
Reference number of working document: J3/12-181

Date: 2012-10-05

Reference number of document: ISO/IEC TS 99999:2012(E)

Committee identification: ISO/IEC JTC1/SC22

Secretariat: ANSI

Information technology — Programming languages — Fortran —
Abstract subprograms

Technologies de l’information — Langages de programmation — Fortran —
Sous-programmes abstraits

c© ISO/IEC 2012

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying or microfilm, without permission in writing
from the publisher. Droits de reproduction réservés. Aucune partie de cette publication ne peut être
reproduite ni utilisée sous quelque forme que ce sout et par aucun procédé, électronique ou mécanique,
y compris la photocopie et les microfilms, sans l’accord écrit de l’éditeur.

ISO/IEC Copyright Office • Case Postale 56 • CH-1211 Genève • Switzerland

ISO/IEC TS 99999:2012(E)

Contents
0 Introduction . ii

0.1 History . ii
0.2 What this technical specification proposes . ii

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1

2 Requirements . 2
2.1 General . 2
2.2 Summary . 2
2.3 Syntax to define an abstract subprogram . 2
2.4 Syntax to instantiate an abstract subprogram 3
2.5 Syntax to use an abstract subprogram to specify an explicit interface 4
2.6 Definition of an abstract subprogram . 4
2.7 Instantiation of an abstract subprogram . 4
2.8 Invoking an instantiation of an abstract subprogram 5
2.9 Constant expression . 5
2.10 Scoping units and host association . 5

3 Examples . 6
3.1 Definition of an abstract subprogram . 6
3.2 Direct instantiation of an abstract subprogram 6
3.3 Indirect instantiation of an abstract subprogram 6
3.4 Reference to directly instantiated abstract subprogram 6
3.5 Reference to indirectly instantiated abstract subprogram 6

4 Required editorial changes to ISO/IEC 1539-1:2010(E) 7

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national stan-
dards bodies (ISO member bodies). The work of preparing International Standards is normally carried
out through ISO technical committees. Each member body interested in a subject for which a techni-
cal committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of technical committees is to prepare International Standards. Draft International Stan-
dards adopted by the technical committees are circulated to the member bodies for voting. Publication
as an International Standard requires approval by at least 75% of the member bodies casting a vote.

ISO/IEC TS 99999:2012(E) was prepared by Joint Technical Committee ISO/IEC/JTC1, Information
technology, Subcommittee SC22, Programming languages, their environments and system software in-
terfaces.

This technical specification specifies an extension to the computational facilities of the programming
language Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2010(E).

It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical
specification be included in the next revision of the Fortran International Standard without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or
changes are needed to achieve proper integration, in which case every reasonable effort will be made to

c© ISO/IEC 2009 – All rights reserved i

ISO/IEC TS 99999:2012(E)

minimize the impact of such changes on existing implementations.

0 Introduction

0.1 History

Since Fortran 2003, derived types can be parameterized by kind type parameters, and can have type-
bound procedures with generic bindings. Where a type-bound procedure is invoked, if its binding does
not have the NOPASS attribute, the object used to invoke it is associated as an actual argument. If
one has declared an object using kind type parameters such that no specific type-bound procedure has
appropriate kind type parameters for its arguments, a violation of a constraint exists.

Even if one limits attention to kind type parameters for intrinsic types defined by ISO/IEC 1539-
1:2010(E), it is tedious and sometimes difficult to ensure that all necessary type-bound procedures exist
to correspond to every possible declaration of objects of the type. It is not possible, in general, to
anticipate all kind type parameters of intrinsic types that are offered as processor extensions.

0.2 What this technical specification proposes

This technical specification proposes to extend the syntax of definition of subprograms to allow to define
an abstract subprogram. An abstract subprogram is a definition of a family of programs. An abstract
subprogram cannot be invoked. Instead, one can instantiate a member of that family by specifying
parameters by constant integer expressions. Once that member has been instantiated, that instantiation
can be invoked.

ii c© ISO/IEC 2009 – All rights reserved

ISO/IEC TS 99999:2012(E)

Information technology – Programming Languages – Fortran1

Technical Specification: Abstract subprograms2

1 General3

1.1 Scope4

This technical specification specifies an extension to the programming language Fortran. The Fortran5

language is specified by International Standard ISO/IEC 1539-1:2010(E). The extension consists of an6

extension to the syntax to allow to define an abstract subprogram, and to create an instantiation of it7

that is parameterized by a set of constant integer expressions. An instantiations of an abstract procedure8

behaves in all respects but one in exactly the same ways as a subprogram defined by International Stan-9

dard ISO/IEC 1539-1:2010(E). The single exception is that an instantiation of an abstract subprogram10

does not access the scoping unit containing its instantiation by host association; rather, it accesses the11

scoping unit containing the definition of the abstract subprogram of which it is an instantiation by host12

association.13

Clause 2 of this technical specification contains a general and informal but precise description of the14

extended functionalities. Clause 3 contains several illustrative examples. Clause 4 contains detailed15

instructions for editorial changes to ISO/IEC 1539-1:2010(E).16

1.2 Normative References17

The following referenced documents are indispensable for the application of this document. For dated18

references, only the edition cited applies. For undated references, the latest edition of the referenced19

document (including any amendments) applies.20

ISO/IEC 1539-1:2010(E) : Information technology – Programming Languages – Fortran; Part 1: Base21

Language22

c© ISO/IEC 2009 – All rights reserved 1

ISO/IEC TS 99999:2012(E)

2 Requirements1

2.1 General2

The subclauses of this clause contain a general description of the extensions to the syntax and semantics3

of the Fortran programming language to provide abstract subprograms, to instantiate them, to use them4

to specify explicit interfaces, and to invoke instantiations of them.5

2.2 Summary6

2.2.1 What is provided7

This technical specification defines a new form of subprogram definition, called an abstract subprogram.8

An abstract subprogram is a definition of a family of programs. An abstract subprogram cannot be9

invoked. Instead, one can instantiate a member of that family, or specify an explicit interface, by10

providing values for parameters using integer constant expressions.11

This technical specification defines mechanisms to cause instantiations of abstract subprograms to be12

created. An instantiation of an abstract subprogram is a subprogram that behaves in all respects but one13

in exactly the same ways as a subprogram defined by International Standard ISO/IEC 1539-1:2010(E).14

The single exception is that an instantiation of an abstract subprogram does not access the scoping15

unit containing its instantiation by host association; rather, it accesses the scoping unit containing the16

definition of the abstract subprogram of which it is an instantiation by host association.17

This technical specification defines mechanisms by which abstract subprograms can be used to specify18

explicit interfaces, by providing values for parameters using integer constant expressions.19

2.2.2 Abstract subprogram20

An abstract subprogram is a definition of a family of subprograms, characterized by integer parameters.21

2.2.3 Instantiation of an abstract subprogram22

An instantiation of an abstract subprogram is a member of the family of subprograms defined by the23

referenced abstract subprogram. It is characterized by integer constant expressions, and behaves in all24

respects but one in exactly the same ways as a subprogram defined by International Standard ISO/IEC25

1539-1:2010(E). The single exception is that an instantiation of an abstract subprogram does not access26

the scoping unit containing its instantiation by host association; rather, it accesses the scoping unit27

containing the definition of the abstract subprogram of which it is an instantiation by host association.28

The only case where this distinction has effect is where an abstract subprogram is defined in a module,29

and instantiated in a different scoping unit; in all other cases, instantiations of an abstract subprogram30

can only be created in the same scoping unit as the abstract subprogram.31

2.2.4 Explicit interface specified using an abstract subprogram32

An instantiation of an abstract subprogram has explicit interface. An explicit interface can be specified,33

using an abstract subprogram and values for its parameters, without instantiating it, if the name being34

declared has the POINTER attribute or is a dummy argument.35

2.3 Syntax to define an abstract subprogram36

An abstract subprogram is a subprogram defined using the facilities for subprogram definition provided37

by International Standard ISO/IEC 1539-1:2010(E), and including in addition the word ABSTRACT,38

2 c© ISO/IEC 2009 – All rights reserved

ISO/IEC TS 99999:2012(E)

following by a parenthesized list of names and optional default values for parameters, in the prefix of its1

initial statement.2

The definition of prefix-spec is revised:3

R1226 prefix-spec is declaration-type-spec4

or ABSTRACT (parameter-name-list)5

or ELEMENTAL6

or IMPURE7

or MODULE8

or PURE9

or RECURSIVE10

The procedure parameter definition statement is introduced:11

R1226a subprogram-param-def-stmt is INTEGER, KIND :: subprogram-param-def -list12

R1226b subprogram-param-def is parameter-name [= scalar-int-constant-expr]13

2.4 Syntax to instantiate an abstract subprogram14

An instantiation of an abstract subprogram is directly created by a procedure-stmt or a procedure-15

declaration-stmt . A requirement to instantiate an abstract subprogram, depending upon the declaration16

of an object, is specified by a type-bound-procedure-stmt of a final-procedure-stmt .17

The definition of type-bound-procedure-stmt is revised:18

R448 type-bound-procedure-stmt is PROCEDURE [[, binding-attr-list] ::]19

type-bound-proc-decl-list20

or PROCEDURE (interface-name),21

binding-attr-list :: binding-name-list22

or PROCEDURE (abstract-subprogram-ref),23

binding-attr-list :: binding-name24

Constraint C477 is revised:25

C477 (R451) DEFERRED shall appear if interface-name appears. DEFERRED shall not appear if26

neither interface-name nor abstract-subprogram-ref appears.27

The definition of final-procedure-stmt is revised:28

R452 final-procedure-stmt is FINAL [::] final-subprogram-name-list29

or FINAL (abstract-subprogram-ref)30

The definition of procedure-stmt is revised:31

R1206 procedure-stmt is [MODULE] PROCEDURE [::] procedure-name-list32

or PROCEDURE (abstract-subprogram-ref) [::]33

procedure-name34

The definition of procedure-declaration-stmt is revised:35

R1211 procedure-declaration-stmt is PROCEDURE ([proc-interface])36

[[, proc-attr-spec] . . . ::] proc-decl-list37

or PROCEDURE (abstract-subprogram-ref)38

[[, proc-attr-spec] . . . ::] proc-decl39

c© ISO/IEC 2009 – All rights reserved 3

ISO/IEC TS 99999:2012(E)

The definition of abstract-subprogram-ref is introduced:1

R1211a abstract-subprogram-ref is abstract-subprogram-name (parameter-spec-list)2

The definition of parameter-spec is introduced:3

R1211b parameter-spec is [parameter-name =] scalar-int-constant-expr4

C1215a (R1211a) The abstract-subprogram-name shall be the name of an abstract subprogram.5

C1215b (R1211b) The parameter-name = may be omitted from a parameter-spec only if the parameter-6

name = has been omitted from each preceding parameter-spec in the parameter-spec-list.7

C1215c (R1211b) Each parameter-name shall appear in the parameter-name-list of the abstract sub-8

program.9

C1215d (R1211a) A parameter-spec shall be provided for each parameter-name of the abstract subpro-10

gram for which a default value is not specified.11

2.5 Syntax to use an abstract subprogram to specify an explicit interface12

An abstract subprogram definition can be used to specify an explicit interface by including values for13

its parameters.14

The definition of proc-component-def-stmt is revised:15

R440 proc-component-def-stmt is PROCEDURE ([proc-interface) ,16

proc-component-attr-spec-list :: proc-decl-list17

or PROCEDURE ([abstract-subprogram-ref)18

proc-component-attr-spec-list :: proc-decl19

If the procedure-entity-name in a proc-decl in a procedure-declaration-stmt has the POINTER attribute,20

or if the procedure-entity-name is the name of a dummy procedure, the abstract-subprogram-ref specifies21

an explicit interface for the procedure-entity-name.22

If the binding-name in a type-bound-procedure-stmt has the DEFERRED attribute, the abstract-subprog-23

ram-ref specifies an explicit interface for the binding-name.24

2.6 Definition of an abstract subprogram25

An abstract subprogram is defined within the specification-part of a main program, module, external26

subprogram, or module subprogram, by a function-subprogram or subroutine-subprogram that has AB-27

STRACT (parameter-name-list) in its initial statement.28

An abstract subprogram shall not contain an ENTRY statement.29

2.7 Instantiation of an abstract subprogram30

Direct instantiation of an abstract subprogram occurs where a procedure-stmt appears with abstract-31

subprogram-ref , provided the procedure-name is not the name of a dummy procedure. The name of the32

instantiation is procedure-name.33

Direct instantiation of an abstract subprogram occurs where a procedure-declaration-stmt appears with34

abstract-subprogram-ref and the declared procedure-entity-name is not the name of a dummy procedure35

and does not have the POINTER attribute. The name of the instantiation is procedure-entity-name.36

4 c© ISO/IEC 2009 – All rights reserved

ISO/IEC TS 99999:2012(E)

Indirect instantiation of an abstract subprogram occurs where an object of a derived type is declared,1

providing it is not a dummy argument, and the definition of the type of the object includes a type-2

bound-procedure-stmt with abstract-subprogram-ref and without the DEFERRED attribute, or a final-3

procedure-stmt with abstract-subprogram-ref . An indirect instantiation does not have a name, but is4

bound to the binding-name in the case of a type-bound-procedure-stmt .5

Instantiation of an abstract subprogram causes each appearance of a parameter-name within the abstract6

subprogram to be replaced in the instantiation by the value of the corresponding scalar-int-constant-7

expr in the abstract-subprogram-ref , if one appears, or by the scalar-int-constant-expr immediately8

following parameter-name = in the subprogram-param-def-stmt otherwise. Each parameter-spec in an9

abstract-subprogram-ref that does not include parameter-name corresponds to the parameter-name in10

the same position in the parameter-name-list of the abstract subprogram. Each parameter-spec that in-11

cludes parameter-name corresponds to the parameter-name in the parameter-name-list that has the same12

parameter-name. There shall not be more than one parameter-spec corresponding to each parameter-13

name. There shall be a parameter-spec corresponding to each parameter-name for which a default value14

is not specified.15

An abstract subprogram shall not be instantiated, directly or indirectly, within the inclusive scoping16

unit of an internal subprogram. If it is instantiated within the inclusive scoping unit of a main program,17

external subprogram, or module subprogram, including within a BLOCK construct, the instantiation is18

an internal subprogram of that inclusive scoping unit. If it is instantiated within a BLOCK construct,19

the name of the instantiation has a scope of the construct. If it is instantiated within a module, the20

instantiation is a module subprogram.21

2.8 Invoking an instantiation of an abstract subprogram22

An instantiation of an abstract subprogram is invoked by a function-reference or call-stmt . If it is a23

direct instantiation, the name specified in the instantiation is used as the procedure-designator . If it is24

an indirect instantiation, its binding name is used as the procedure-designator . If an instantiation is a25

final procedure, it is invoked according to the rules in subclause 4.5.6.2 of ISO/IEC 1539-1:2010(E).26

2.9 Constant expression27

The definition of constant expression is expanded to encompass the use within it of a parameter-name28

within an abstract subprogram.29

Item (9a) is added to the list of primaries allowed in a constant expression:30

(9a) a previously-declared parameter-name of the abstract subprogram being defined,31

2.10 Scoping units and host association32

An abstract subprogram is a scoping unit. It accesses the scoping unit in which it is defined by host33

association. An instantiation of it does not access, by host association, the scoping unit in which it is34

instantiated. The only case where this distinction has effect is where the definition appears in a module.35

In the cases of the definition appearing in a main program, external subprogram, or module subprogram,36

instantiation cannot occur in any other inclusive scoping unit.37

c© ISO/IEC 2009 – All rights reserved 5

ISO/IEC TS 99999:2012(E)

3 Examples1

3.1 Definition of an abstract subprogram2

pure abstract (RK) function Planck (Frequency, Temperature)3

integer, kind :: RK4

real(rk) :: Planck5

real(rk), intent(in) :: Frequency ! MHz6

real(rk), intent(in) :: Temperature ! Kelvin7

real(rk), parameter :: H = 6.62606947e-34_rk ! J s, +/- 29e-42 NIST 20108

real(rk), parameter :: K = 1.3806488e-23_rk ! J/K, +/- 13e-30 NIST 20109

real(rk), parameter :: H_OVER_K = H / K * 1.0e6_rk ! nu in MHz10

real(rk) :: A, R, HXF11

hxf = h_over_k * frequency12

r = hxf / temperature13

a = exp(r) - 1.014

planck = hxf / a15

end function Planck16

3.2 Direct instantiation of an abstract subprogram17

interface Planck18

procedure(Planck(kind(0.0e0))) :: Planck_single19

procedure(Planck(kind(0.0d0))) :: Planck_double20

end interface Planck21

3.3 Indirect instantiation of an abstract subprogram22

type :: Rad_Tran (RK)23

integer, kind :: RK24

real(rk) :: Radiance25

contains26

procedure(Planck(rk))27

end type Rad_Tran28

29

integer, parameter :: Q = selected_real_kind(30)30

31

type(Rad_Tran(q)) :: Rad_Q32

3.4 Reference to directly instantiated abstract subprogram33

print *, Planck (1.42857d+4, 2.30d0) ! MHz, Kelvin34

3.5 Reference to indirectly instantiated abstract subprogram35

rad_q%radiance = rad_q%planck (1.42857e+4_q, 2.30e0_q) ! MHz, Kelvin36

6 c© ISO/IEC 2009 – All rights reserved

ISO/IEC TS 99999:2012(E)

4 Required editorial changes to ISO/IEC 1539-1:2010(E)1

The following editorial changes to ISO/IEC 1539-1:2010(E), if implemented, would provide the facilities2

described in foregoing clauses of this technical specification. Descriptions of how and where to place the3

new material are enclosed between square brackets.4

[Introduction:xv] Add an item to the list of new features:5

• Procedure enhancements:6

Abstract subprograms define families of subprograms parameterized by integer constant expres-7

sions. Specific instantiations of them can be created, and they can be used to provide explicit8

interfaces.9

[1.3.1+ 2:10+] Insert term definitions:10

1.3.1a11

abstract subprogram12

definition of a family of subprograms, characterized by integer parameters13

1.3.1b14

abstract subprogram instantiation15

subprogram created by reference to an abstract subprogram, with values specified for its parameters16

[2.1 27:28+] Introduce definition of abstract-subprogram:17

R1236a abstract-subprogram is function-subprogram18

or subroutine-subprogram19

[2.1 R207 28:11] Introduce a new first alternative of declaration-construct :20

R207 declaration-construct is abstract-subprogram21

or derived-type-def22

[2.1 R207 28:18+] Connect subprogram-param-def-stmt to specification-part :23

or subprogram-param-def-stmt24

[4.5.4.1 R440 67:4+] Add an alternative to proc-component-def-stmt :25

or PROCEDURE (abstract-subprogram-ref)26

proc-component-attr-spec-list :: proc-decl27

[4.5.5 R448 73:12+] Add an alternative to type-bound-procedure-stmt :28

or PROCEDURE (abstract-subprogram-ref),29

binding-attr-list :: binding-name30

[4.5.5 74:8] Revise C477:31

C477 (R451) DEFERRED shall appear if interface-name appears. DEFERRED shall not appear if32

neither interface-name nor abstract-subprogram-ref appears.33

[4.5.6.1 R452 75:8+] Add an alternative to final-procedure-stmt :34

or FINAL (abstract-subprogram-ref)35

c© ISO/IEC 2009 – All rights reserved 7

ISO/IEC TS 99999:2012(E)

[7.1.12p1(9)+ 152:9+] Make a parameter of an abstract procedure a constant expression primary:1

(9a) a previously-declared parameter-name of the abstract subprogram being defined,2

[12.2.2.2p3 277:27] Specify that an instantiation of an abstract subprogram within a module defines3

a module procedure. At the end of the sentence append “or by instantiation within a module of an4

abstract subprogram”.5

[12.4.2.1p1 279:17] Append a sentence: “An interface declared by an abstract-subprogram-ref is explicit.”6

[12.4.3.2 R1206 280:22+] Add an alternative to procedure-stmt :7

or PROCEDURE (abstract-subprogram-ref) [::]8

procedure-name9

[12.4.3.4.1 283:12] Allow generic name to be the same as an abstract subprogram name. After “interface10

block” insert “, an abstract subprogram name”.11

[12.4.3.6 R1211+ 287:8+] Add an alternative to procedure-declaration-stmt :12

or PROCEDURE (abstract-subprogram-ref)13

[[, proc-attr-spec] . . . ::] proc-decl14

Introduce definition of abstract-subprogram-ref :15

R1211a abstract-subprogram-ref is abstract-subprogram-name (parameter-spec-list)16

Introduce definition of parameter-spec:17

R1211b parameter-spec is [parameter-name =] scalar-int-constant-expr18

[12.4.3.6 287:22+] Introduce constraints on abstract-subprogram-ref and parameter-spec:19

C1215a (R1211a) The abstract-subprogram-name shall be the name of an abstract subprogram.20

C1215b (R1211b) The parameter-name = may be omitted from a parameter-spec only if the parameter-21

name = has been omitted from each preceding parameter-spec in the parameter-spec-list.22

C1215c (R1211b) Each parameter-name shall be a parameter name specified in the parameter-name-list23

of the abstract subprogram.24

C1215d (R1211a) A parameter-spec shall be provided for each parameter-name of the abstract subpro-25

gram for which a default value is not specified.26

[12.6.2.1 R1226 305:25+] Introduce an alternative to prefix-spec:27

or ABSTRACT (parameter-name-list)28

29

[12.6.2.1 305:30+] Introduce definition of subprogram-param-def-stmt :30

R1226a subprogram-param-def-stmt is INTEGER, KIND :: subprogram-param-def -list31

R1226b subprogram-param-def is parameter-name [= scalar-int-constant-expr]32

[12.6.2.1 305:34+] Require declaration of parameter names within the scoping unit of the abstract sub-33

8 c© ISO/IEC 2009 – All rights reserved

ISO/IEC TS 99999:2012(E)

program:1

C1246a (R1225) Every parameter-name shall appear in a subprogram-param-def-stmt within the scoping2

unit of the abstract procedure being defined.3

C1246b (R1226a) A subprogram-param-def-stmt shall not appear except within the scoping unit of an4

abstract subprogram.5

C1246c (R1226b) The parameter-name shall be a parameter name of the abstract procedure being6

defined.7

[12.6.2.1 306:6+] Prohibit separating the interface and implementation of abstract procedures:8

C1251a (R1225) If ABSTRACT appears, MODULE shall not appear.9

[12.6.2.1 306:12+] Define abstract subprogram parameter defaults. Insert a paragraph:10

A scalar-int-constant-expr in a subprogram-param-def specifies a default value for a parameter-name,11

which is used within an instantiation of the abstract subprogram if and only if a scalar-int-constant-expr12

is not specified in the abstract-subprogram-ref of the instantiation.13

[12.6.2.3+ 308:17+] Introduce subclauses:14

12.6.2.3a Abstract subprogram15

An abstract subprogram is a subprogram defined by a function-subprogram or subroutine-subprogram in16

which ABSTRACT (parameter-decl-list) appears in its function-stmt or subroutine-stmt , respectively.17

It defines a family of subprograms characterized by integer parameters.18

R1236a abstract-subprogram is function-subprogram19

or subroutine-subprogram20

C1261a (R1236a) ABSTRACT (parameter-decl-list) shall appear in the function-stmt or subroutine-21

stmt of the function-subprogram or subroutine-subprogram.22

A parameter of an abstract subprogram is a constant.23

12.6.2.3b Instantiation of an abstract subprogram24

Except as specified in subclause 12.6.2.3c, an abstract subprogram is instantiated directly by a procedure-25

stmt or procedure-declaration-stmt in which abstract-subprogram-ref appears. The name of the instan-26

tiation is the procedure-name specified in the procedure-stmt or procedure-declaration-stmt . Each direct27

instantiation of an abstract subprogram is a different subprogram.28

Except as specified in subclause 12.6.2.3c, where an object of derived type is declared, an abstract sub-29

program is indirectly instantiated for each binding name in each type-bound-procedure-stmt that includes30

abstract-subprogram-ref , and each FINAL statement that includes abstract-subprogram-ref , in the defini-31

tion of its type. An indirect instantiation has no name, but if it results from a type-bound-procedure-stmt ,32

it is bound to the type using the binding-name. Each instantiation resulting from a FINAL statement33

that includes abstract-subprogram-ref is bound to the type as a final subroutine. It is processor depen-34

dent whether indirect instantiations of an abstract subprogram with identical subprogram parameter35

values are the same or different subprograms.36

NOTE 12.43a
Different instantiations do not share local variables that have the SAVE attribute. If an abstract
subprogram has no local SAVE variables, a program cannot detect whether indirect instantiations

c© ISO/IEC 2009 – All rights reserved 9

ISO/IEC TS 99999:2012(E)

NOTE 12.43a (cont.)

are the same or different subprograms.

Unresolved Technical Issue SAVE

An alternative is to prohibit indirect instantiation of subprograms that have SAVE variables.

An instantiation is created by replacing each appearance of parameter-name within the abstract subpro-1

gram by the scalar-int-constant-expr in the abstract-subprogram-ref that corresponds to the parameter-2

name in the abstract subprogram definition, if there is a corresponding expression, or by the default3

value for the parameter-name otherwise. An instantiation of an abstract subprogram has an explicit4

interface. An instantiation of an abstract subprogram has all the attributes specified in the prefix of the5

abstract subprogram, except the ABSTRACT attribute.6

A parameter-spec in an abstract-subprogram-ref corresponds to a parameter-decl in the same position7

in the parameter-decl-list in the function-stmt or subroutine-stmt of the specified abstract subprogram8

if it does not include a parameter name, and otherwise corresponds to the parameter of the abstract9

subprogram that has the same name.10

C1261b An abstract subprogram shall not be instantiated except within a main program, module, module11

subprogram, or external subprogram.12

12.6.2.3c Abstract subprogram references that do not cause instantiation13

An instantiation of an abstract subprogram is not created for14

• a derived type component declared by a proc-component-def-stmt ,15

• a binding declared by a type-bound-procedure-stmt that specifies the DEFERRED attribute,16

• a dummy procedure declared in a procedure-stmt or procedure-declaration-stmt ,17

• a procedure pointer,18

• a procedure-stmt or procedure-declaration-stmt within an interface body, or19

• a binding to an object of derived type if the object20

– is a dummy argument,21

– is declared within an interface body,22

– is declared within the specification part of a module or submodule and has the POINTER or23

ALLOCATABLE attribute, or24

– is declared within the specification part of a subprogram or BLOCK construct, has the25

POINTER or ALLOCATABLE attribute, and the object does not appear as an allocate-26

object in an ALLOCATE statement within the inclusive scoping unit of the declaration, or27

an inclusive scoping unit that accesses that scoping unit by host association.28

[12.6.2.6 C1265 309:33] Although redundant, because an abstract subprogram is neither an external-29

subprogram nor a module-subprogram, append “or an abstract-subprogram” at the end of C1265.30

[16.3.1p1(1)+ 440:5] Specify that the identifier of an abstract subprogram and the identifiers of its param-31

eters are local identifiers: After “statement functions” insert “, abstract subprograms, abstract subprogram32

parameters”.33

Define abstract subprogram parameter keywords34

[15.3.5+ 442:10+] Introduce a subclause:35

10 c© ISO/IEC 2009 – All rights reserved

ISO/IEC TS 99999:2012(E)

16.3.6 Abstract subprogram parameter keywords1

As an abstract subprogram parameter keyword, an abstract subprogram parameter name has a scope2

of the scoping unit of the host of the abstract subprogram definition. It may appear as an abstract3

subprogram parameter keyword only in an abstract-subprogram-ref for the subprogram of which it is a4

parameter. If the abstract subprogram definition is accessible in another scoping unit by use or host5

association (16.5.1.3, 16.5.1.4), the abstract subprogram parameter keyword is accessible for subprogram6

instantiations for that abstract subprogram in that scoping unit.7

Specify that abstract subprograms and instantiations of them access, by host association, the scoping8

unit in which the abstract subprogram definition appears.9

[16.5.1.4p1 443:28] Replace “An instance” by “Except for instantiations of abstract subprograms, an10

instance”11

[16.5.1.4p1 443:29] Between the first and second sentences, insert a sentence12

“An abstract subprogram definition and instantiations of it access the host of the abstract subprogram13

definition by host association.”14

[16.5.1.4p2(3)+ 444:7+] Specify that an abstract subprogram name is a local identifier:15

(2a) A subroutine-name or a function-name in the function-stmt or subroutine-stmt of an abstract-16

subprogram,17

[16.5.1.4p2(3)+ 444:8+] Specify that an abstract subprogram parameter name is a local identifier:18

(3a) A parameter-name in a subprogram-param-def-stmt ,19

[16.5.1.4p2(3)+ 444:26] Specify that an abstract subprogram name is a local identifier of the scoping20

unit in which it is defined. Before “Local identifiers” insert “A subroutine-name or a function-name in21

the function-stmt or subroutine-stmt of an abstract-subprogram is a local identifier in the scoping unit22

where the abstract subprogram definition appears; any entity of the host that has this as its nongeneric23

name is inaccessible by that name.”24

[A.2 462:1+] Insert a list item25

• whether different indirect instantiations of an abstract subprogram with identical subprogram26

parameter values are the same subprogram (12.6.2.3b);27

c© ISO/IEC 2009 – All rights reserved 11

	Introduction
	History
	What this technical specification proposes

	General
	Scope
	Normative References

	Requirements
	General
	Summary
	Syntax to define an abstract subprogram
	Syntax to instantiate an abstract subprogram
	Syntax to use an abstract subprogram to specify an explicit interface
	Definition of an abstract subprogram
	Instantiation of an abstract subprogram
	Invoking an instantiation of an abstract subprogram
	Constant expression
	Scoping units and host association

	Examples
	Definition of an abstract subprogram
	Direct instantiation of an abstract subprogram
	Indirect instantiation of an abstract subprogram
	Reference to directly instantiated abstract subprogram
	Reference to indirectly instantiated abstract subprogram

	Required editorial changes to ISO/IEC 1539-1:2010(E)

