
TS 18508 Additional Parallel
Features in Fortran

J3/13-251

28th February 2013 16:55

This is an internal working document of J3.

(Blank page)

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

Contents

1 Scope . 1

2 Normative references . 3

3 Terms and definitions . 5

4 Compatibility . 7
4.1 New intrinsic procedures . 7
4.2 Fortran 2008 compatibility . 7

5 Teams of images . 9
5.1 Introduction . 9
5.2 TEAM TYPE . 9
5.3 CHANGE TEAM construct . 9
5.4 FORM SUBTEAM statement . 10
5.5 SYNC TEAM statement . 10
5.6 STAT FAILED IMAGE . 11

6 Events . 13
6.1 Introduction . 13
6.2 EVENT TYPE and LOCAL EVENT TYPE . 13
6.3 EVENT POST statement . 13
6.4 EVENT WAIT statement . 14

7 Intrinsic procedures . 15
7.1 General . 15
7.2 Collective subroutines . 15
7.3 New intrinsic procedures . 15

7.3.1 ATOMIC ADD (ATOM, VALUE [, OLD]) . 15
7.3.2 ATOMIC AND (ATOM, VALUE [, OLD]) . 16
7.3.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW) . 16
7.3.4 ATOMIC OR (ATOM, VALUE [, OLD]) . 17
7.3.5 ATOMIC XOR (ATOM, VALUE [, OLD]) . 17
7.3.6 CO BROADCAST (SOURCE, SOURCE IMAGE [, STAT, ERRMSG]) 17
7.3.7 CO MAX (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 18
7.3.8 CO MIN (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 18
7.3.9 CO REDUCE (SOURCE, OPERATOR [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 19
7.3.10 CO SUM (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 20
7.3.11 EVENT QUERY (EVENT, COUNT [, STATUS]) . 20
7.3.12 FAILED IMAGES ([KIND]) . 21
7.3.13 SUBTEAM ID ([DISTANCE]) . 21
7.3.14 TEAM DEPTH() . 22

7.4 Modified intrinsic procedures . 22
7.4.1 NUM IMAGES . 22
7.4.2 THIS IMAGE . 23

8 Required editorial changes to ISO/IEC 1539-1:2010(E) . 25
8.1 General . 25

i

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

8.2 Edits to Introduction . 25
8.3 Edits to clause 1 . 25
8.4 Edits to clause 2 . 26
8.5 Edits to clause 8 . 26
8.6 Edits to clause 13 . 28
8.7 Edits to annex A . 30

Annex A (informative) Extended notes . 31
A.1 Clause 5 notes . 31
A.2 Clause 6 notes . 31
A.3 Clause 7 notes . 33

A.3.1 Collective subroutine examples . 33

ii

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Stand-
ards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, the joint
technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS), which represents
an agreement between the members of the joint technical committee and is accepted for publication if it is
approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further three
years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed, it is reviewed
again after a further three years, at which time it must either be transformed into an International Standard or
be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18508:2014 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

iii

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

Introduction

The system for parallel programming in Fortran, as standardized by ISO/IEC 1539-1:2010, defines simple syntax
for access to data on another image of a program, a set of synchronization statements for controlling the ordering
of execution segments between images, and collective allocation and deallocation of memory on all images.

The existing system for parallel programming does not provide for an environment where a subset of the images
can easily work on part of an application while not affecting other images in the program. This complicates
development of independent parts of an application by separate teams of programmers. The synchronization
primitives available in the existing system do not provide for a convenient mechanism for ordering execution
segments on different images without requiring that those images arrive at a synchronization point before either
is allowed to progress. This introduces unnecessary inefficiency into programs. Finally, the existing system does
not provide intrinsic procedures for commonly used collective and atomic memory operations. Intrinsic procedures
for these operations can be highly optimized for the target computational system, providing significantly improved
program performance.

This Technical Specification extends the facilites of Fortran for parallel programming to provide for grouping the
images of a program into nonoverlapping teams that can more effectively execute independently parts of a larger
problem, for a system of events that can be used for fine grain ordering of execution segments, and for sets of
collective and atomic memory operation subroutines that can provide better performance for specific operations
involving more than one image.

The facility specified in this Technical Specification is a compatible extension of Fortran as standardized by
ISO/IEC 1539-1:2010.

It is the intention of ISO/IEC JTC 1/SC22 that the semantics and syntax specified by this Technical Specification
be included in the next revision of ISO/IEC 1539-1 without change unless experience in the implementation
and use of this feature identifies errors that need to be corrected, or changes are needed to achieve proper
integration, in which case every reasonable effort will be made to minimize the impact of such changes on existing
implementations.

This Technical Specification is organized in 8 clauses:

Scope Clause 1
Normative references Clause 2
Terms and definitions Clause 3
Compatibility Clause 4
Teams of images Clause 5
Events Clause 6
Intrinsic procedures Clause 7
Required editorial changes to ISO/IEC 1539-1:2010(E) Clause 8

It also contains the following nonnormative material:

Extended notes Annex A

iv

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

1 Scope1

This Technical Specification specifies the form and establishes the interpretation of facilities that extend the2

Fortran language defined by ISO/IEC 1539-1:2010. The purpose of this Technical Specification is to promote3

portability, reliability, maintainability, and efficient execution of parallel programs written in Fortran, for use on4

a variety of computing systems.5

1

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

1

(Blank page)2

3

2

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

2 Normative references1

The following referenced standards are indispensable for the application of this document. For dated references,2

only the edition cited applies. For undated references, the latest edition of the referenced document (including3

any amendments) applies.4

ISO/IEC 1539-1:2010, Information technology—Programming languages—Fortran—Part 1:Base language5

3

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

1

(Blank page)2

3

4

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

3 Terms and definitions1

For the purposes of this document, the terms and definitions given in ISO/IEC 1539-1:2010 and the following2

apply.3

3.14

collective subroutine5

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and6

assign the computed value on one or all of them (7.2)7

3.28

event variable9

scalar variable of type EVENT TYPE or LOCAL EVENT TYPE (6.2) from the intrinsic module ISO FOR-10

TRAN ENV.11

3.312

team variable13

scalar variable of type TEAM TYPE (5.2) from the intrinsic module ISO FORTRAN ENV.14

3.415

team16

set of images that access each other’s data (5.1).17

3.4.118

current team19

the team that includes the executing image (5.1).20

3.4.221

initial team22

the current team when the program began execution (5.1).23

3.4.324

parent team25

team from which the current team was formed by executing a FORM SUBTEAM statement (5.4).26

3.4.427

subteam28

a subset of the set of images in a team (5.1).29

3.4.530

subteam identifier31

integer value identifying a subteam (5.1).32

3.4.633

team distance34

the distance between a team and one of its ancestors (5.1).35

5

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

1

(Blank page)2

3

6

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

4 Compatibility1

4.1 New intrinsic procedures2

This Technical Specification defines intrinsic procedures in addition to those specified in ISO/IEC 1539-1:2010.3

Therefore, a Fortran program conforming to ISO/IEC 1539-1:2010 might have a different interpretation under4

this Technical Specification if it invokes an external procedure having the same name as one of the new intrinsic5

procedures, unless that procedure is specified to have the EXTERNAL attribute.6

4.2 Fortran 2008 compatibility7

This Technical Specification specifies an upwardly compatible extension to ISO/IEC 1539-1:2010.8

7

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

1

(Blank page)2

3

8

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

5 Teams of images1

5.1 Introduction2

A team of images is a set of images that access each other’s data and synchronize with each other. The current3

team is the team that includes the executing image. All image indices are relative to the current team and data4

on images outside this team are inaccessible. Except by executing a SYNC TEAM statement, synchronization5

is possible only with other images of the team. Initially, the current team consists of all the images and this is6

known as the initial team. A team is divided into subteams by executing a FORM SUBTEAM statement. Each7

subteam is identified by an integer value known as its subteam identifier. Information about the team to which8

the current image belongs can be determined by the processor from values stored in its team variable.9

Team distance is a measure of the distance between two teams, one of which is an ancestor of the other. The10

team distance between a team and itself is zero. Except for the initial team, every team has a unique parent11

team. The team distance between a team and its parent is one. The team distance between a team T and the12

parent of team A, which is an ancestor of T, is one more than the team distance between teams T and A.13

Within the body of a CHANGE TEAM construct the current team is the subteam specified by the CHANGE14

TEAM statement.15

5.2 TEAM TYPE16

The derived type TEAM TYPE is an extensible type with no type parameters. Its components are private. A17

scalar of this type describes a team that includes the executing image. TEAM TYPE is defined in the intrinsic18

module ISO FORTRAN ENV.19

A scalar variable of type TEAM TYPE is a team variable. A team variable shall not be a coarray or a subcom-20

ponent of a coarray.21

5.3 CHANGE TEAM construct22

The CHANGE TEAM construct changes the current team to which the executing image belongs.23

R501 change-team-construct is change-team-stmt24

block25

end-change-team-stmt26

R502 change-team-stmt is [team-construct-name:] CHANGE TEAM (team-variable27

[, sync-stat-list])28

R503 end-change-team-stmt is END TEAM [team-construct-name]29

R504 team-variable is scalar-variable30

C501 (R501) A branch within a CHANGE TEAM construct shall not have a branch target that is outside the31

construct.32

C502 (R501) If the change-team-stmt of a change-team-construct specifies a team-construct-name, the corres-33

ponding end-change-team-stmt shall specify the same team-construct-name. If the change-team-stmt of a34

change-team-construct does not specify a team-construct-name, the corresponding end-change-team-stmt35

9

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

shall not specify a team-construct-name.1

C503 (R504) A team-variable shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV2

intrinsic module.3

The value of the team-variable shall have been formed by executing a FORM SUBTEAM statement. The team4

executing the change-team-stmt shall be the team that formed the team variable value. The current team for the5

statements of the change-team block is the subteam that was specified for the executing image by the execution6

of a FORM SUBTEAM statement.7

An allocatable coarray that was allocated when execution of a change-team construct began shall not be deal-8

located during the execution of the construct. An allocatable coarray that is allocated when execution of a9

change-team construct completes is deallocated if it was not allocated when execution of the construct began.10

Both the CHANGE TEAM and END TEAM statements are image control statements. When a CHANGE11

TEAM statement is executed, there is an implicit synchronization of all images of the current team. On each12

image, execution of the segment following the statement is delayed until all the other images have executed the13

same statement the same number of times. When execution of a change-team block finishes, there is an implicit14

synchronization of all images of the parent team. On each image, execution of the segment following the END15

TEAM statement is delayed until all the other images have executed the same block the same number of times.16

NOTE 5.1
The deallocation of an allocatable coarray that was not allocated at the beginning of a CHANGE TEAM
construct, but was allocated at the end of the construct, occurs even for allocatable coarrays with the SAVE
attribute.

5.4 FORM SUBTEAM statement17

R505 form-subteam-stmt is FORM SUBTEAM (subteam-id , team-variable [, sync-stat-list])18

R506 subteam id is scalar-integer-expr19

The FORM SUBTEAM statement defines team-variable for a subteam. The value of subteam id specifies the20

subteam to which the executing image belongs. The value of subteam-id shall be greater than zero and is the21

same for all images that are members of the same subteam.22

The team variable shall not have the value of a team variable for an ancestor of the current team.23

NOTE 5.2
Executing the statement

FORM SUBTEAM (2-MOD(ME,2), ODD_EVEN)

with ME an integer with value THIS IMAGE() and ODD_EVEN of type TEAM TYPE, divides the current
team into two subteams according to whether the image index is even or odd.

5.5 SYNC TEAM statement24

R507 sync-team-stmt is SYNC TEAM (team-variable [, sync-stat-list])25

Execution of a SYNC TEAM statement performs a synchronization of the images of the team specified by the26

team-variable. Execution on an image, M, of the segment following the SYNC TEAM statement is delayed until27

each other image of the specified team has executed a SYNC TEAM statement specifying the same team as many28

times as has image M. The segments that executed before the SYNC TEAM statement on an image precede the29

segments that execute after the SYNC TEAM statement on another image.30

10

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

NOTE 5.3
A SYNC TEAM statement performs a synchronization of images of a particular team whereas a SYNC
ALL statement performs a synchronization of all images of the current team.

5.6 STAT FAILED IMAGE1

The value of the default integer scalar constant STAT FAILED IMAGE is different from the value of STAT -2

STOPPED IMAGE, STAT LOCKED, STAT LOCKED OTHER IMAGE, or STAT UNLOCKED. Its value is3

assigned to the variable specified in a STAT=specifier in an execution of an image control statement, or the4

STAT argument in an invocation of a collective procedure, if execution of the statement involves synchronization5

with an image of the current team that has failed or accessing a variable on an image of the current team that6

has failed. A failed image is one for which references or definitions of variables fail when that variable should7

be accessible, or the image fails to respond as part of a collective activity. A failed image remains failed for8

the remainder of the program execution. If more than one nonzero status value is valid for the execution of a9

statement, the status variable is defined with the value STAT FAILED IMAGE if there is a failed image. The10

variable is defined with the value STAT STOPPED IMAGE only if no other status value is valid. The conditions11

that cause an image to fail are processor dependent.12

NOTE 5.4
A failed image is usually associated with a hardware failure of the processor, memory system, or intercon-
nection network.

11

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

1

(Blank page)2

3

12

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

6 Events1

6.1 Introduction2

An image can use an EVENT POST statement to notify another image that it can proceed to work on tasks3

that use common resources. An image can wait on events posted by other images and can query if images have4

posted events.5

6.2 EVENT TYPE and LOCAL EVENT TYPE6

EVENT TYPE and LOCAL EVENT TYPE are derived types with private components. They are extensible7

types with no type parameters. All components have default initialization. EVENT TYPE and LOCAL -8

EVENT TYPE are defined in the ISO FORTRAN ENV intrinsic module.9

A scalar variable of type EVENT TYPE or LOCAL EVENT TYPE is an event variable. An event variable10

includes a count of the difference between the number of successful posts and successful waits for the event11

variable. The initial value of the event count of an event variable is zero. The processor shall support a maximum12

value of the event count of at least HUGE(0).13

C601 A named variable of type EVENT TYPE or LOCAL EVENT TYPE shall be a coarray. A named14

variable with a noncoarray subcomponent of type EVENT TYPE or LOCAL EVENT TYPE shall be a15

coarray.16

C602 An event variable shall not appear in a variable definition context except as the event-variable in a17

EVENT POST or EVENT WAIT statement, as an allocate-object in an ALLOCATE statement without18

a SOURCE= alloc-opt , or as an actual argument in a reference to a procedure with an explicit interface19

where the corresponding dummy argument has INTENT (INOUT).20

C603 A variable with a subobject of type EVENT TYPE or LOCAL EVENT TYPE shall not appear in a21

variable definition context, as an allocate-object in an ALLOCATE statement without a SOURCE=22

alloc-opt , or as an actual argument in a reference to a procedure with an explicit interface where the23

corresponding dummy argument has INTENT (INOUT).24

NOTE 6.1
Event variables of type LOCAL EVENT TYPE are restricted so that EVENT WAIT statements can only
wait on a local event variable. This allows a more efficient implementation for this case. The more general
case of waiting on an event variable on any image requires the event variable to be of type EVENT TYPE.

6.3 EVENT POST statement25

The EVENT POST statement provides a way to post an event.26

R601 event-post-stmt is EVENT POST(event-variable [, sync-stat-list])27

R602 event-variable is scalar-variable28

C604 (R602) An event-variable shall be of the type EVENT TYPE or LOCAL EVENT TYPE defined in the29

ISO FORTRAN ENV intrinsic module.30

A successful post to an event variable increments its count. An unsuccessful post does not change the count.31

13

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

6.4 EVENT WAIT statement1

The EVENT WAIT statement provides a way to wait until an event is posted.2

R603 event-wait-stmt is EVENT WAIT(event-variable [, sync-stat-list])3

C605 (R603) An event-variable of type LOCAL EVENT TYPE shall not be coindexed.4

If the count of the event-variable is zero, the executing image shall wait until the count is positive. A successful5

wait for an event variable decrements its count. Unsuccessful waits shall not change the count.6

During the execution of the program, the count of a event variable is changed by the execution of EVENT POST7

and EVENT WAIT statements. If the count of a event variable increases through the execution of an EVENT8

POST statement on image M and later decreases through the execution of an EVENT WAIT statement on image9

T, the segments preceding the EVENT POST statement on image M precede the segments following the EVENT10

WAIT statement on image T.11

14

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

7 Intrinsic procedures1

7.1 General2

Detailed specifications of the generic intrinsic procedures ATOMIC ADD, ATOMIC AND, ATOMIC CAS, ATOMIC -3

OR, ATOMIC XOR, CO BROADCAST, CO MAX, CO MIN, CO REDUCE, CO SUM, EVENT QUERY, FAILED -4

IMAGES, SUBTEAM ID, and TEAM DEPTH are provided in 7.3. The types and type parameters of the argu-5

ments to these intrinsic procedures are determined by these specifications. The “Argument” paragraphs specify6

requirements on the actual arguments of the procedures. All of these intrinsics are pure.7

The intrinsic procedures THIS IMAGE and NUM IMAGES described in clause 13 of ISO/IEC 1539-1:2010 are8

extended as described in 7.4.9

7.2 Collective subroutines10

A collective subroutine is one that is invoked on each image of the current team to perform a calculation on those11

images and that assigns the computed value on one or all of them. If it is invoked by one image, it shall be12

invoked by the same statement on all images of the current team in execution segments that are not ordered with13

respect to each other. From the beginning of execution as the current team, the sequence of calls to collective14

subroutines shall be the same on all images of the current team. A call to a collective subroutine shall appear15

only in a context that allows an image control statement.16

If an argument to a collective subroutine is a whole coarray the corresponding ultimate arguments on all images17

of the current team shall be corresponding coarrays as described in 2.4.7 of ISO/IEC 1539-1:2010.18

All the collective subroutines have the optional arguments STAT and ERRMSG.19

If the STAT argument is present, successful invocation of a collective subroutine causes the argument to become20

defined with the value zero.21

If the STAT argument is present in an invocation of a collective subroutine and its execution is not successful, the22

argument becomes defined with a nonzero value and the effect is otherwise the same as that of executing the SYNC23

MEMORY statement. If execution involves synchronization with an image that has failed, the argument becomes24

defined with the value of STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV; otherwise, if no25

image of the current team has stopped, the variable becomes defined with a processor-dependent positive value26

that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the intrinsic module27

ISO FORTRAN ENV. If an image had stopped, but no other error condition occurred, the variable becomes28

defined with the value of the constant STAT STOPPED IMAGE.29

If an ERRMSG argument is present in an invocation of a collective subroutine and an error condition occurs30

during its execution, the processor shall assign an explanatory message to the argument. If no such condition31

occurs, the processor shall not change the value of the argument.32

7.3 New intrinsic procedures33

7.3.1 ATOMIC ADD (ATOM, VALUE [, OLD])34

Description. Atomic add operation.35

Class. Atomic subroutine.36

15

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

Arguments.1

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND2

is the named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT)3

argument. ATOM becomes defined with the value of ATOM + VALUE.4

VALUE shall be scalar and of type integer. It is an INTENT (IN) argument.5

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present,6

it becomes defined with the value of ATOM that was used for performing the ADD operation.7

Examples.8

CALL ATOMIC ADD(I[3], 42) causes the value of I on image 3 to have its to become its previous value plus 42.9

CALL ATOMIC ADD(M[4], N, ORIG) causes the value of M on image 4 to become its previous value plus the10

value of N on this image. ORIG becomes defined with 99 if the previous value of M was 99 on image 4.11

7.3.2 ATOMIC AND (ATOM, VALUE [, OLD])12

Description. Atomic bitwise AND operation.13

Class. Atomic subroutine.14

Arguments.15

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND is a16

named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argument.17

ATOM becomes defined with the value IAND(ATOM,INT(VALUE,ATOMIC INT KIND)).18

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.19

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present, it20

becomes defined with the value of ATOM that was used for performing the bitwise AND operation.21

Example. CALL ATOMIC AND (I[3], 6, Iold) causes I on image 3 to become defined with the value 4 and the22

value of Iold on the image executing the statement to become defined with the value 5 if the value of I[3] was 523

when the bitwise AND operation executed.24

7.3.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW)25

Description. Atomic compare and swap.26

Class. Atomic subroutine.27

Arguments.28

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND or of type logical with kind29

ATOMIC LOGICAL KIND, where ATOMIC INT KIND and ATOMIC LOGICAL KIND are the30

named constants in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argu-31

ment. If the value of ATOM is equal to the value of COMPARE, ATOM becomes defined with the32

value of INT (NEW, ATOMIC INT KIND) if it is of type integer, and with the value of NEW if it33

of type logical.34

OLD shall be scalar and of the same type as ATOM. It is an INTENT (OUT) argument. It becomes35

defined with the value of ATOM that was used for performing the compare operation.36

COMPARE shall be scalar and of the same type and kind as ATOM. It is an INTENT(IN) argument.37

NEW shall be scalar and of the same type as ATOM. It is an INTENT(IN) argument.38

Example. CALL ATOMIC CAS(I[3], OLD, Z, 1) causes I on image 3 to become defined with the value 1 if its39

value is that of Z, and OLD to become defined with the value of I on image 3 prior to the comparison.40

16

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

7.3.4 ATOMIC OR (ATOM, VALUE [, OLD])1

Description. Atomic bitwise OR operation.2

Class. Atomic subroutine.3

Arguments.4

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND is a5

named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argument.6

ATOM becomes defined with the value IOR(ATOM,INT(VALUE,ATOMIC INT KIND)).7

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.8

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present,9

it becomes defined with the value of ATOM that was used for performing the bitwise OR operation.10

Example. CALL ATOMIC XOR (I[3], 1, Iold) causes I on image 3 to become defined with the value 3 and the11

value of Iold on the image executing the statement to become defined with the value 2 if the value of I[3] was 212

when the bitwise OR operation executed.13

7.3.5 ATOMIC XOR (ATOM, VALUE [, OLD])14

Description. Atomic bitwise exclusive OR operation.15

Class. Atomic subroutine.16

Arguments.17

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND is a18

named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argument.19

ATOM becomes defined with the value IEOR(ATOM,INT(VALUE,ATOMIC INT KIND)).20

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.21

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present,22

it becomes defined with the value of ATOM that was used for performing the bitwise exclusive OR23

operation.24

Example. CALL ATOMIC XOR (I[3], 1, Iold) causes I on image 3 to become defined with the value 2 and the25

value of Iold on the image executing the statement to become defined with the value 3 if the value of I[3] was 326

when the bitwise exclusive XOR operation executed.27

7.3.6 CO BROADCAST (SOURCE, SOURCE IMAGE [, STAT, ERRMSG])28

Description. Copy a variable to all images of the current team.29

Class. Collective subroutine.30

Arguments.31

SOURCE shall be a coarray. It is an INTENT(INOUT) argument. SOURCE becomes defined, as if by intrinsic32

assignment, on all images of the current team with the value of SOURCE on image SOURCE -33

IMAGE.34

SOURCE IMAGE shall be of type integer. It is an INTENT(IN) argument. It shall be an image index and have35

the same value on all images of the current team.36

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.37

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.38

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.2.39

Example. If SOURCE is the array [1, 5, 3] on image one, after execution of CALL CO BROADCAST(SOURCE,1)40

17

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

the value of SOURCE on all images of the current team is [1, 5, 3].1

7.3.7 CO MAX (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])2

Description. Compute elemental maximum value on the current team of images.3

Class. Collective subroutine.4

Arguments.5

SOURCE shall be of type integer, real, or character. It is an INTENT(INOUT) argument. If it is a scalar,6

the computed value is equal to the maximum value of SOURCE on all images of the current team.7

If it is an array it shall have the same shape and type parameters on all images of the current team8

and each element of the computed value is equal to the maximum value of all the corresponding9

elements of SOURCE on the images of the current team.10

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)11

argument. If RESULT is present it shall be present on all images of the current team.12

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be13

present on all images of the current team, have the same value on all images of the current team,14

and that value shall be an image index.15

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.16

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.17

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images18

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to19

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.20

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all21

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to22

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.23

If RESULT is present, SOURCE is not modified.24

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.2.25

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image26

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO MAX(SOURCE,27

RESULT) is [4, 5, 6] on both images.28

7.3.8 CO MIN (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])29

Description. Compute elemental minimum value on the current team of images.30

Class. Collective subroutine.31

Arguments.32

SOURCE shall be of type integer, real, or character. It is an INTENT(INOUT) argument. If it is a scalar,33

the computed value is equal to the minimum value of SOURCE on all images of the current team.34

If it is an array it shall have the same shape and type parameters on all images of the current team35

and each element of the computed value is equal to the minimum value of all the corresponding36

elements of SOURCE on the images of the current team.37

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)38

argument. If RESULT is present it shall be present on all images of the current team.39

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be40

present on all images of the current team, have the same value on all images of the current team,41

and that value shall be an image index.42

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.43

18

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.1

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images2

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to3

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.4

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all5

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to6

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.7

If RESULT is present, SOURCE is not modified.8

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.2.9

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image10

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO MIN(SOURCE,11

RESULT) is [1, 1, 3] on both images.12

7.3.9 CO REDUCE (SOURCE, OPERATOR [, RESULT, RESULT IMAGE, STAT, ER-13

RMSG])14

Description. General reduction of elements on the current team of images.15

Class. Collective subroutine.16

Arguments.17

SOURCE is an INTENT(INOUT) argument. It shall not be polymorphic. If SOURCE is a scalar, the18

computed value is the reduction operation of applying OPERATOR to the values of SOURCE on19

all images of the current team. If SOURCE is an array it shall have the same shape and type20

parameters on all images of the current team and each element of the computed value is equal to21

the value of the reduction operation of applying OPERATOR to all the corresponding elements of22

SOURCE on all the images of the current team.23

OPERATOR shall be a pure elemental function with two arguments of the same type and type parameters as24

SOURCE. Its result shall have the same type and type parameters as SOURCE. The arguments25

and result shall not be polymorphic. OPERATOR shall implement a mathematically commutative26

operation. If the operation implemented by OPERATOR is not associative, the computed value of27

the reduction is processor dependent.28

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)29

argument. If RESULT is present it shall be present on all images of the current team.30

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be31

present on all images of the current team, have the same value on all images of the current team,32

and that value shall be an image index.33

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.34

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.35

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images36

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to37

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.38

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all39

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to40

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.41

If RESULT is present, SOURCE is not modified.42

The computed value of a reduction operation over a set of values is the result of an iterative process. Each43

iteration involves the execution of r = OPERATOR(x,y) for x and y in the set, the removal of x and y from the44

set, and the addition of r to the set. The process continues until the set has only one element which is the value45

of the reduction.46

19

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.2.1

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image2

and [4, 1, 6] on the other image, and MyADD is a function that returns the sum of its two integer arguments,3

the value of RESULT after executing the statement CALL CO REDUCE(SOURCE, MyADD, RESULT) is [5,4

6, 9] on both images.5

7.3.10 CO SUM (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])6

Description. Sum elements on the current team of images.7

Class. Collective subroutine.8

Arguments.9

SOURCE shall be of numeric type. It is an INTENT(INOUT) argument. If it is a scalar, the computed value10

is equal to a processor-dependent and image-dependent approximation to the sum of the values of11

SOURCE on all images of the current team. If it is an array it shall have the same shape on all12

images of the current team and each element of the computed value is equal to a processor-dependent13

and image-dependent approximation to the sum of all the corresponding elements of SOURCE on14

the images of the current team.15

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)16

argument. If RESULT is present it shall be present on all images of the current team.17

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be18

present on all images of the current team, have the same value on all images of the current team,19

and that value shall be an image index.20

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.21

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.22

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images23

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to24

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.25

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all26

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to27

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.28

If RESULT is present, SOURCE is not modified.29

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.2.30

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image31

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO SUM(SOURCE,32

RESULT) is [5, 6, 9] on both images.33

7.3.11 EVENT QUERY (EVENT, COUNT [, STATUS])34

Description. Query the count of an event variable.35

Class. Subroutine.36

Arguments.37

EVENT shall be scalar and of type EVENT TYPE or LOCAL EVENT TYPE defined in the ISO FOR-38

TRAN ENV intrinsic module. It is an INTENT(IN) argument.39

COUNT shall be scalar and of type default integer. It is an INTENT(OUT) argument. If the invocation40

is successful, COUNT becomes defined with the difference between the number of successful posts41

and successful waits for EVENT. Otherwise, it is given the value 0.42

STATUS (optional) shall be scalar and of type default integer. It is an INTENT(OUT) argument. It becomes43

20

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

defined with value 0 if the invocation is successful and with a processor-defined nonzero value if the1

invocation is unsuccessful.2

Example. If EVENT is an event variable for which there have been no successful posts or waits, after the3

invocation4

CALL EVENT_QUERY (EVENT, COUNT)5

the integer variable COUNT has the value 0. If there have been 10 successful posts and 2 successful waits to6

EVENT[2], after the invocation7

CALL EVENT_QUERY (EVENT[2], COUNT)8

COUNT has the value 8.9

7.3.12 FAILED IMAGES ([KIND])10

Description. Indices of failed images.11

Class. Transformational function.12

Argument. KIND (optional) shall be a scalar integer constant expression. Its value shall be the value of a13

kind type parameter for the type INTEGER. The range for integers of this kind shall be at least as large as for14

default integer.15

Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value16

of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one17

whose size is equal to the number of failed images.18

Result Value. The elements of the result are the values of the image indices of the failed images in the current19

team, in numerically increasing order.20

Examples. If image 3 is the only failed image in the current team, FAILED IMAGES() has the value [3]. If21

there are no failed images in the current team, FAILED IMAGES() is a zero-sized array.22

7.3.13 SUBTEAM ID ([DISTANCE])23

Description. Subteam identifier.24

Class. Transformational function.25

Argument. DISTANCE (optional) shall be a scalar nonnegative integer.26

Result Characteristics. Default integer scalar.27

Result Value. If DISTANCE is not present, the result value is the subteam identifier of the invoking image28

in the current team. If DISTANCE is present with a value less than or equal to the team distance between the29

current team and the initial team, the result has the value of the subteam identifier that the invoking image had30

when it was a member of the team with a team distance of DISTANCE from the current team. Otherwise, the31

result has the value 1.32

Example. The following code illustrates the use of SUBTEAM ID to control which code is executed.33

TYPE(TEAM_TYPE) :: ODD_EVEN34

:35

ME = THIS_IMAGE()36

FORM SUBTEAM (2-MOD(ME,2), ODD_EVEN)37

CHANGE TEAM (ODD_EVEN)38

21

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

SELECT CASE (SUBTEAM_ID())1

CASE (1)2

: ! Code for odd images in parent team3

CASE (2)4

: ! Code for even images in parent team5

END SELECT6

END TEAM7

7.3.14 TEAM DEPTH()8

Description. Team depth for the current team.9

Class. Transformational function.10

Arguments. None.11

Result Characteristics. Scalar default integer.12

Result Value. The result of TEAM DEPTH is an integer with a value equal to the team distance between the13

current team and the initial team.14

Example.15

PROGRAM TD16

USE,INTRINSIC :: ISO_FORTRAN_ENV17

INTEGER :: I_TEAM_DEPTH18

TYPE(TEAM_TYPE) :: SUBTEAM19

20

FORM SUBTEAMS(1, SUBTEAM)21

CHANGE TEAM(SUBTEAM)22

I_TEAM_DEPTH = TEAM_DEPTH()23

END TEAM24

END25

On completion of the CHANGE TEAM construct, I TEAM DEPTH has the value 1.26

7.4 Modified intrinsic procedures27

7.4.1 NUM IMAGES28

The description of the intrinsic function NUM IMAGES in ISO/IEC 1539-1:2010 is changed by adding two29

optional arguments DISTANCE and FAILED and a modified result if either is present.30

The DISTANCE argument shall be a nonnegative scalar integer. If DISTANCE is not present the result value is31

the number of images in the current team.32

If DISTANCE is present with a value less than or equal to the team distance between the current team and the33

initial team, the team specified is the team of which the invoking image was a member with a team distance of34

DISTANCE from the current team; otherwise, the team specified is the initial team.35

The FAILED argument shall be a scalar LOGICAL argument. Its value determines whether the result is the36

number of failed images or the number of nonfailed images. If DISTANCE is present, the result applies to the37

team it specifies, otherwise the result applies to the current team. If FAILED is present with the value true, the38

result is the number of failed images in the applicable team, otherwise the result is the total number of nonfailed39

images in the applicable team.40

22

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

7.4.2 THIS IMAGE1

The description of the intrinsic function THIS IMAGE() in ISO/IEC 1539-1:2010 is changed by adding an2

optional argument DISTANCE and a modified result if DISTANCE is present.3

The DISTANCE argument shall be a scalar integer. It shall be nonnegative. If DISTANCE is not present, the4

result value is the image index of the invoking image in the current team. If DISTANCE is present with a value5

less than or equal to the team distance between the current team and the initial team, the result has the value of6

the image index in the team of which the invoking image was last a member with a team distance of DISTANCE7

from the current team; otherwise, the result has the value of the image index that the invoking image had in the8

initial team.9

23

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

1

(Blank page)2

3

24

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

8 Required editorial changes to ISO/IEC 1539-1:2010(E)1

8.1 General2

The following editorial changes, if implemented, would provide the facilities described in foregoing clauses of this3

Technical Specification. Descriptions of how and where to place the new material are enclosed in braces {}. Edits4

to different places within the same clause are separated by horizontal lines.5

In the edits, except as specified otherwise by the editorial instructions, underwave (
::::::::::
underwave) and strike-out6

(strike-out) are used to indicate insertion and deletion of text.7

8.2 Edits to Introduction8

Include clauses a needed.9

{In paragraph 1 of the Introduction}10

After “informally known as Fortran 2008, plus the facilities defined in ISO/IEC TS 29113:2012” add “and ISO/IEC11

TS 18508:2014”.12

{After paragraph 3 of the Introduction and after the paragraph added by ISO/IEC TS 29113:2012, insert new13

paragraph}14

ISO/IEC TS 18508 provides additional facilities for parallel programming:15

• teams provide a capability to restrict the image set of remote memory references, coarray allocations, and16

synchronizations to a subset of all the images of the program;17

• collective subroutines perform computations based on values on all the images, offering the possibility of efficient18

execution of reduction operations;19

• atomic memory operations provide powerful low-level primitives for synchronization of activities among images;20

• tagged events allow one-sided ordering of execution segments;21

• features for the support of continued execution after one or more images have failed; and22

• features to detect which images have failed.23

8.3 Edits to clause 124

{In 1.3 Terms and definitions, insert new terms as follows}25

1.3.30a26

collective subroutine27

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and28

assign the computed value on one or all of them (13.1)29

1.3.154.1-30

event variable31

scalar variable of type EVENT TYPE or LOCAL EVENT TYPE (13.8.2.8a) from the intrinsic module ISO -32

FORTRAN ENV.33

25

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

1.3.154.31

team variable2

scalar variable of type TEAM TYPE (13.8.2.26) from the intrinsic module ISO FORTRAN ENV.3

1.3.145a4

team5

set of images that access each others data (2.3.4).6

1.3.145a.17

current team8

the team that includes the executing image (2.3.4).9

1.3.145a.210

initial team11

the current team when the program began execution (2.3.4).12

1.3.145a.313

parent team14

team from which the current team was formed by executing a FORM SUBTEAM statement (8.5.2c).15

1.3.145a.416

subteam17

a subset of the set of images in a team (2.3.4).18

1.3.145a.519

subteam identifier20

integer value identifying a subteam (2.3.4).21

1.3.145a.622

team distance23

the distance between a team and one of its ancestors (2.3.4).24

8.4 Edits to clause 225

{At the end of 2.3.4 Program execution insert three new paragraphs}26

A team of images is a set of images that access each other’s data and synchronize with each other. The current27

team is the team that includes the executing image. All image indices are relative to the current team and28

data on images outside this team are inaccessible. Except by executing a SYNC TEAM statement (8.5.5a),29

synchronization is possible only with other images of the team. Initially, the current team consists of all the30

images and this is known as the initial team. A team is divided into subteams by executing a FORM SUBTEAM31

statement (8.5.2c). Each subteam is identified by an integer value known as its subteam identifier. Information32

about the team to which the current image belongs can be determined by the processor from values stored in its33

team variable.34

Team distance is a measure of the distance between two teams, one of which is an ancestor of the other. The35

team distance between a team and itself is zero. Except for the initial team, every team has a unique parent36

team. The team distance between a team and its parent is one. The team distance between a team T and the37

parent of team A, which is an ancestor of T, is one more than the team distance between teams T and A.38

Within the body of a CHANGE TEAM construct (8.1.4a) the current team is the subteam specified by the39

CHANGE TEAM statement.40

8.5 Edits to clause 841

{In 8.1.1 General, paragraph 1, following the BLOCK construct entry in the list of constructs insert}42

26

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

• CHANGE TEAM construct;1

{Following 8.1.4 BLOCK construct insert 5.3 CHANGE TEAM construct from this Technical Specification as2

8.1.4a, with rule, constraint, and Note numbers modified.}3

{In 8.5.1 Image control statements, paragraph 2, insert extra bullet points following the CRITICAL and END4

CRITICAL line}5

• CHANGE TEAM and END TEAM;6

• EVENT POST and EVENT WAIT;7

• FORM SUBTEAM;8

• SYNC TEAM;9

{In 8.5.1 Image control statements, edit paragraph 3 as follows}10

All image control statements except CRITICAL, END CRITICAL,
::::::
FORM

:::::::::::::
SUBTEAM, LOCK, and UNLOCK11

include the effect of executing a SYNC MEMORY statement (8.5.5).12

{Following 8.5.2 Segments insert 6.3 EVENT POST statement from this Technical Specification as 8.5.2a, with13

rule and constraint numbers modified.}14

{Following 8.5.2 Segments insert 6.4 EVENT WAIT statement from this Technical Specification as 8.5.2b, with15

rule and constraint numbers modified.}16

{Following 8.5.2 Segments insert 5.4 FORM SUBTEAM statement from this Technical Specification as 8.5.2c,17

with rule and Note numbers modified.}18

{Following 8.5.5 SYNC MEMORY statement, insert 5.5 SYNC TEAM statement from this Technical Specification19

as 8.5.5a, with the rule number modified.}20

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 1 and 2 by}21

The appearance of a STAT= or ERRMSG= specifier in a CHANGE TEAM statement is treated as an appearance22

both there and in the corresponding END TEAM statement.23

If the STAT= specifier appears, successful execution of a CHANGE TEAM, END TEAM, FORM SUBTEAM,24

LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, or UNLOCK statement causes the specified variable to25

become defined with the value zero.26

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, FORM SUBTEAM, LOCK, SYNC ALL,27

SYNC IMAGES, SYNC MEMORY, or UNLOCK statement and its execution is not successful, the specified28

variable becomes defined with a nonzero value and the effect is otherwise the same as that of executing the29

SYNC MEMORY statement. If there is a failed image in the current team, the variable becomes defined with the30

constant STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV (13.8.2); otherwise, if no image31

of the current team has stopped, the variable becomes defined with a processor-dependent positive value that32

is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the intrinsic module ISO33

FORTRAN ENV (13.8.2); otherwise, the variable becomes defined with the the constant STAT STOPPED -34

IMAGE.35

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 4 and 5 by}36

If the STAT= specifier does not appear in a CHANGE TEAM, END TEAM, FORM SUBTEAM, LOCK, SYNC37

ALL, SYNC IMAGES, SYNC MEMORY, or UNLOCK statement and its execution is not successful, error38

termination is initiated.39

27

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

If an ERRMSG= specifier appears in a CHANGE TEAM, END TEAM, FORM SUBTEAM, LOCK, SYNC ALL,1

SYNC IMAGES, SYNC MEMORY, or UNLOCK statement and its execution is not successful, the processor2

shall assign an explanatory message to the specified variable. If the execution is successful, the processor shall3

not change the value of the variable.4

8.6 Edits to clause 135

{In 13.1 Classes of intrinsic procedures, edit paragraph 1 as follows}6

Intrinsic procedures are divided into seven
:::::
eight classes: inquiry functions, elemental functions, transformational7

functions, elemental subroutines, pure subroutines, atomic subroutines,
::::::::
collective

:::::::::::::
subroutines, and (impure)8

subroutines.9

{In 13.1 Classes of intrinsic procedures, insert six new paragraphs following paragraph 3 and Note 13.1}10

A collective subroutine is one that is invoked on each image of the current team to perform a calculation on those11

images and that assigns the computed value on one or all of them. If it is invoked by one image, it shall be12

invoked by the same statement on all images of the current team in execution segments that are not ordered with13

respect to each other. From the beginning of execution as the current team, the sequence of calls to collective14

subroutines shall be the same on all images of the current team. A call to a collective subroutine shall appear15

only in a context that allows an image control statement.16

If an argument to a collective subroutine is a whole coarray the corresponding ultimate arguments on all images17

of the current team shall be corresponding coarrays as described in 2.4.7.18

All the collective subroutines have the optional arguments STAT and ERRMSG.19

If the STAT argument is present, successful invocation of a collective subroutine causes the argument to become20

defined with the value zero.21

If the STAT argument is present in an invocation of a collective subroutine and its execution is not successful,22

the argument becomes defined with a nonzero value and the effect is otherwise the same as that of executing the23

SYNC MEMORY statement. If execution involves synchronization with an image that has failed, the argument24

becomes defined with the value of STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV (13.8.2);25

otherwise, if no image of the current team has stopped, the variable becomes defined with a processor-dependent26

positive value that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the27

intrinsic module ISO FORTRAN ENV (13.8.2). If an image had stopped, but no other error condition occurred,28

the variable becomes defined with the value of the constant STAT STOPPED IMAGE.29

If an ERRMSG argument is present in an invocation of a collective subroutine and an error condition occurs30

during its execution, the processor shall assign an explanatory message to the argument. If no such condition31

occurs, the processor shall not change the value of the argument.32

{In 13.5 Standard generic intrinsic procedures, paragraph 2 after the line ”A indicates ... atomic subroutine”33

insert a new line}34

C indicates that the procedure is a collective subroutine35

{In 13.5 Standard generic intrinsic procedures, Table 13.1, insert new entries into the table, alphabetically}36

ATOMIC ADD (ATOM, VALUE [,OLD]) A Atomic ADD operation.37

ATOMIC AND (ATOM, VALUE [,OLD]) A Atomic bitwise AND operation.38

ATOMIC CAS (ATOM, OLD, COMPARE, NEW) A Atomic compare and swap.39

ATOMIC OR (ATOM, VALUE [,OLD]) A Atomic bitwise OR operation.40

28

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

ATOMIC XOR (ATOM, VALUE [,OLD]) A Atomic bitwise exclusive OR operation.1

CO BROADCAST (SOURCE, SOURCE IMAGE) C Copy a variable to all images.2

CO MAX (SOURCE [, RESULT, RESULT IMAGE]) C Compute maximum of elements on all images.3

CO MIN (SOURCE [, RESULT, RESULT IMAGE]) C Compute minimum of elements on all images.4

CO REDUCE (SOURCE, OPERATOR [, RESULT, C General reduction of elements on all images.5

RESULT IMAGE])6

CO SUM (SOURCE [, RESULT, RESULT IMAGE]) C Sum elements on all images.7

EVENT QUERY (EVENT, COUNT[, STATUS]) S Count of an event.8

FAILED IMAGES ([KIND]) T Indices of failed images.9

SUBTEAM ID ([DISTANCE]) T Subteam identifier.10

TEAM DEPTH () T Team depth for this image.11

{In 13.5 Standard generic intrinsic procedures, Table 13.1, edit the entries for NUM IMAGES() and THIS -12

IMAGE() as follows}13

NUM IMAGES (
:::::::::::::
[DISTANCE,

:::::::::
FAILED]) T Number of images.14

THIS IMAGE (
:::::::::::::
[DISTANCE]) T Index of the invoking image.15

{In 13.7 Specifications of the standard intrinsic procedures, insert subclauses 7.3.1 through 7.3.14 of this Technical16

Specification in order alphabetically, with subcaluse numbers adjusted accordingly.}17

{In 13.7.126 NUM IMAGES, edit the subclause title as follows}18

13.7.126 NUM IMAGES (
:::::::::::::
[DISTANCE,

:::::::::
FAILED])19

{In 13.7.126 NUM IMAGES, replace paragraph 3 with}20

Arguments.21

DISTANCE (optional) shall be a nonnegative scalar integer. It is an INTENT(IN) argument.22

FAILED (optional) shall be a scalar LOGICAL argument. Its value determines whether the result is the number23

of failed images or the number of nonfailed images. It is an INTENT(IN) argument.24

{In 13.7.126 NUM IMAGES, replace paragraph 5 with}25

Result Value. If DISTANCE is not present the result value is the number of images in the current team.26

If DISTANCE is present with a value less than or equal to the team distance between the current team and27

the initial team, the team specified is the team of which invoking image was a member with a team distance of28

DISTANCE from the current team; otherwise, the team specified is the initial team.29

If DISTANCE is present, the result applies to the team it specifies, otherwise the result applies to the current30

team. If FAILED is present with the value true, the result is the number of failed images in the applicable team,31

otherwise the result is the total number of nonfailed images in the applicable team.32

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) edit the subclause title as follows }33

13.7.165 THIS IMAGE (
::::::::::::
[DISTANCE]) or THIS IMAGE (COARRAY [, DIM])34

29

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) insert a new argument at the end of1

paragraph 3 }2

DISTANCE (optional) shall be a scalar integer. It shall be nonnegative. It shall not be a coarray.3

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) replace Case(i): in paragraph 5 with }4

Case (i): If DISTANCE is not present the result value is the image index of the invoking image in the current5

team. If DISTANCE is present with a value less than or equal to the team distance between the6

current team and the initial team, the result has the value of the image index in the team of7

which the invoking image was member with a team distance of DISTANCE from the current team;8

otherwise, the result has the value of the image index that the invoking image had in the initial9

team.10

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.8a consisting of subclause11

6.2 EVENT TYPE and LOCAL EVENT TYPE of this Technical Specification, but omitting the final sentence12

of the first paragraph.}13

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.21b consisting of subclause14

5.6 STAT FAILED IMAGE of this Technical Specification.}15

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, append a new subclause 13.8.2.26 consisting of subclause16

5.2 TEAM TYPE of this Technical Specification, but omitting the final sentence of the first paragraph.}17

8.7 Edits to annex A18

{At the end of A.2 Processor dependencies, replace the final full stop with a semicolon and add new items as19

follows}20

• the conditions that cause an image to fail;21

• the computed value of the CO SUM intrinsic function;22

• the computed value of the CO REDUCE intrinsic function.23

30

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

Annex A1

(Informative)2

Extended notes3

A.1 Clause 5 notes4

Example: Compute fluxes over land, sea and ice in different teams based on surface properties. Assumption:5

Each image deals with areas containing exactly one of the three surface types.6

SUBROUTINE COMPUTE_FLUXES(FLUX_MOM, FLUX_SENS, FLUX_LAT)7

USE,INTRINSIC :: ISO_FORTRAN_ENV8

REAL, INTENT(OUT) :: FLUX_MOM(:,:), FLUX_SENS(:,:), FLUX_LAT(:,:)9

INTEGER, PARAMETER :: LAND=1, SEA=2, ICE=310

CHARACTER(LEN=10) :: SURFACE_TYPE11

INTEGER :: MY_SURFACE_TYPE, N_IMAGE12

TYPE(TEAM_TYPE) :: SUBTEAM_SURFACE_TYPE13

14

CALL GET_SURFACE_TYPE(THIS_IMAGE(), SURFACE_TYPE) ! Surface type15

SELECT CASE (SURFACE_TYPE) ! of the executing image16

CASE (’LAND’)17

MY_SURFACE_TYPE = LAND18

CASE (’SEA’)19

MY_SURFACE_TYPE = SEA20

CASE (’ICE’)21

MY_SURFACE_TYPE = ICE22

CASE DEFAULT23

ERROR STOP24

END SELECT25

FORM SUBTEAM(MY_SURFACE_TYPE, SUBTEAM_SURFACE_TYPE)26

27

CHANGE TEAM(SUBTEAM_SURFACE_TYPE)28

SELECT CASE (SUBTEAM_ID())29

CASE (LAND) ! Compute fluxes over land surface30

CALL COMPUTE_FLUXES_LAND(FLUX_MOM, FLUX_SENS, FLUX_LAT)31

CASE (SEA) ! Compute fluxes over sea surface32

CALL COMPUTE_FLUXES_SEA(FLUX_MOM, FLUX_SENS, FLUX_LAT)33

CASE (ICE) ! Compute fluxes over ice surface34

CALL COMPUTE_FLUXES_ICE(FLUX_MOM, FLUX_SENS, FLUX_LAT)35

CASE DEFAULT36

ERROR STOP37

END SELECT38

END TEAM39

END SUBROUTINE COMPUTE_FLUXES40

A.2 Clause 6 notes41

Example 1: Use of EVENT QUERY.42

USE,INTRINSIC :: ISO_FORTRAN_ENV43

INTEGER :: COUNT, STATUS44

31

J3/13-251 TS 18508 Additional Parallel Features in Fortran 2013/2/28

TYPE(LOCAL_EVENT_TYPE) :: EVENT[*]1

2

CALL EVENT_QUERY(EVENT, COUNT, STATUS)3

IF (STATUS /= 0) THEN4

PRINT*,’PROBLEM WITH EVENT QUERYING’5

ELSE6

IF (COUNT == 0) THEN7

! Do some useful work not related to the event.8

ELSE9

EVENT WAIT(EVENT, STAT=STATUS)10

IF (STATUS /= 0) THEN11

PRINT*,’PROBLEM WITH EVENT WAITING’12

ELSE13

! Do the work related to the event.14

ENDIF15

ENDIF16

ENDIF17

Example 2: Producer consumer program.18

PROGRAM PROD_CONS19

USE, INTRINSIC :: ISO_FORTRAN_ENV20

INTEGER :: I, COUNT, STATUS21

TYPE(EVENT_TYPE) :: EVENT[*]22

DO23

DO I = 1, NUM_IMAGES()24

CALL EVENT_QUERY(EVENT[I], COUNT, STATUS)25

IF (STATUS /= 0) THEN26

PRINT*,’PROBLEM QUERYING EVENT’27

ELSE28

IF (I /= THIS_IMAGE()) THEN29

IF (COUNT == 0) THEN30

! Produce some work31

EVENT POST(EVENT[I], STATUS)32

IF (STATUS /= 0) THEN33

PRINT*,’PROBLEM POSTING EVENT’34

ENDIF35

ENDIF36

ELSE37

EVENT WAIT(EVENT, STATUS)38

IF (STATUS /= 0) THEN39

PRINT*,’PROBLEM WAITING FOR EVENT’40

ELSE41

! Consume some work42

ENDIF43

ENDIF44

ENDIF45

ENDDO46

ENDDO47

END PROD_CONS48

32

2013/2/28 TS 18508 Additional Parallel Features in Fortran J3/13-251

A.3 Clause 7 notes1

A.3.1 Collective subroutine examples2

The following example computes a dot product of two scalar coarrays using the co sum intrinsic to store the3

result in a noncoarray scalar variable:4

real, save :: x[*],y[*],xy[*]5

real x_dot_y6

!Initialize x and y7

x = this_image()8

call random_number(y)9

xy = x*y10

call co_sum(xy,x_dot_y)11

The function below demonstrates passing a noncoarray dummy argument to the co max intrinsic. The function12

uses co max to find the maximum value of the dummy argument across all images. Then the function flags all13

images that hold values matching the maximum. The function then returns the maximum image index for an14

image that holds the maximum value:15

function find_max(j) result(j_max_location)16

integer, intent(in) :: j17

integer j_max,j_max_location18

call co_max(j,j_max)19

! Flag images that hold the maximum j20

j_max_location = merge(this_image(),0,j==j_max)21

! Return highest image index associated with a maximal j22

call co_max(j_max_location)23

end function find_max24

33

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Compatibility
	4.1 New intrinsic procedures
	4.2 Fortran 2008 compatibility

	5 Teams of images
	5.1 Introduction
	5.2 TEAM_TYPE
	5.3 CHANGE TEAM construct
	5.4 FORM SUBTEAM statement
	5.5 SYNC TEAM statement
	5.6 STAT_FAILED_IMAGE

	6 Events
	6.1 Introduction
	6.2 EVENT_TYPE and LOCAL_EVENT_TYPE
	6.3 EVENT POST statement
	6.4 EVENT WAIT statement

	7 Intrinsic procedures
	7.1 General
	7.2 Collective subroutines
	7.3 New intrinsic procedures
	7.3.1 ATOMIC_ADD (ATOM, VALUE [, OLD])
	7.3.2 ATOMIC_AND (ATOM, VALUE [, OLD])
	7.3.3 ATOMIC_CAS (ATOM, OLD, COMPARE, NEW)
	7.3.4 ATOMIC_OR (ATOM, VALUE [, OLD])
	7.3.5 ATOMIC_XOR (ATOM, VALUE [, OLD])
	7.3.6 CO_BROADCAST (SOURCE, SOURCE_IMAGE [, STAT, ERRMSG])
	7.3.7 CO_MAX (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.3.8 CO_MIN (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.3.9 CO_REDUCE (SOURCE, OPERATOR [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.3.10 CO_SUM (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.3.11 EVENT_QUERY (EVENT, COUNT [, STATUS])
	7.3.12 FAILED_IMAGES ([KIND])
	7.3.13 SUBTEAM_ID ([DISTANCE])
	7.3.14 TEAM_DEPTH()

	7.4 Modified intrinsic procedures
	7.4.1 NUM_IMAGES
	7.4.2 THIS_IMAGE

	8 Required editorial changes to ISO/IEC 1539-1:2010(E)
	8.1 General
	8.2 Edits to Introduction
	8.3 Edits to clause 1
	8.4 Edits to clause 2
	8.5 Edits to clause 8
	8.6 Edits to clause 13
	8.7 Edits to annex A

	Annex A (informative) Extended notes
	A.1 Clause 5 notes
	A.2 Clause 6 notes
	A.3 Clause 7 notes
	A.3.1 Collective subroutine examples

