::
the

::::::::
dummy

:::::::::
argument

::
is

:::::::
known

:::
to

:::
be

:
a
:::::::::
function,

:::
the

::::::::
function

:::::
that

::::::
would

:::
be

::::::::
invoked

::
by

::
a

:::::::::
reference

::
to

::::
the

::::::::
dummy

:::::::::
argument

:::::
shall

:::::
have

:::
the

::::::
same

::::
type

::::
and

::::
type

::::::::::::
parameters,

::
except that an external function with assumed character length may be associated with

:::
a dummy argument with explicit character length.

271

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0127, Status: Corrigendum 5.

Ref: 12.4.1.7, item (2), [275:2,5]

Change both occurrences of “during the execution”
To “during the invocation and execution”,
Making the whole item read:

(2) If the allocation status of the entity or a subobject thereof is affected through the dummy
argument, then at any time during the

::::::::::
invocation

::::
and execution of the procedure, either

before or after the allocation or deallocation, it may be referenced only through the dummy
argument. If the value the entity or any subobject is affected through the dummy argument,
then at any time during the

:::::::::
invocation

:::::
and execution of the procedure, either before or after

the definition, it may be referenced only through that dummy argument unless

(a) the dummy argument has the POINTER attribute or
(b) the dummy argument has the TARGET attribute, the dummy argument does not

have INTENT (IN), the dummy argument is a scalar object or an assumed-shape
array, and the actual argument is a target other than an array section with a vector
subscript.

NOTE: This interp also has edits on page 81.

275

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0135, Status: Corrigendum 5.

Ref: 12.4.4, item (2), [276:36+]

In item (3) “A procedure name is established to be only specific...”
Insert new subitem before subitem (b):

(a2) if that scoping unit is of a subprogram that defines a procedure with that name;

NOTE: This interp also has an edit on page 278.

276

INTERPRETATION UPDATE PAGES J3/10-151

Interp F95/0078, Status: Corrigendum 1.

Ref: 12.4.4.1, end of subclause, [278:5+]

Append new list item:

(5) If (1), (2), (3) and (4) do not apply, the name is that of an intrinsic procedure, and the
reference is consistent with the interface of that intrinsic procedure, then the reference is to
that intrinsic procedure.

Interp F03/0135, Status: Corrigendum 5.

Ref: 12.4.4.2, after item (3), [278:15+]

Insert new item

(3a) If the scoping unit is of a subprogram that defines a procedure with that name, the reference is to
that procedure.

NOTE: This interp also has an edit on page 276.

278

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0127, Status: Corrigendum 5.

Ref: 12.6, after constraint C1271, [286:22+]

Insert new constraint as follows:

:::::::
C1271a

::::
The

::::::::::
designator

::
of

::
a

::::::::
variable

:::::
with

:::
the

::::::::::::
VOLATILE

:::::::::
attribute

:::::
shall

::::
not

:::::::
appear

::
in

:
a
:::::
pure

:::::::::::::
subprogram.

286

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0119, Status: Corrigendum 5.

Ref: 12.7.1, constraint C1278, [287:17]

After “shall be scalar”
Change “and” to “,”.

NOTE: See page 288 for the restated constraint.

287

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0119, Status: Corrigendum 5.

Ref: 12.7.1, constraint C1278, [288:1]

After “ALLOCATABLE attribute”
Insert “, and shall not have a type parameter that is defined by an expression that is not an initialization
expression”,
Making the whole constraint (starting on page 287) read:

C1278 The result variable of an elemental function shall be scalar and
:
, shall not have the POINTER or

ALLOCATABLE attribute,
::::
and

:::::
shall

::::
not

:::::
have

::
a

::::
type

:::::::::::
parameter

::::
that

::
is

::::::::
defined

::
by

:::
an

:::::::::::
expression

::::
that

::
is

::::
not

:::
an

:::::::::::::
initialization

::::::::::
expression.

288

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0054, Status: Corrigendum 1.

Ref: 13.7.37, Result Value paragraph, [316:5-6]

Replace “model representation (13.4) for the value of X”
By “representation for the value of X in the model (13.4) that has the radix of X but no limits on
exponent values”,
Making the whole paragraph read:

Result Value. The result has a value equal to the exponent e of the model representation (13.4) for
the value of X

:
in

::::
the

:::::::
model

::::::
(13.4)

:::::
that

::::
has

::::
the

:::::
radix

:::
of

::
X

:::::
but

:::
no

::::::
limits

:::
on

:::::::::
exponent

:::::::
values, provided

X is nonzero and e is within the range for default integers. If X has the value zero, the result has the
value zero. If X is an IEEE infinity or NaN, the result has the value HUGE(0).

NOTE: This interp also has an edit on page 317.

Interp F03/0125, Status: Corrigendum 5.

Ref: 13.7.38, Arguments and Result Value paragraphs, [316:16-17,21,22]

After “of extensible”
Change “type” to “declared type or unlimited polymorphic”, twice,
After “the result is false; otherwise”
Insert “if the dynamic type of A or MOLD is extensible,”,
After “dynamic type of MOLD”
Insert “; otherwise the result is processor dependent”,
Making the whole Arguments, Result Characteristics and Result Value paragraphs read:

Arguments.

A shall be an object of extensible
::::::::
declared type

::
or

::::::::::
unlimited

::::::::::::
polymorphic. If it is a pointer,

it shall not have an undefined association status.
MOLD shall be an object of extensible

::::::::
declared type

::
or

::::::::::
unlimited

::::::::::::
polymorphic. If it is a pointer,

it shall not have an undefined association status.

Result Characteristics. Default logical scalar.

Result Value. If MOLD is unlimited polymorphic and is either a disassociated pointer or unallocated
allocatable variable, the result is true; otherwise if A is unlimited polymorphic and is either a disasso-
ciated pointer or unallocated allocatable variable, the result is false; otherwise

:
if
::::
the

:::::::::
dynamic

:::::
type

::
of

:::
A

::
or

:::::::
MOLD

:::
is

:::::::::::
extensible, the result is true if and only if the dynamic type of A is an extension type of

the dynamic type of MOLD;
::::::::::
otherwise

::::
the

::::::
result

::
is

::::::::::
processor

::::::::::
dependent.

NOTE: This interp also has edits on pages 347-348.

316

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0055, Status: Corrigendum 1.

Ref: 13.7.100, Result Value paragraph, [347:22]

Replace “the model representation of X.”
By “the value nearest to X in the model for real values whose kind type parameter is that of X; if there
are two such values, the value of greater absolute value is taken.”,
Making the whole paragraph read:

Result Value. The result has the value |Y× b−e| × bp, where b, e, and p are as defined in 13.4 for the
value nearest to X in the model for real values whose kind type parameter is that of X; if there are two
such values, the value of greater absolute value is taken. If X is an IEEE infinity, the result is zero. If
X is an IEEE NaN, the result is that NaN.

Interp F03/0125, Status: Corrigendum 5.

Ref: 13.7.101, Arguments paragraph, [347:30]

After “of extensible”
Change “type”
To “declared type or unlimited polymorphic”.

NOTE: See page 348 for the restated text.

347

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0125, Status: Corrigendum 5.

Ref: 13.7.101, Arguments and Result Value paragraphs, [348:1,3,4]

After “of extensible”
Change “type”
To “declared type or unlimited polymorphic”,
Change “The result”
To “If the dynamic type of A or B is extensible, the result”,
Append sentence to paragraph,
Making the whole Arguments, Result Characteristics and Result Value paragraphs read:

Arguments.

A shall be an object of extensible
::::::::
declared type

:::
or

::::::::::
unlimited

::::::::::::
polymorphic. If it is a pointer,

it shall not have an undefined association status.
B shall be an object of extensible

::::::::
declared type

:::
or

::::::::::
unlimited

::::::::::::
polymorphic. If it is a pointer,

it shall not have an undefined association status.

Result Characteristics. Default logical scalar.

Result Value.
::
If

::::
the

:::::::::
dynamic

:::::
type

:::
of

::
A

:::
or

::
B

:::
is

:::::::::::
extensible,

::::
theThe result is true if and only if the

dynamic type of A is the same as the dynamic type of B.
::
If

:::::::
neither

:::
A

::::
nor

::
B

::::
has

:::::::::::
extensible

:::::::::
dynamic

:::::
type,

::::
the

::::::
result

::
is

:::::::::
processor

::::::::::::
dependent.

NOTE: The new text above includes the last 3 lines from page 347.

348

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0022, Status: Corrigendum 5.

Ref: 14, 2nd paragraph, 1st sentence, [363:9-10]

After “IEEE DIVIDE BY ZERO are supported in the scoping unit for all kinds of real and complex”
Insert “IEEE floating-point”,
Making the whole first sentence (in this rather long paragraph, the rest of which is omitted here):

If IEEE EXCEPTIONS or IEEE ARITHMETIC is accessible in a scoping unit, IEEE OVER-
FLOW and IEEE DIVIDE BY ZERO are supported in the scoping unit for all kinds of real and
complex

:::::
IEEE

:::::::::::::
floating-point data.

363

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0034, Status: Corrigendum 5.

Ref: 14.10.12, Result Value paragraph, [376:17+]

At the end of the Result Value paragraph,
Append two new list items as follows:
Case (iii): If IEEE SUPPORT INF(X) is true and X is infinite, the result is +infinity.

Case (iv): If IEEE SUPPORT NAN(X) is true and X is a NaN, the result is a NaN.

376

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0129, Status: Corrigendum 5.

Ref: 15.1.2.5, Argument paragraph, [395:8,16+]

After “have interoperable type and” insert “kind”,
Insert new sentence after list,
Making the whole Argument paragraph read:

Argument. X shall either

(1) have interoperable type and
:::::
kind type parameters and be

(a) a variable that has the TARGET attribute and is interoperable,
(b) an allocated allocatable variable that has the TARGET attribute and is not an array

of zero size, or
(c) an associated scalar pointer, or

(2) be a nonpolymorphic scalar, have no length type parameters, and be

(a) a nonallocatable, nonpointer variable that has the TARGET attribute,
(b) an allocated allocatable variable that has the TARGET attribute, or
(c) an associated pointer.

::
X

:::::
shall

::::
not

:::
be

:
a
::::::::::::
zero-length

:::::::
string.

NOTE: This interp also has edits on pages 396 and 399.

395

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0129, Status: Corrigendum 5.

Ref: 15.2.1, 1st paragraph, [396:5-7]

Replace “; if ... one.”, Making the whole paragraph read:

Table 15.2 shows the interoperability between Fortran intrinsic types and C types. A Fortran
intrinsic type with particular type parameter values is interoperable with a C type if the type and
kind type parameter value are listed in the table on the same row as that C type; if.

:::
If the type is

character, interoperability also requires that the length type parameter be omitted or be specified
by an initialization expression whose

::
is

:::::::::::::
interoperable

::
if

::::
and

:::::
only

:
if
:::
its value is one. A combination

of Fortran type and type parameters that is interoperable with a C type listed in the table is also
interoperable with any unqualified C type that is compatible with the listed C type.

NOTE: This interp also has edits on pages 395 and 399.

396

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0129, Status: Corrigendum 5.

Ref: 15.2.4p1 and 15.2.5p1, [399:2-3,7-8]

Change the first paragraphs of 15.2.4 and 15.2.5 as shown below,
Making the whole of 15.2.4 and the first paragraph of 15.2.5 read:

15.2.4 Interoperability of scalar variables

A
::::::
named scalar Fortran variable is interoperable if

:::
and

:::::
only

:::
if its type and type parameters are

interoperable, and it has neither the pointer nor the allocatable attribute
:
,
::::
and

::
if

::
it

:::
is

::
of

:::::
type

::::::::::
character

::
its

:::::::
length

::
is

::::
not

:::::::::
assumed

::
or

:::::::::
declared

:::
by

:::
an

:::::::::::
expression

::::
that

:::
is

::::
not

:::
an

::::::::::::
initialization

:::::::::::
expression.

An interoperable scalar Fortran variable is interoperable with a scalar C entity if their types and type
parameters are interoperable.

15.2.5 Interoperability of array variables

::
AAn array Fortran variable

::::
that

::
is

::
a

:::::::
named

::::::
array is interoperable if

::::
and

:::::
only

::
if its type and type

parameters are interoperable
:
, and it is of explicit shape or assumed size

:
,

::::
and

::
if

::
it

::
is

::
of

:::::
type

::::::::::
character

:::
its

::::::
length

::
is

::::
not

:::::::::
assumed

::
or

:::::::::
declared

:::
by

:::
an

:::::::::::
expression

::::
that

:::
is

:::
not

::::
an

::::::::::::
initialization

:::::::::::
expression.

NOTE: This interp also has edits on pages 395 and 396.

399

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0136, Status: Corrigendum 5.

Ref: 16.2.3, 2nd paragraph, [407:28]

After “distinguishable if”
Insert “one is a subroutine and the other is an array, or if”,
Making the whole paragraph read:

Two dummy arguments are distinguishable if
::::
one

::
is

::
a

::::::::::
subroutine

:::::
and

::::
the

:::::
other

::
is

::::
an

::::::
array,

::
or

:
if neither is a subroutine and neither is TKR compatible (5.1.1.2) with the other.

407

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0140, Status: Corrigendum 5.

Ref: 16.3, 2nd and 3rd paragraphs, [409:19,26]

Before “scoping unit that includes the DATA”
And before “scoping unit that includes the FORALL”
Insert “innermost executable construct or” (thus twice),
Making those two paragraphs read:

The name of a data-i-do-variable in a DATA statement or an ac-do-variable in an array constructor
has a scope of its data-implied-do or ac-implied-do. It is a scalar variable that has the type and
type parameters that it would have if it were the name of a variable in the

::::::::::
innermost

::::::::::
executable

:::::::::
construct

:::
or scoping unit that includes the DATA statement or array constructor, and this type

shall be integer type; it has no other attributes. The appearance of a name as a data-i-do-variable
of an implied-DO in a DATA statement or an ac-do-variable in an array constructor is not an
implicit declaration of a variable whose scope is the scoping unit that contains the statement.

The name of a variable that appears as an index-name in a FORALL statement or FORALL
construct has a scope of the statement or construct. It is a scalar variable that has the type and
type parameters that it would have if it were the name of a variable in the

::::::::::
innermost

::::::::::
executable

:::::::::
construct

:::
or scoping unit that includes the FORALL, and this type shall be integer type; it has

no other attributes. The appearance of a name as an index-name in a FORALL statement or
FORALL construct is not an implicit declaration of a variable whose scope is the scoping unit
that contains the statement or construct.

409

J3/10-151 INTERPRETATION UPDATE PAGES

Interp F03/0063, Status: Corrigendum 5.

Ref: 16.4.1.3, 2nd paragraph, item (7), [411:21]

Delete item (7) in the list of names in a scoping unit that override the same host-associated name.

NOTE: This interp also has edits on pages 98, 100 and 416.

411

INTERPRETATION UPDATE PAGES J3/10-151

Interp F03/0063, Status: Corrigendum 5.

Ref: 16.4.3.1, 2nd paragraph, item (8), [416:23]

Change “A pointer occupies”
To “A data pointer occupies”, Making the whole paragraph read:

(8) A
:::::
data pointer occupies a single unspecified storage unit that is different from that of any

nonpointer object and is different for each combination of type, type parameters, and rank.

NOTE: This interp also has edits on pages 98, 100 and 411.

416

	Interoperability of scalar variables
	Interoperability of array variables

