
WORKING DRAFT

10-165

1st June 2010 14:39

This is an internal working document of J3.





2010/02/18 WORKING DRAFT 10-165

Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Terms and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4.1 New intrinsic procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4.2 Fortran 2008 compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Data Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Assumed-type objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Assumed-rank objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 OPTIONAL attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Characteristics of dummy data objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Explicit interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Argument association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Intrinsic procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Specification of the standard intrinsic procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Interoperability with C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Object descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1.1 Fortran descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 C descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 ISO Fortran binding.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.3.1 Summary of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3.2 CFI cdesc t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3.3 CFI dim t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.4 CFI bounds t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.5 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.7 Restrictions on the use of C descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3.8 Interoperability of procedures and procedure interfaces . . . . . . . . . . . . . . . . . . . 14

Annex A (informative) Extended notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.1 Clause 2 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.1.1 Using assumed-type dummy arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.1.2 General association with a void * C parameter . . . . . . . . . . . . . . . . . . . . . . . . 15
A.1.3 Casting TYPE (*) in Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.1.4 Simplifying interfaces for arbitrary rank procedures . . . . . . . . . . . . . . . . . . . . . 16

A.2 Clause 5 notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Annex B (informative) Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Contents i



10-165 WORKING DRAFT 2010/02/18

ii Contents



2010/02/18 WORKING DRAFT 10-165

List of Tables

5.1 Macros specifying attribute codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Macros specifying type codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

List of Tables iii



10-165 WORKING DRAFT 2010/02/18

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

2 International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

3 The main task of the joint technical committee is to prepare International Standards. Draft International Stand-
ards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

4 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

5 ISO/IEC TR 29113:2010(E) was prepared by Joint Technical Committee ISO/IEC/JTC1,Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

6 This technical report specifies an enhancement of the C interoperability facilities of the programming language
Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2010.

7 It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical report
be included in the next revision of the Fortran International Standard without change unless experience in the
implementation and use of this feature identifies errors that need to be corrected, or changes are needed to achieve
proper integration, in which case every reasonable effort will be made to minimize the impact of such changes on
existing implementations.

iv Foreword



2010/02/18 WORKING DRAFT 10-165

Introduction

Technical Report on Further Interoperability of Fortran with C

1 The system for interoperability between the C language, as standardized by ISO/IEC 9899:1999, and Fortran, as
standardized by ISO/IEC 1539-1:2010, provides for interoperability of procedure interfaces with arguments that
are non-optional scalars, explicit shape arrays, or assumed size arrays. These are the cases where the Fortran
and C data concepts directly correspond. Interoperability is not provided for important cases where there is not
a direct correspondence between C and Fortran.

2 The existing system for interoperability does not provide for interoperability of interfaces with Fortran dummy
arguments that are assumed-shape arrays, or dummy arguments with the Fortran allocatable, pointer, or optional
attributes. As a consequence, a significant class of Fortran subprograms are not portably accessible from C,
limiting the usefulness of the facility.

3 The existing system also does not provide for interoperability with C prototypes that have formal parameters
declared (void *). The class of such C functions includes widely used library functions that involve copying blocks
of data, such as those in the MPI library.

4 ISO/IEC TR 29113 extends the facility of Fortran for interoperating with C to provide for interoperability of
procedure interfaces that specify assumed shape dummy arguments, or dummy arguments with the allocatable,
pointer, or optional attributes. New Fortran concepts of assumed-type and assumed-rank are provided to facilitate
interoperability of procedure interfaces with C prototypes with formal parameters declared (void *). An intrinsic
function, RANK, is specified to obtain the rank of an assumed-rank variable.

5 The facility specified in ISO/IEC TR 29113 is a compatible extension of Fortran as standardized by ISO/IEC
1539-1:2010. It does not require that any changes be made to the C language as standardized by ISO/IEC
9899:1999.

6 ISO/IEC TR 29113 is organized in 5 clauses:

Overview Clause 1
Data attributes Clause 2
Procedure interfaces Clause 3
Intrinsic procedure Clause 4
Interoperability with C Clause 5

7 It also contains the following nonnormative material:

Extended notes A
Index B

Introduction v



10-165 WORKING DRAFT 2010/02/18

vi Introduction



2010/02/18 WORKING DRAFT 10-165

Technical Report — Further Interoperability of Fortran with1

C —2

1 Overview3

1.1 Scope4

1 ISO/IEC TR 29113 specifies the form and establishes the interpretation of facilities that extend the Fortran lan-5

guage defined by ISO/IEC 1539-1:2010. The purpose of ISO/IEC TR 29113 is to promote portability, reliability,6

maintainability and efficient excution of programs containing parts written in Fortran and parts written in C for7

use on a variety of computing systems.8

1.2 Normative references9

1 The following referenced standards are indispensable for the application of this document.10

2 ISO/IEC 1539-1:2010, Information technology—Programming languages—Fortran11

3 ISO/IEC 9899:1999, Information technology—Programming languages—C12

1.3 Terms and definitions13

1 For the purposes of this document, the following terms and definitions apply. Terms not defined in ISO/IEC TR14

29113 are to be interpreted according to ISO/IEC 1539-1:2010.15

1 1.3.116

assumed-rank object17

dummy variable whose rank is assumed from its effective argument18

1 1.3.219

assumed-type object20

dummy variable whose type and type parameters are assumed from its effective argument21

1 1.3.322

C descriptor23

struct of type CFI cdesc t24

1 1.3.425

Fortran descriptor26

a structure used by the processor to describe an object that is assumed-shape, assumed-rank, allocatable, or a27

data pointer28

1.4 Compatibility29

1.4.1 New intrinsic procedures30

1 ISO/IEC TR 29113 defines intrinsic procedures in addition to those specified in ISO/IEC 1539-1:2010. Therefore,31

a Fortran program conforming to ISO/IEC 1539-1:2010 might have a different interpretation under ISO/IEC TR32

29113 if it invokes an external procedure having the same name as one of the new intrinsic procedures, unless33

that procedure is specified to have the EXTERNAL attribute.34

1 Overview 1



10-165 WORKING DRAFT 2010/02/18

1.4.2 Fortran 2008 compatibility1

1 ISO/IEC TR 29113 is an upwardly compatible extension to ISO/IEC 1539-1:2010.2

2 Overview 1.4.2



2010/02/18 WORKING DRAFT 10-165

2 Data Attributes1

2.1 Assumed-type objects2

1 An assumed-type object is a dummy variable with no declared type and whose dynamic type and type parameters3

are assumed from its effective argument. An assumed-type object is declared with a declaration-type-spec of4

TYPE (*).5

C201 An assumed-type entity shall be a dummy variable.6

C202 An assumed-type variable shall not have the CODIMENSION or VALUE attribute.7

2 An assumed-type variable may appear only as a dummy argument, an actual argument associated with a dummy8

argument that is assumed-type, or the first argument to the intrinsic and intrinsic module function ALLOCATED,9

ASSOCIATED, IS CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE, SIZE, UBOUND, or C LOC.10

2.2 Assumed-rank objects11

1 An assumed-rank object is a dummy variable whose rank is assumed from its effective argument. As assumed-rank12

object is declared with an array-spec that is an assumed-rank-spec.13

R201 assumed-rank-spec is ..14

C203 An assumed-rank entity shall be a dummy variable.15

C204 An assumed-rank variable shall not have the CODIMENSION or VALUE attribute.16

2 An assumed-rank variable may appear only as a dummy argument, an actual argument associated with a dummy17

argument that is assumed-rank, the argument of the C LOC function in the ISO C BINDING intrinsic module,18

or the first argument in a reference to an intrinsic inquiry function. The RANK inquiry intrinsic may be used to19

inquire about the rank of an array.20

3 The rank of an assumed-rank object may be zero.21

2.3 OPTIONAL attribute22

1 The OPTIONAL attribute may be specified for a dummy argument in a procedure interface that has the BIND23

attribute.24

C205 A dummy argument that has the OPTIONAL attribute and is declared in an interface that is specified25

with a proc-language-binding-spec shall not have the VALUE attribute.26

2 Data Attributes 3



10-165 WORKING DRAFT 2010/02/18

4 Data Attributes 2.3



2010/02/18 WORKING DRAFT 10-165

3 Procedures1

3.1 Characteristics of dummy data objects2

1 Whether the type or rank of a dummy data object is assumed is a characteristic of the dummy data object.3

3.2 Explicit interface4

1 A procedure shall have an explicit interface if it is referenced and the procedure has a dummy argument that is5

assumed-type or assumed-rank.6

3.3 Argument association7

1 An assumed-rank dummy argument may correspond to an actual argument of any rank. If the actual argument8

is scalar, the dummy argument has rank zero and the shape and bounds are arrays of zero size. If the actual9

argument is an array, the bounds of the dummy argument are assumed from the actual argument.10

2 An assumed-type dummy argument is type and kind compatible with a nonpolymorphic actual data argument11

of any declared type.12

NOTE 3.1
Because the type and type parameters of an assumed-type dummy argument are assumed from its effective
argument, two such arguments are not distinguishable based on type for purposes of generic resolution.
Similarly, the rank of arguments cannot be used for generic resolution if the dummy argument is assumed-
rank.

3 Procedures 5



10-165 WORKING DRAFT 2010/02/18

6 Procedures 3.3



2010/02/18 WORKING DRAFT 10-165

4 Intrinsic procedure1

4.1 Specification of the standard intrinsic procedure2

4.1.1 General3

1 Detailed specification of the RANK generic intrinsic procedure is provided in 4.1. The types and type parameters4

of the RANK intrinsic procedure argument and function result are determined by this specification. The “Argu-5

ment” paragraph specifies requirements on the actual arguments of the procedure. The RANK intrinsic function6

is a pure function.7

4.1.2 RANK (A)8

1 Description. Rank of a data object.9

2 Class. Inquiry function.10

3 Arguments.11

A shall be a scalar or array of any type.12

4 Result Characteristics. Default integer scalar.13

5 Result Value. The result is the rank of A.14

6 Example. For an array X declared REAL :: X(:,:,:), RANK(X) is 3.15

4 Intrinsic procedure 7



10-165 WORKING DRAFT 2010/02/18

8 Intrinsic procedure 4.1.2



2010/02/18 WORKING DRAFT 10-165

5 Interoperability with C1

5.1 Object descriptors2

1 A Fortran descriptor is a structure used by the processor to describe an object that is assumed-shape, assumed-3

rank, allocatable, or a data pointer. A C descriptor is a struct of type CFI cdesc t. The C descriptor along4

with library functions with standard prototypes that allow for conversion between Fortran and C descriptors5

provide the means for describing an assumed-shape, assumed-rank, allocatable, or data pointer object within a6

C function.7

NOTE 5.1
The Fortran processor may already define a structure for this purpose independent of a use in interface
operability with C prototypes. If this structure contains sufficient information it may be used directly
as a Fortran descriptor. The internal structure of a Fortran descriptor might not be the same for all
implementations, so direct use of this descriptor by a C program is not portable.

NOTE 5.2
This two descriptor model for describing data objects has these characteristics:

(1) The internal structure of the Fortran descriptor is not exposed to the C programmer.
(2) The C descriptor contains enough information to efficiently access the described object within

a C function.
(3) The C descriptor contains enough information to create a corresponding Fortran descriptor

that is usable by the companion Fortran processor.
(4) Methods are provided for use by a C function that allow for allocation or deallocation of objects

that is compatible with effects of the corresponding Fortran ALLOCATE and DEALLOCATE
statements.

(5) A method is provided to compute stride multipliers based on lower bound, extent, and stride
values.

5.1.1 Fortran descriptors8

1 The Fortran descriptor for an object shall contain enough information that the following can be determined by9

the C library function that defines a C descriptor from a Fortran descriptor.10

(1) The base C address of the object unless the object is an unallocated allocatable, or a data pointer11

that is not associated.12

(2) The size, as would be returned by the C sizeof operator, of a scalar of the same type and type13

parameter values as the object.14

(3) The Fortran rank of the object. If this value is zero, the object is scalar.15

(4) Whether the object has the pointer attribute.16

(5) Whether the object has the allocatable attribute.17

(6) If the Fortran object has the pointer attribute, whether or not the pointer is disassociated.18

(7) If the Fortran object has the allocatable attribute, whether or not the object is allocated.19

(8) The type of the object if the object is of intrinsic interoperable type, or that the object is of derived20

type.21

(9) Triples that contain the lower bound, extent, and stride multiplier for each dimension of the object22

unless the object is an unallocated allocatable, a pointer that is disassociated, or a scalar.23

5 Interoperability with C 9



10-165 WORKING DRAFT 2010/02/18

2 The Fortran descriptor may contain additional information that is not required in order to create a corresponding1

C descriptor.2

5.2 C descriptors3

1 The C descriptor is a struct of type CFI cdesc t. This struct is defined in the file ISO Fortran binding.h.4

5.3 ISO Fortran binding.h5

5.3.1 Summary of contents6

1 The ISO Fortran binding.h file contains the definitions of the C structs CFI cdesc t, CFI dim t, and CFI bounds -7

t, macro definitions that expand to integer constants with type int, and C prototypes for the C functions CFI up-8

date cdesc, CFI update fdesc, CFI free fdesc, CFI allocate, CFI deallocate, CFI is contiguous, CFI bounds to -9

cdesc, and CFI cdesc to bounds. The contents of ISO Fortran binding.h can be used by a C function to interpret10

a Fortran descriptor, allocate and deallocate objects represented by a Fortran descriptor, and convert between11

a C descriptor and a corresponding Fortran descriptor. These provide a means to specify a C prototype that12

interoperates with a Fortran interface that has allocatable, data pointer, or assumed-shape dummy arguments.13

2 Multiple inclusion of ISO Fortran binding.h within a translation unit shall have no effect, other than line numbers,14

different from just the first inclusion.15

3 No names other than those specified shall be placed in the global namespace by inclusion of the file ISO Fortran -16

binding.h.17

5.3.2 CFI cdesc t18

1 CFI cdesc t is a named struct type defined by a typedef. It shall contain at least the following members in any19

order:20

void * base addr; If the object is an unallocated allocatable or a pointer that is disassociated, the value is21

NULL. If the object has zero size, the value is processor-dependent. Otherwise, the value is the base22

address of the object being described. The base address of a scalar is its C address. The base address of23

an array is the C address of the element for which each subscript has the value of the corresponding lower24

bound.25

size t elem len; equal to the sizeof() of an element of the object being described26

int rank; equal to the number of dimensions of the object being described. If the object is a scalar, the value is27

zero.28

int type; equal to the identifier for the type of the object. Each interoperable intrinsic C type has an identifier.29

The identifier for interoperable structures has a different value from any of the identifiers for intrinsic types.30

Macros and the corresponding values for the identifiers are supplied in the ISO Fortran binding.h file.31

int attribute; equal to the value of an attribute code that indicates whether the object being described is a32

data pointer, allocatable, or assumed-shape. Macros and the corresponding values for the attribute codes33

are supplied in the ISO Fortran binding.h file.34

int state; has the value 1 if the object is an allocated allocatable, an associated pointer, or assumed-shape, and35

0 otherwise.36

void * fdesc; points to the corresponding Fortran descriptor if one exists; otherwise the value is NULL.37

10 Interoperability with C 5.2



2010/02/18 WORKING DRAFT 10-165

CFI dim t dim[CFI MAX RANK]; Each element of the array contains the lower bound, extent, and stride1

multiplier information for the corresponding dimension of the object. CFI MAX RANK is a macro defined2

in the file ISO Fortran binding.h. The number of elements actually used is equal to the rank of the object.3

This member is not used if the object is a scalar.4

5.3.3 CFI dim t5

1 CFI dim t is a named struct type defined by a typedef. It is used to represent lower bound, extent, and stride6

multiplier information for one dimension of an array. It is defined in the file ISO Fortran binding.h, and contains7

at least the following members in any order:8

size t lower bound; equal to the value of the lower bound of an array for a specified dimension.9

size t extent; equal to the number of elements of an array along a specified dimension.10

size t sm; equal to the stride multiplier for a dimension. The value is the distance in bytes between the begin-11

nings of successive elements of the array along a specified dimension.12

5.3.4 CFI bounds t13

1 CFI bounds t is a named struct type defined by a typedef. It is used to represent bounds and stride information14

for one dimension of an array. It is defined in the file ISO Fortran binding.h, and contains at least the following15

members in any order:16

size t lower bound; equal to the value of the lower bound of an array for a specified dimension.17

size t upper bound; equal to the value of the upper bound of an array for a specified dimension.18

size t stride; equal to the difference between the subscript values of consecutive elements of an array along a19

specified dimension.20

5.3.5 Macros21

1 The following macros are defined in ISO Fortran bindings.h. Each evalutates to an integer constant expression.22

2 CFI MAX RANK - a value equal to the largest rank supported. The value shall be greater than or equal to 15.23

3 The macros in Table 5.1 are for use as attribute codes. The values shall be nonnegative and distinct.24

Table 5.1: Macros specifying attribute codes

Macro Code
CFI attribute assumed assumed-shape array
CFI attribute allocatable allocatable object
CFI attribute pointer pointer

4 The macros in Table 5.2 are for use as type specifiers. The value for CFI type struct shall be distinct from all25

the other type specifiers. If an intrinsic C type is not interoperable with a Fortran type and kind supported by26

the companion processor, its macro shall evaluate to a negative value. Otherwise, the value for an intrinsic type27

shall be positive.28

5.3.5 Interoperability with C 11



10-165 WORKING DRAFT 2010/02/18

Table 5.2: Macros specifying type codes

Macro C Type
CFI type struct interoperable struct
CFI type signed char signed char
CFI type short short
CFI type int int
CFI type long long
CFI type long long long long
CFI type size t size t
CFI type int8 t int8 t
CFI type int16 t int16 t
CFI type int32 t int32 t
CFI type int64 t int64 t
CFI type int least8 t least8 t
CFI type int least16 t least16 t
CFI type int least32 t least32 t
CFI type int least64 t least64 t
CFI type int fast8 t fast8 t
CFI type int fast16 t fast16 t
CFI type int fast32 t fast32 t
CFI type int fast64 t fast64 t
CFI type intmax t intmax t
CFI type intptr t intptr t
CFI type float float
CFI type double double
CFI type long double long double
CFI type float Complex float Complex
CFI type double Complex double Complex
CFI type long double Complex long double Complex
CFI type Bool Bool
CFI type char char
CFI type cptr void *
CFT type cfunptr pointer to a function

NOTE 5.3
The specifiers for two intrinsic types may have the same value. For example, CFI type int and CFI type -
int32 t might have the same value.

5.3.6 Functions1

1 Eight functions are provided for use in C functions. These functions and the structure of the C descriptor provide2

the C program with the capability to interact with Fortran procedures that have allocatable, data pointer,3

assumed-rank, or assumed-shape arguments.4

2 Within a C function, allocatable objects shall be allocated or deallocated only through execution of the CFI -5

allocate and CFI deallocate functions. Pointer objects may become associated with a target by execution of the6

CFI allocate function.7

3 Each function returns an int value. If an error occurs during execution of the function the returned value is8

nonzero; otherwise zero is returned. Errors might occur because values supplied in an argument are invalid for9

that function, or a memory allocation failed. Which errors are detected and the corresponding return values are10

processor dependent. Prototypes for these functions are provided in the ISO Fortran binding.h file as follows:11

12 Interoperability with C 5.3.6



2010/02/18 WORKING DRAFT 10-165

5.3.6.1 int CFI update cdesc ( CFI cdesc t * );1

1 Description. CFI update cdesc updates a C descriptor based on information in the corresponding Fortran2

descriptor. The Fortran descriptor is not modified.3

5.3.6.2 int CFI update fdesc ( CFI cdesc t * );4

1 Description. CFI update fdesc creates or updates a Fortran descriptor based on information in the correspond-5

ing C descriptor. The C descriptor is not modified. If the address of the Fortran descriptor is NULL, then a new6

Fortran descriptor is created.7

5.3.6.3 int CFI free fdesc ( CFI cdesc t * );8

1 Description. CFI free fdesc destroys the Fortran descriptor pointed to by the fdesc member of the argument9

that was created by a CFI update fdesc.10

5.3.6.4 int CFI allocate ( CFI cdesc t *, const CFI bounds t bounds[] );11

1 Description. CFI allocate allocates memory for an object using the same mechanism as the Fortran ALLOCATE12

statement. On entry, the base address in the C descriptor shall be NULL. The corresponding Fortran descriptor13

shall be for an unallocated allocatable or disassociated pointer data object. The supplied bounds override any14

current dimension information in the descriptors. The number of elements in the bounds array shall be greater15

than or equal to the rank specified in the desriptor. The stride values are ignored and assumed to be one. Both16

the Fortran and C descriptors are updated by this function.17

5.3.6.5 int CFI deallocate ( CFI cdesc t * );18

1 Description. CFI deallocate deallocates memory for an object that was allocated using the same mechanism19

as the Fortran ALLOCATE statement. It uses the same mechanism as the Fortran DEALLOCATE statement.20

On entry, the base address in the C descriptor shall not be NULL. The corresponding Fortran descriptor shall21

be for the same object and shall be for an allocated allocatable object, or a pointer associated with a target that22

was allocated using CFI allocate or the Fortran ALLOCATE statement. Both the Fortran and C descriptors are23

updated by this function.24

5.3.6.6 int CFI is contiguous ( const CFI cdesc t *, Bool * result);25

1 Description. CFI is contiguous defines result as true if the object described by the C descriptor is contiguous26

in memory, and false otherwise. If the object is allocatable it shall be allocated. If it is a pointer it shall be27

associated.28

5.3.6.7 int CFI bounds to cdesc ( const CFI bounds t bounds[], CFI cdesc t * );29

1 Description. CFI bounds to cdesc computes a set of extent and stride multiplier values in a C descriptor given30

a corresponding set of lower bound, upper bound, and stride values in the bounds array. The number of elements31

in the bounds array shall be greater than or equal to the rank specified in the descriptor. The lower bounds32

in the C descriptor become those in the input bounds array. Since computation of stride multipliers requires33

the element size, the whole C descriptor is used as one of the arguments. If there is a corresponding Fortran34

descriptor, it is updated to reflect the same bounds, extend, and stride multiplier information.35

5.3.6.8 int CFI cdesc to bounds ( const CFI cdesc t *, CFI bounds t bounds[] );36

1 Description. CFI cdesc to bounds computes a set of upper bound and stride values based on the extent and37

stride multiplier values in a C descriptor. The number of elements in the bounds array shall be equal to or greater38

than the rank specified in the descriptor. The lower bounds in the bounds array become those in the input C39

descriptor. Since computation of strides from stride multipliers requires the element size, the whole C descriptor40

is used as one of the arguments.41

5.3.6.2 Interoperability with C 13



10-165 WORKING DRAFT 2010/02/18

5.3.7 Restrictions on the use of C descriptors1

1 The base address in the C descriptor for a data pointer may be modified by assignment and that change later2

affected in the corresponding Fortran descriptor by the CFI update fdesc function. The base address in the C3

descriptor for an allocatable object may be initialized to NULL and its value shall be modified only by the CFI -4

allocate, CFI deallocate, or CFI update cdesc functions. If the base address of an object that is neither a data5

pointer nor an allocatable object is changed from its initial value, the corresponding Fortran descriptor shall not6

be modified.7

2 It is possible for a C function to acquire memory through a function such as malloc and associate that memory8

with a data pointer in a C descriptor. A C descriptor associated with such memory shall not be supplied as an9

argument to CFI deallocate and a corresponding dummy argument in a called Fortran procedure shall not be10

specified in a context that would cause the dummy argument to be deallocated. The memory may be released11

by reference to the free library function in a C function.12

3 If a Fortran descriptor is created by a C function, the memory for the descriptor may be released by a reference13

to the free library function in a C function when the descriptor is no longer needed.14

5.3.8 Interoperability of procedures and procedure interfaces15

1 A Fortran procedure is interoperable if it has the BIND attribute, that is, if its interface is specified with a16

proc-language-binding-spec.17

2 A Fortran procedure interface is interoperable with a C function prototype if18

(1) the interface has the BIND attribute,19

(2) either20

(a) the interface describes a function whose result variable is a scalar that is interoperable with21

the result of the prototype or22

(b) the interface describes a subroutine and the prototype has a result type of void,23

(3) the number of dummy arguments of the interface is equal to the number of formal parameters of the24

prototype,25

(4) the prototype does not have variable arguments as denoted by the ellipsis (...),26

(5) any dummy argument with the VALUE attribute is interoperable with the corresponding formal27

parameter of the prototype, and28

(6) any dummy argument without the VALUE attribute corresponds to a formal parameter of the pro-29

totype that is of a pointer type, and either30

(a) the dummy argument is interoperable with an entity of the referenced type (C International31

Standard, 6.2.5, 7.17, and 7.18.1) of the formal parameter, or32

(b) the dummy argument is allocatable, assumed-shape, assumed-rank, or a pointer, and corres-33

ponds to a formal parameter of the prototype that is a pointer to void.34

3 If a dummy argument in an interoperable interface is allocatable, assumed-shape, or a pointer, the corresponding35

formal parameter is interpreted as a pointer to a Fortran descriptor for the effective argument in a reference to36

the procedure. The Fortran descriptor shall describe an object of interoperable type and type parameters with37

the same characteristics as the effective argument.38

4 An absent actual argument in a reference to an interoperable procedure is indicated by a correpsonding formal39

parameter with the value NULL.40

14 Interoperability with C 5.3.7



2010/02/18 WORKING DRAFT 10-165

Annex A1

(Informative)2

Extended notes3

A.1 Clause 2 notes4

A.1.1 Using assumed-type dummy arguments5

Example of TYPE (*) for an abstracted MPI routine with two arguments.6

1 The first argument is a data buffer of type (void *) and the second is an integer indicating the size of the buffer.7

The generic interface allows for both 4 and 8 byte integers, as a solution to the “-i8” compiler switch problem.8

2 In C:9

3 void MPI_xxx ( void * buffer, int n);10

4 In the Fortran MPI module:11

5 interface MPI_xxx12

subroutine MPI_xxx (buffer, n) bind(c,name=’’MPI_xxx’’)13

type(*),dimension(*) :: buffer14

integer(c_int),value :: n15

end subroutine MPI_xxx16

module procedure MPI_xxx_i817

end interface MPI_xxx18

19

...20

21

subroutine MPI_xxx_i8 (buffer, n)22

type(*),dimension(*) :: buffer23

integer(selected_int_kind(17)) :: n24

call MPI_xxx(buffer, int(n,c_int))25

end subroutine MPI_xxx_i826

A.1.2 General association with a void * C parameter27

Example of assumed-type and assumed-rank for an abstracted MPI send routine.28

1 In C:29

2 void MPI_send_abstract ( void * buffer, int n);30

void MPI_send_abstract_new ( void * buffer_desc);31

3 In the Fortran MPI module:32

4 interface MPI_send_abstract33

subroutine MPI_send_old (buffer, n) bind(c,name=’’MPI_send_abstract’’)34

type(*), dimension(*) :: buffer ! Passed by simple address35

integer(c_int),value :: n36

A Extended notes 15



10-165 WORKING DRAFT 2010/02/18

end subroutine1

subroutine MPI_send_new (buffer) bind(c,name=’’MPI_send_abstract_new’’)2

type(*), dimension(..), contiguous :: buffer3

! Passed by descriptor including the shape and type4

end subroutine5

end interface6

7

real :: x(100), y(10,10)8

9

! These will invoke MPI_send_old10

call MPI_send_abstract(x,c_sizeof(x)) ! Passed by address11

call MPI_send_abstract(y,c_sizeof(y)) ! Sequence association12

call MPI_send_abstract(y(:,1),size(y,dim=1)*c_sizeof(y(1,1)) ! Pass first column of y13

call MPI_send_abstract(y(1,5),size(y,dim=1)*c_sizeof(y(1,1)) ! Pass fifth column of y14

15

! These will invoke MPI_send_new16

call MPI_send_abstract(x) ! Pass a rank-1 descriptor17

call MPI_send_abstract(y) ! Pass a rank-2 descriptor18

call MPI_send_abstract(y(:,1)) ! Passed by descriptor without copy19

call MPI_send_abstract(y(1,5)) ! Pass a rank-0 descriptor20

A.1.3 Casting TYPE (*) in Fortran21

Example of how to gain access to a TYPE (*) argument22

1 It is possible to “cast” a TYPE (*) object to a usable type, exactly as is done for void * objects in C. For example,23

this code fragment casts a block of memory to be used as an integer array.24

2 subroutine process(block, nbytes)25

type(*), target :: block(*)26

integer, intent(in) :: nbytes ! Number of bytes in block(*)27

28

integer :: nelems29

integer, pointer :: usable(:)30

31

nelems=nbytes/(bit_size(usable)/8)32

call c_f_pointer (c_loc(block), usable, [nelems] )33

usable=0 ! Instead of the disallowed block=034

end subroutine35

A.1.4 Simplifying interfaces for arbitrary rank procedures36

Example of assumed-rank usage in Fortran37

1 Assumed-rank variables are not restricted to be assumed-type. For example, many of the IEEE intrinsic proced-38

ures in Clause 14 of ISO/IEC 1539-1:2010 could be written using an assumed-rank dummy argument instead of39

writing 16 separate specific routines, one for each possible rank.40

2 An example of an assumed-rank dummy argument for the specific procedures for the IEEE SUPPORT DIVIDE41

function.42

3 interface ieee_support_divide43

module procedure ieee_support_divide_noarg44

module procedure ieee_support_divide_onearg_r445

module procedure ieee_support_divide_onearg_r846

16 Extended notes A.1.3



2010/02/18 WORKING DRAFT 10-165

end interface ieee_support_divide1

2

...3

4

logical function ieee_support_divide_noarg ()5

ieee_support_divide_noarg = .true.6

end function ieee_support_divide_onearg_r47

8

logical function ieee_support_divide_onearg_r4 (x)9

real(4),dimension(..) :: x10

ieee_support_divide_onearg_r4 = .true.11

end function ieee_support_divide_onearg_r412

13

logical function ieee_support_divide_onearg_r8 (x)14

real(8),dimension(..) :: x15

ieee_support_divide_onearg_r8 = .true.16

end function ieee_support_divide_onearg_r817

A.2 Clause 5 notes18

1 NOTE: Do we want to add examples here?19

A.2 Extended notes 17



10-165 WORKING DRAFT 2010/02/18

18 Extended notes A.2



2010/02/18 WORKING DRAFT 10-165

Annex B
(Informative)

Index
In this annex, entries in italics denote BNF terms, and page numbers in bold face denote primary text or
definitions.

A
actual argument, 7
argument association, 5
array-spec (R??), 3
association

argument, 5
assumed-rank object, 1
assumed-rank-spec (R201), 3, 3
assumed-type object, 1
attribute

BIND, 14
VALUE, 14

B
BIND attribute, 14

C
C descriptor, 1, 9
characteristic, 5
compatibility

Fortran 2008, 2

D
declaration, 3
declaration-type-spec (R??), 3
dummy argument, 5
dummy data object, 5

E
explicit interface, 5

F
Fortran 2008 compatibility, 2
Fortran descriptor, 1, 9

I
inquiry function, 7
interface

explicit, 5
interoperable, 14
intrinsic procedure, 7

P
proc-language-binding-spec (R??), 3, 14
procedure

intrinsic, 7

R
result variable, 14

S
specification, 3

V
VALUE attribute, 14

B Index 19


	 Overview
	Scope
	Normative references
	Terms and definitions
	Compatibility
	New intrinsic procedures
	Fortran 2008 compatibility


	 Data Attributes
	Assumed-type objects
	Assumed-rank objects
	OPTIONAL attribute

	 Procedures
	Characteristics of dummy data objects
	Explicit interface
	Argument association

	 Intrinsic procedure
	Specification of the standard intrinsic procedure
	General


	 Interoperability with C
	Object descriptors
	Fortran descriptors

	C descriptors
	 ISO_Fortran_binding.h
	Summary of contents
	CFI_cdesc_t
	CFI_dim_t
	CFI_bounds_t
	Macros
	Functions
	Restrictions on the use of C descriptors
	Interoperability of procedures and procedure interfaces


	Annex  (informative) Extended notes
	Clause 2 notes
	Using assumed-type dummy arguments
	General association with a void * C parameter
	Casting TYPE (*) in Fortran
	Simplifying interfaces for arbitrary rank procedures

	Clause 5 notes

	Annex  (informative) Index

