
2011/02/16 11-146: Adding an edits clause to N1838 J3/11-146

6 Required editorial changes to ISO/IEC 1539-1:2010(E)1

The following editorial changes, if implemented, would provide the facilities described in foregoing clauses of2

ISO/IEC TR 29113. Descriptions of how and where to place the new material are enclosed in braces . Edits to3

different places within the same clause are separated by horizontal lines.4

In the edits, except as specified otherwise by the editorial instructions, underwave (
::::::::::
underwave) and strike-out5

(strike-out) are used to indicate insertion and deletion of text.6

***J3COMMENT: This makes it much easier to read what is being changed; I am unsure whether this is suitable7

for the ISO document... probably a good idea if we can get away with it.8

***J3COMMENT: Comments to J3 in this paper begin with ***J3COMMENT. These are not intended to form9

part of the TR.10

J3 DOCUMENT ONLY: Page and line number references to 10-007r1 are in square brackets [], and references11

indicating which previous subclause gives rise to the edit are between asterisks **.12

6.1 Edits to clause 113

{Insert new term definitions before term 1.3.9 attribute [4:1-] *TR 29113 1.3.1*}14

1.3.8a15

assumed rank16

〈dummy variable〉 the property of assuming the rank from its effective argument (5.3.8.7, 12.5.2.4)17

1.3.8b18

assumed type19

〈dummy variable〉 being declared as TYPE (*) and therefore assuming the type and type parameters from its20

effective argument (4.3.1)21

{Insert new term definition before 1.3.20 character context [5:1- *TR 29113 1.3.3*}22

1.3.19a23

C descriptor24

struct of type CFI cdesc t defined in the header ISO_Fortran_binding.h25

{Insert new subclause before 1.6.2 Fortran 2003 compatibility [24:8-] *TR 29113 1.4.1*}26

1.6.1a Fortran 2008 compatibility27

This part of ISO/IEC 1539 is an upward compatible extension to the preceding Fortran International Standard,28

ISO/IEC 1539-1:2010(E). Any standard-conforming Fortran 2008 program remains standard-conforming under29

this part of ISO/IEC 1539.30

***J3COMMENT: No need to mention the new intrinsic and EXTERNAL, that is already covered by general31

language in 1.6.1.32

6.2 Edits to clause 433

{In 4.3.1.1 Type specifier syntax, insert additional production for R403 declaration-type-spec after the one for34

CLASS (*) [51:21+] *TR 29113 2.1p1*}35

1

J3/11-146 11-146: Adding an edits clause to N1838 2011/02/16

or TYPE (*)1

{In 4.3.1.2 TYPE, edit the first paragraph as follows [51:32]}2

A TYPE type specifier is used to declare entities
::::
that

::::
are

:::::::::
assumed

:::::
type,

:::
or of an intrinsic or derived type.3

{In 4.3.1.2 TYPE, insert new paragraphs at the end of the subclause [52:3+] *TR 29113 2.1p2-p4*}4

An entity that is declared using the TYPE(*) type specifier has assumed type and is an unlimited polymorphic5

entity (4.3.1.3). Its dynamic type and type parameters are assumed from its associated effective argument.6

C407a An assumed-type entity shall be a dummy variable that does not have the ALLOCATABLE, CODIMEN-7

SION, POINTER or VALUE attributes.8

An assumed-type variable shall not appear as a designator or expression except as an actual argument associated9

with a dummy argument that is assumed-type, or the first argument to the intrinsic and intrinsic module functions10

IS CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE, SIZE, UBOUND, or C LOC.11

Unresolved Technical Issue TRnn+1

Should the above paragraph be a constraint?

***J3COMMENT: In the fullness of time I would expect to break type compatibility out into a separate subclause12

4.3.1.4, which will avoid confusion.13

6.3 Edits to clause 514

{In 5.3.7 CONTIGUOUS attribute, edit C530 as follows [93:6]}15

C530 An entity with the CONTIGUOUS attribute shall be an array pointer
:
, or an assumed-shape array,

:::
or16

::::
have

:::::::::
assumed

:::::
rank.17

{In 5.3.7 CONTIGUOUS attribute, edit paragraph 1 as follows [93:7]}18

The CONTIGUOUS attribute specifies that an assumed-shape array can only be argument associated with a19

contiguous effective argument, or that an array pointer can only be pointer associated with a contiguous target,20

::
or

:::::
that

:::
an

:::::::::::::
assumed-rank

:::::::
object

::::
can

:::::
only

:::
be

::::::::::
argument

::::::::::
associated

:::::
with

::
a

::::::
scalar

:::
or

::::::::::
contiguous

:::::::::
effective

::::::::::
argument.21

{In 5.3.7 CONTIGUOUS attribute, paragraph 2, item (3) [93:12]}22

Change first “array” to “or assumed-rank dummy argument”,23

change second “array” to “object”.24

{In 5.3.8.1 General, edit paragraph 1 as follows [94:3-4]}25

The DIMENSION attribute specifies that an entity
:::
has

:::::::::
assumed

:::::
rank

:::
or is an array.

::
An

::::::::::::::
assumed-rank

::::::
entity

::::
has26

:::
the

:::::
rank

::::
and

:::::::
shape

::
of

:::
its

:::::::::::
associated

::::::
actual

:::::::::::
argument;

::::::::::
otherwise,

::::
theThe rank or rank and shape is specified by27

its array-spec.28

{In 5.3.8.1 General, insert additional production for R515 array-spec, after implied-shape-spec-list [94:10+] *TR29

29113 2.2p1*}30

or assumed-rank-spec31

{At the end of 5.3.8, immediately before 5.3.9, insert new subclause [96:31+] *TR 29113 2.2p2*}32

2

2011/02/16 11-146: Adding an edits clause to N1838 J3/11-146

5.3.8.7 Assumed-rank entity1

An assumed-rank entity is a dummy variable whose rank is assumed from its effective argument; this rank may2

be zero. An assumed-rank entity is declared with an array-spec that is an assumed-rank-spec.3

R522a assumed-rank-spec is ..4

C535a An assumed-rank entity shall be a dummy variable that does not have the CODIMENSION or VALUE5

attribute.6

An assumed-rank variable shall not appear as a designator or expression except as an actual argument correspond-7

ing to a dummy argument that is assumed-rank, the argument of the C LOC function in the ISO C BINDING8

intrinsic module, or the first argument in a reference to an intrinsic inquiry function. The RANK inquiry intrinsic9

may be used to inquire about the rank of an array or scalar object.10

Unresolved Technical Issue TRnn+2

Should the above paragraph, except the final sentence, be a constraint?

Unresolved Technical Issue TRnn+3

An assumed-rank entity is neither scalar nor an array, so the remark about RANK is pointless. RANK is
also doubtless wrong. The remark about RANK should be more specific, and should probably be a note.

6.4 Edits to clause 611

{In 6.5.4 Simply contiguous array designators, paragraph 2, edit the second bullet item as follows [125:4]}12

• an object-name that is not a pointer,
::::
not or assumed-shape,

:::::
and

:::
not

::::::::::::::
assumed-rank,13

{In 6.7.3.2 Deallocation of allocatable variables, append to paragraph 6 [131:9]}14

When a Fortran procedure that has an INTENT (OUT) allocatable dummy argument is invoked by a C function15

and the corresponding argument in the C function call is a C descriptor that describes an allocated allocatable16

variable, the variable is deallocated on entry to the Fortran procedure. When a C function is invoked from a17

Fortran procedure via an interface with an INTENT (OUT) allocatable dummy argument and the corresponding18

actual argument in the reference of the C function is an allocated allocatable variable, the variable is deallocated19

on invocation (before execution of the C function begins).20

6.5 Edits to clause 1221

{In 12.3.2.2, edit paragraph 1 as follows [278:17,22]}22

The characteristics of a dummy data object are its type, its type parameters (if any), its shape
::::::
(unless

:::
it

::
is23

::::::::::::::
assumed-rank), its corank, its codimensions, its intent (5.3.10, 5.4.10), whether it is optional (5.3.12, 5.4.10),24

whether it is allocatable (5.3.3), whether it has the ASYNCHRONOUS (5.3.4), CONTIGUOUS (5.3.7), VALUE25

(5.3.18), or VOLATILE (5.3.19) attributes, whether it is polymorphic, and whether it is a pointer (5.3.14, 5.4.12)26

or a target (5.3.17, 5.4.15). If a type parameter of an object or a bound of an array is not a constant expression,27

the exact dependence on the entities in the expression is a characteristic. If a
:::::
rank, shape, size,

:::::
type, or type28

parameter is assumed or deferred, it is a characteristic.29

{In 12.4.2.2 Explicit interface, after item (2)(c) insert new item [279:27+]}30

(c2) has assumed rank,31

3

J3/11-146 11-146: Adding an edits clause to N1838 2011/02/16

{In 12.5.2.4 Ordinary dummy variables, append to paragraph 2 [293:5]}1

If the actual argument is of a derived type that has type parameters, type-bound procedures, or final subroutines,2

the dummy argument shall not be assumed type.3

{In 12.5.2.4 Ordinary dummy variables, paragraphs 3 and 4 [293:8-9,13]}4

Change “not assumed shape” to “explicit-shape or assumed-size” (twice).5

{In 12.5.2.4 Ordinary dummy variables, paragraph 9 [294:7]}6

After “dummy argument is a scalar”7

Change “or” to “, has assumed rank, or is”.8

{In 12.5.2.4 Ordinary dummy variables, insert new paragraph after paragraph 14 [294:34+]}9

An actual argument of any rank may correspond to an assumed-rank dummy argument. The rank and shape10

of the dummy argument are the rank and shape of the corresponding actual argument. If the rank is nonzero,11

the lower and upper bounds of the dummy argument are those that would be given by the intrinsic functions12

LBOUND and UBOUND respectively if applied to the actual argument.13

{In 12.6.2.2 Function subprogram, edit C1255 as follows [306:30-33] *TR 29113 2.3*}14

C1255 (R1229) If proc-language-binding-spec is specified for a procedure, each of the procedure’s dummy ar-15

guments shall be a
:
n nonoptional interoperable variable (15.3.5, 15.3.6)

::::
that

:::::
does

::::
not

::::::
have

:::::
both

::::
the16

::::::::::::
OPTIONAL

::::
and

::::::::
VALUE

::::::::::
attributes, or a

::
n nonoptional interoperable procedure (15.3.7). If proc-language-17

binding-spec is specified for a function, the function result shall be an interoperable scalar variable.18

6.6 Edits to clause 1319

{In 13.5 Standard generic intrinsic procedures, Table 13.1, LBOUND and UBOUND intrinsic functions [321,323]}20

Delete “ of an array” (twice).21

{In 13.5 Standard generic intrinsic procedures, Table 13.1 [322]}22

Insert new entry into the table, alphabetically23

RANK (A) I Rank of a data object.24

{In 13.7.86, IS CONTIGUOUS, edit paragraph 3 as follows [359:4]}25

Argument. ARRAY may be of any type. It shall be an array
::
or

:::
an

::::::::::::::
assumed-rank

:::::::
object. If it is a pointer it26

shall be associated.27

{In 13.7.86, IS CONTIGUOUS, edit paragraph 5 as follows [359:6]}28

Result Value. The result has the value true if ARRAY
:::
has

:::::
rank

:::::
zero

::
or is contiguous, and false otherwise.29

{In 13.7.90 LBOUND, edit paragraph 1 as follows [359:30]}30

Description. Lower bound(s) of an array.31

{In 13.7.90 LBOUND, edit paragraph 3, ARRAY argument, as follows [359:30]}32

ARRAY shall be an array
::
or

::::::::::::::
assumed-rank

:::::::
object of any type. It shall not be an unallocated allocatable33

variable or a pointer that is not associated.34

4

2011/02/16 11-146: Adding an edits clause to N1838 J3/11-146

{In 13.7.93 LEN, paragraph 3 [361:10]}1

Change “a type character scalar or array”2

to “of type character”.3

{Immediately before subclause 13.8.138 REAL, insert new subclause [381:17-]}4

13.7.137a RANK (A)5

Description. Rank of a data object.6

Class. Inquiry function.7

Argument. A shall be a data object of any type.8

Result Characteristics. Default integer scalar.9

Result Value. The result is the rank of A.10

Example. If X is declared as REAL X (:, :, :), the result has the value 3.11

{In 13.7.149 SHAPE, edit paragraph 5 as follows [386:23]*TR 29113 3.4.1*}12

Result Value. The result has a value equal to [(SIZE(SOURCE, i, KIND), i=1, RANK(SOURCE))].13

{In 13.7.156 SIZE, edit paragraph 3, argument ARRAY, as follows [388:19]}14

ARRAY shall be an array
::
or

::::::::::::::
assumed-rank

:::::::
object of any type. It shall not be an unallocated allocatable15

variable or a pointer that is not associated. If ARRAY is an assumed-size array, DIM shall be16

present with a value less than the rank of ARRAY.17

{In 13.7.156 SIZE, edit paragraph 5 as follows [388:29-30]*TR 29113 3.4.2*}18

Result Value. If ARRAY is an assumed-rank object associated with an assumed-size array and DIM is present19

with a value equal to the rank of ARRAY, the result is −1; otherwise, if DIM is present, the result has a20

value equal to the extent of dimension DIM of ARRAY. If DIM is not present, the result has a value equal to21

PRODUCT([(SIZE(ARRAY, i, KIND), i=1, RANK(ARRAY))]).22

{In 13.7.160 STORAGE SIZE, paragraph 3 [390:5]}23

Change “a scalar or array of any type”24

to “a data object of any type”.25

{In 13.7.171 UBOUND, paragraph 1 [394:20]}26

Delete “ of an array”.27

{In 13.7.171 UBOUND, paragraph 3, ARRAY argument [394:23]}28

After “shall be an array”29

insert “or assumed-rank object”.30

{In 13.7.171 UBOUND, edit paragraph 5 as follows [394:34]*TR 29113 3.4.3*}31

Result Value.32

Case (i): For an array section or for an array expression, other than a whole array, UBOUND (ARRAY, DIM)33

has a value equal to the number of elements in the given dimension; otherwise,
:
.34

Case (ii):
:::
For

:::
an

::::::::::::::
assumed-rank

:::::::
object

::::::::::
associated

:::::
with

::::
an

:::::::::::::
assumed-size

::::::
array,

::::::::::::::::::::
UBOUND(ARRAY,

:::
n)

::::::
where35

:
n

:::
is

:::
the

:::::
rank

:::
of

:::::::::
ARRAY

:::
has

::
a
::::::
value

::::::
equal

::
to

::::::::::::::::::::
LBOUND(ARRAY,

:::
n)

::
−

:::
2.36

5

J3/11-146 11-146: Adding an edits clause to N1838 2011/02/16

Case (iii):
::::::::::
Otherwise, UBOUND(ARRAY, DIM) has a value equal to the upper bound for subscript DIM of1

ARRAY if dimension DIM of ARRAY does not have size zero and has the value zero if dimension2

DIM has size zero.3

Case (iv): UBOUND (ARRAY) has a value whose ith element is equal to UBOUND (ARRAY, i), for i = 1, 2,4

. . . , n, where n is the rank of ARRAY.5

6.7 Edits to clause 156

{In 15.1 General, at the end of the subclause, insert new paragraph [425:11+]}7

The header ISO_Fortran_binding.h provides definitions and prototypes to enable a C function to interoperate8

with a Fortran procedure with an allocatable, assumed character length, assumed-shape, assumed-rank, or pointer9

dummy data object.10

{In 15.3.7 Interoperability of procedures and procedure interfaces, paragraph 2, edit item (5) as follows [433:14-11

16]}12

(5) any dummy argument without the VALUE attribute corresponds to a formal parameter of the pro-13

totype that is of pointer type, and
:::::
either14

(a) the dummy argument is interoperable with an entity of the referenced type (ISO/IEC 9899:1999,15

6.25, 7.17, and 7.18.1) of the formal parameter,16

(b)
:::
the

::::::::
dummy

::::::::::
argument

:::
is

::
a

:::::::::::::::
nonallocatable,

::::::::::::
nonpointer

::::::::
variable

:::
of

:::::
type

:::::::::::::::
CHARACTER

:::::
with17

::::::::
assumed

:::::::
length,

:::::
and

::::::::::::
corresponds

::
to

::
a
:::::::
formal

:::::::::::
parameter

::
of

::::
the

::::::::::
prototype

:::::
that

::
is

::
a

::::::::
pointer

::
to18

::::
CFI

:::::
desc

::
t,19

(c)
:::
the

::::::::
dummy

:::::::::
argument

::
is

:::::::::::
allocatable,

::::::::::::::::
assumed-shape,

::::::::::::::
assumed-rank,

::
or

::
a

::::::::
pointer,

::::
and

::::::::::::
corresponds20

::
to

::
a

:::::::
formal

::::::::::
parameter

:::
of

:::
the

::::::::::
prototype

:::::
that

::
is

::
a

::::::::
pointer

::
to

:::::
CFI

::::::
cdesc

::
t,

::
or21

5a
:::
the

::::::::
dummy

::::::::::
argument

::
is

::::::::::::::
assumed-type

::::
and

::::
not

::::::::::::
allocatable,

:::::::::::::::
assumed-shape,

:::::::::::::::
assumed-rank,

::
or22

:
a

::::::::
pointer,

::::
and

::::::::::::
corresponds

:::
to

::
a

:::::::
formal

::::::::::
parameter

:::
of

:::
the

:::::::::::
prototype

::::
that

::
is

::
a
::::::::
pointer

::
to

::::::
void,23

(6)
::::
each

:::::::::::
allocatable

:::
or

::::::::
pointer

:::::::
dummy

::::::::::
argument

:::
of

:::::
type

:::::::::::::::
CHARACTER

::::
has

::::::::
deferred

::::::::::
character

:::::::
length,24

and,25

{In 15.3.7 Interoperability of procedures and procedure interfaces, insert new paragraphs at the end of the26

subclause [437:23+]}27

If a dummy argument in an interoperable interface is allocatable, assumed-shape, assumed-rank, or a pointer,28

the corresponding formal parameter is interpreted as a pointer to a C descriptor for the effective argument in a197

reference to the procedure. The C descriptor shall describe an object of interoperable type and type parameters198

with the same characteristics as the effective argument.199

An absent actual argument in a reference to an interoperable procedure is indicated by a corresponding formal200

parameter with the value NULL.201

{At the end of clause 15 [437:23+]}202

Insert subclause 5.2 of ISO/IEC TR 29113 as subclause 15.5, including subclauses 5.2.1 to 5.2.7 as subclauses203

15.5.1 to 15.5.7.204

6.8 Edits for annex C205

{In C.11 Clause 15 notes, at the end of the subclause [519:42+]}206

Insert subclauses A.1.1 to A.1.4 as subclauses C.11.6 to C.11.9.207

Insert subclause A.2 as C.11.10 with the revised title “Processing assumed-shape arrays in C”.208

6

	6 Required editorial changes to ISO/IEC 1539-1:2010(E)
	6.1 Edits to clause 1
	6.2 Edits to clause 4
	6.3 Edits to clause 5
	6.4 Edits to clause 6
	6.5 Edits to clause 12
	6.6 Edits to clause 13
	6.7 Edits to clause 15

