
TS 18508 Additional Parallel
Features in Fortran

J3/14-130

11th March 2014 15:35

This is an internal working document of J3.

(Blank page)

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

Contents

1 Scope . 1

2 Normative references . 3

3 Terms and definitions . 5

4 Compatibility . 7
4.1 New intrinsic procedures . 7
4.2 Fortran 2008 compatibility . 7

5 Teams of images . 9
5.1 Introduction . 9
5.2 TEAM TYPE . 9
5.3 CHANGE TEAM construct . 9
5.4 Image selectors . 11
5.5 FORM TEAM statement . 11
5.6 SYNC TEAM statement . 12
5.7 FAIL IMAGE statement . 13
5.8 STAT FAILED IMAGE . 13

6 Events . 15
6.1 Introduction . 15
6.2 EVENT TYPE . 15
6.3 EVENT POST statement . 15
6.4 EVENT WAIT statement . 16

7 Intrinsic procedures . 17
7.1 General . 17
7.2 Atomic subroutines . 17
7.3 Collective subroutines . 17
7.4 New intrinsic procedures . 18

7.4.1 ATOMIC ADD (ATOM, VALUE) or ATOMIC ADD (ATOM, VALUE, OLD) 18
7.4.2 ATOMIC AND (ATOM, VALUE) or ATOMIC AND (ATOM, VALUE, OLD) 18
7.4.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW) . 19
7.4.4 ATOMIC OR (ATOM, VALUE) or ATOMIC OR (ATOM, VALUE, OLD) 19
7.4.5 ATOMIC XOR (ATOM, VALUE) or ATOMIC XOR (ATOM, VALUE, OLD) 20
7.4.6 CO BROADCAST (SOURCE, SOURCE IMAGE [, STAT, ERRMSG]) 20
7.4.7 CO MAX (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 20
7.4.8 CO MIN (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 21
7.4.9 CO REDUCE (SOURCE, OPERATOR [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 22
7.4.10 CO SUM (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 22
7.4.11 EVENT QUERY (EVENT, COUNT [, STAT, ERRMSG]) 23
7.4.12 FAILED IMAGES ([TEAM, KIND]) . 24
7.4.13 GET TEAM (TEAM VAR [,DISTANCE]) . 24
7.4.14 TEAM DEPTH() . 25
7.4.15 TEAM ID ([DISTANCE]) . 25

7.5 Modified intrinsic procedures . 26

i

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

7.5.1 MOVE ALLOC . 26
7.5.2 NUM IMAGES . 27
7.5.3 THIS IMAGE . 27

8 Required editorial changes to ISO/IEC 1539-1:2010(E) . 29
8.1 General . 29
8.2 Edits to Introduction . 29
8.3 Edits to clause 1 . 29
8.4 Edits to clause 2 . 30
8.5 Edits to clause 4 . 31
8.6 Edits to clause 6 . 31
8.7 Edits to clause 8 . 32
8.8 Edits to clause 13 . 33
8.9 Edits to clause 16 . 36
8.10 Edits to annex A . 36
8.11 Edits to annex C . 37

Annex A (informative) Extended notes . 39
A.1 Clause 5 notes . 39

A.1.1 Example using three teams . 39
A.1.2 Example involving failed images . 39
A.1.3 Accessing coarrays in sibling teams . 41
A.1.4 Reducing the codimension of a coarray . 42

A.2 Clause 6 notes . 43
A.2.1 EVENT QUERY example . 43
A.2.2 EVENTS example . 44

A.3 Clause 7 notes . 45
A.3.1 Collective subroutine examples . 45
A.3.2 Atomic memory consistency . 45

ii

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Stand-
ards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, the joint
technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS), which represents
an agreement between the members of the joint technical committee and is accepted for publication if it is
approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further three
years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed, it is reviewed
again after a further three years, at which time it must either be transformed into an International Standard or
be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18508:2014 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

iii

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

Introduction

The system for parallel programming in Fortran, as standardized by ISO/IEC 1539-1:2010, defines simple syntax
for access to data on another image of a program, a set of synchronization statements for controlling the ordering
of execution segments between images, and collective allocation and deallocation of memory on all images.

The existing system for parallel programming does not provide for an environment where a subset of the images
can easily work on part of an application while not affecting other images in the program. This complicates
development of independent parts of an application by separate teams of programmers. The existing system
does not provide a mechanism for a processor to identify what images have failed during execution of a program.
This adversely affects the resilience of programs executing on large systems. The synchronization primitives
available in the existing system do not provide for a convenient mechanism for ordering execution segments on
different images without requiring that those images arrive at a synchronization point before either is allowed to
progress. This introduces unnecessary inefficiency into programs. Finally, the existing system does not provide
intrinsic procedures for commonly used collective and atomic memory operations. Intrinsic procedures for these
operations can be highly optimized for the target computational system, providing significantly improved program
performance.

This Technical Specification extends the facilites of Fortran for parallel programming to provide for grouping the
images of a program into nonoverlapping teams that can more effectively execute independently parts of a larger
problem, for the processor to indicate which images have failed during execution and allow continued execution of
the program on the remaining images, for a system of events that can be used for fine grain ordering of execution
segments, and for sets of collective and atomic memory operation subroutines that can provide better performance
for specific operations involving more than one image.

The facility specified in this Technical Specification is a compatible extension of Fortran as standardized by
ISO/IEC 1539-1:2010 and ISO/IEC 1539-1:2010/Cor 2:2013.

It is the intention of ISO/IEC JTC 1/SC22 that the semantics and syntax specified by this Technical Specification
be included in the next revision of ISO/IEC 1539-1 without change unless experience in the implementation
and use of this feature identifies errors that need to be corrected, or changes are needed to achieve proper
integration, in which case every reasonable effort will be made to minimize the impact of such changes on existing
implementations.

This Technical Specification is organized in 8 clauses:

Scope Clause 1
Normative references Clause 2
Terms and definitions Clause 3
Compatibility Clause 4
Teams of images Clause 5
Events Clause 6
Intrinsic procedures Clause 7
Required editorial changes to ISO/IEC 1539-1:2010(E) Clause 8

It also contains the following nonnormative material:

Extended notes Annex A

iv

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

1 Scope1

This Technical Specification specifies the form and establishes the interpretation of facilities that extend the2

Fortran language defined by ISO/IEC 1539-1:2010 and ISO/IEC 1539-1:2010/Cor 2:2013. The purpose of this3

Technical Specification is to promote portability, reliability, maintainability, and efficient execution of parallel4

programs written in Fortran, for use on a variety of computing systems.5

1

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

1

(Blank page)2

3

2

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

2 Normative references1

The following referenced standards are indispensable for the application of this document. For dated references,2

only the edition cited applies. For undated references, the latest edition of the referenced document (including3

any amendments) applies.4

ISO/IEC 1539-1:2010, Information technology—Programming languages—Fortran—Part 1:Base language5

ISO/IEC 1539-1:2010/Cor 2:2013, Information technology—Programming languages—Fortran—Part 1:Base lan-6

guage TECHNICAL CORRIGENDUM 27

3

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

1

(Blank page)2

3

4

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

3 Terms and definitions1

For the purposes of this document, the terms and definitions given in ISO/IEC 1539-1:2010 and the following2

apply. The intrinsic module ISO FORTRAN ENV is extended by this Technical Specification.3

3.14

collective subroutine5

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and6

assign the computed value on one or all of them (7.3)7

3.28

team9

set of images that can readily execute independently of other images (5.1)10

3.2.111

current team12

the team specified in the CHANGE TEAM statement of the innermost executing CHANGE TEAM construct,13

or the initial team if no CHANGE TEAM construct is active (5.1)14

3.2.215

initial team16

the current team when the program began execution (5.1)17

3.2.318

parent team19

team from which the current team was formed by executing a FORM TEAM statement (5.1)20

3.2.421

team identifier22

integer value identifying a team (5.1)23

3.2.524

team distance25

the distance between a team and one of its ancestors (5.1)26

3.327

failed image28

an image for which references or definitions of a variable on the image fail when that variable should be accessible,29

or the image fails to respond during the execution of an image control statement or a reference to a collective30

subroutine (5.8)31

3.432

event variable33

scalar variable of type EVENT TYPE (6.2) in the intrinsic module ISO FORTRAN ENV34

3.535

team variable36

scalar variable of type TEAM TYPE (5.2) in the intrinsic module ISO FORTRAN ENV37

5

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

1

(Blank page)2

3

6

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

4 Compatibility1

4.1 New intrinsic procedures2

This Technical Specification defines intrinsic procedures in addition to those specified in ISO/IEC 1539-1:2010.3

Therefore, a Fortran program conforming to ISO/IEC 1539-1:2010 might have a different interpretation under4

this Technical Specification if it invokes an external procedure having the same name as one of the new intrinsic5

procedures, unless that procedure is specified to have the EXTERNAL attribute.6

4.2 Fortran 2008 compatibility7

This Technical Specification specifies an upwardly compatible extension to ISO/IEC 1539-1:2010.8

7

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

1

(Blank page)2

3

8

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

5 Teams of images1

5.1 Introduction2

A team of images is a set of images that can readily execute independently of other images. Syntax and semantics3

of image-selector (R624 in ISO/IEC 1539-1:2010) have been extended to determine how cosubscripts are mapped4

to image indices for both sibling and ancestor team references. Initially, the current team consists of all the5

images and this is known as the initial team. A team is divided into new teams by executing a FORM TEAM6

statement. Each new team is identified by an integer value known as its team identifier. Information about the7

team to which the current image belongs can be determined by the processor from the collective value of the8

team variables on the images of the team.9

Team distance is a measure of the distance between two teams, one of which is an ancestor of the other. The10

team distance between a team and itself is zero. Except for the initial team, every team has a unique parent11

team. The team distance between a team and its parent is one. The team distance between a team T and the12

parent of team A, which is an ancestor of T, is one more than the team distance between teams T and A.13

The current team is the team specified in the CHANGE TEAM statement of the innermost executing CHANGE14

TEAM construct, or the initial team if no CHANGE TEAM construct is active.15

A nonallocatable coarray that is neither a dummy argument, host associated with a dummy argument, declared16

as a local variable of a subprogram, nor declared in a BLOCK construct is established in the initial team. An17

allocated allocatable coarray is established in the team in which it was allocated. An unallocated allocatable18

coarray is not established. An associating coarray is established in the team of its CHANGE TEAM block. A19

nonallocatable coarray that is a dummy argument or host associated with a dummy argument is established in20

the team in which the procedure was invoked. A nonallocatable coarray that is a local variable of a subprogram21

or host associated with a local variable of a subprogram is established in the team in which the procedure was22

invoked. A nonallocatable coarray declared in a BLOCK construct is established in the team in which the BLOCK23

statement was executed.24

5.2 TEAM TYPE25

TEAM TYPE is a derived type with private components. It is an extensible type with no type parameters. Each26

component is fully default initialized. A scalar variable of this type describes a team. TEAM TYPE is defined27

in the intrinsic module ISO FORTRAN ENV.28

A scalar variable of type TEAM TYPE is a team variable. The default initial value of a team variable shall not29

represent any valid team.30

5.3 CHANGE TEAM construct31

The CHANGE TEAM construct changes the current team to which the executing image belongs.32

R501 change-team-construct is change-team-stmt33

block34

end-change-team-stmt35

R502 change-team-stmt is [team-construct-name:] CHANGE TEAM (team-variable36

[, coarray-association-list] [, sync-stat-list])37

R503 coarray-association is codimension-decl => coselector-name38

9

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

R504 coselector is coarray1

R505 end-change-team-stmt is END TEAM [(sync-stat-list)] [team-construct-name]2

R506 team-variable is scalar-variable3

C501 (R501) A branch within a CHANGE TEAM construct shall not have a branch target that is outside the4

construct.5

C502 (R501) A RETURN statement shall not appear within a CHANGE TEAM construct.6

C503 (R501) A exit-stmt or cycle-stmt within a CHANGE TEAM construct shall not belong to an outer7

construct.8

C504 (R501) If the change-team-stmt of a change-team-construct specifies a team-construct-name, the corres-9

ponding end-change-team-stmt shall specify the same team-construct-name. If the change-team-stmt of a10

change-team-construct does not specify a team-construct-name, the corresponding end-change-team-stmt11

shall not specify a team-construct-name.12

C505 (R503) The coarray-name in the codimension-decl shall not be the same as any coselector-name in the13

change-team-stmt .14

C506 (R506) A team-variable shall be of the type TEAM TYPE (5.2).15

C507 (R502) No coselector-name shall appear more than once in a change-team-stmt .16

A coselector shall be established when the CHANGE TEAM statement begins execution.17

The team-variable shall have been defined by execution of a FORM TEAM statement in the team that executes18

the CHANGE TEAM statement or be the value of a team variable for the initial team. The values of the team-19

variables on the images of the team shall be those defined by execution of the same FORM TEAM statement20

on all the images of the team. The current team for the statements of the CHANGE TEAM block is the team21

specified by the value of the team-variable. The current team is not changed by a redefinition of the team variable22

during execution of the CHANGE TEAM construct.23

A codimension-decl in a coarray-association associates a coarray with an established coarray during the execution24

of the block. This coarray is an associating entity (8.1.3.2, 8.1.3.3, 16.5.1.6 of ISO/IEC 1539-1:2010). Its name is25

an associate name that has the scope of the construct. It has the declared type, dynamic type, type parameters,26

rank, and bounds of the coselector. Apart from the final upper cobound, its corank and cobounds are those27

specified in the codimension-decl .28

Within a CHANGE TEAM construct, a coarray that does not appear in a coarray-association has the corank29

and cobounds that it had when it was established.30

An allocatable coarray that was allocated when execution of a CHANGE TEAM construct began shall not be31

deallocated during the execution of the construct. An allocatable coarray that is allocated when execution of32

a CHANGE TEAM construct completes is deallocated if it was not allocated when execution of the construct33

began.34

The CHANGE TEAM and END TEAM statements are image control statements. All nonfailed images of the35

team containing the executing image that is identified by team-variable shall execute the same CHANGE TEAM36

statement. When a CHANGE TEAM statement is executed, there is an implicit synchronization of all nonfailed37

images of the team containing the executing image that is identified by team-variable. On each nonfailed image38

of the team, execution of the segment following the statement is delayed until all the other nonfailed images of39

the team have executed the same statement the same number of times. When a CHANGE TEAM construct40

completes execution, there is an implicit synchronization of all nonfailed images in the current team. On each41

nonfailed image of the team, execution of the segment following the END TEAM statement is delayed until all42

the other nonfailed images of the team have executed the same construct the same number of times.43

10

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

NOTE 5.1

Deallocation of an allocatable coarray that was not allocated at the beginning of a CHANGE TEAM
construct, but is allocated at the end of execution of the construct, occurs even for allocatable coarrays
with the SAVE attribute.

5.4 Image selectors1

The syntax rule R624 image-selector in subclause 6.6 of ISO/IEC 1539-1:2010 is replaced by:2

R624 image-selector is lbracket [team-variable ::] cosubscript-list3

[, TEAM ID = scalar-int-expr] rbracket4

C508 (R624) team-variable and TEAM ID = shall not both appear in the same image-selector .5

If team-variable appears in a coarray designator, it shall be defined with a value that represents an ancestor of6

the current team. The coarray shall be established in that team or an ancestor of that team and the cosubscripts7

determine an image index in that team.8

If TEAM ID = appears in a coarray designator, the scalar-int-expr shall be defined with the value of a team9

identifier for one of the teams that were formed by the execution of the FORM TEAM statement for the current10

team. The coarray shall be established in an ancestor of the current team and the cosubscripts determine an11

image index in the team identified by TEAM ID.12

NOTE 5.2

In the following code, the vector a of length N*P is distributed over P images. Each has an array A(0:N+1)
holding its own values of a and halo values from its two neighbors. The images are divided into two teams
that execute independently but periodically exchange halo data. Before the data exchange, all the images
(of the initial team) must be synchronized and for the data exchange the coindices of the initial team are
needed.

USE, INTRINSIC :: ISO_FORTRAN_ENV

TYPE(TEAM_TYPE) :: INITIAL, BLOCK

REAL :: A(0:N+1)[*]

INTEGER :: ME, P2

CALL GET_TEAM(INITIAL)

ME = THIS_IMAGE()

P2 = NUM_IMAGES()/2

FORM TEAM(1+(ME-1)/P2,BLOCK)

CHANGE TEAM(BLOCK,B[*]=>A)

DO

! Iterate within team

:

! Halo exchange across team boundary

SYNC TEAM(INITIAL)

IF(ME==P2) B(N+1) = A(1)[INITIAL::ME+1]

IF(ME==P2+1) B(0) = A(N)[INITIAL::ME-1]

SYNC TEAM(INITIAL)

END DO

END TEAM

5.5 FORM TEAM statement13

R507 form-team-stmt is FORM TEAM (team-id , team-variable14

[, form-team-spec-list])15

11

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

R508 team-id is scalar-int-expr1

R509 form-team-spec is NEW INDEX = scalar-int-expr2

or sync-stat3

C509 (R507) No specifier shall appear more than once in a form-team-spec-list .4

The FORM TEAM statement defines team-variable for a new team. The value of team-id specifies the new team5

to which the executing image will belong. The value of team-id shall be greater than zero and is the same for all6

images that are members of the same team.7

The value of the scalar-int-expr in a NEW INDEX= specifier specifies the image index that the executing image8

will have in the team specified by team-id . It shall be greater than zero and less than or equal to the number9

of images in the team. Each image with the same value for team-id shall have a different value for the NEW -10

INDEX= specifier. If the NEW INDEX= specifier does not appear, the image index that the executing image11

will have in the team specified by team-id is assigned by the processor.12

The FORM TEAM statement is an image control statement. If the FORM TEAM statement is executed on one13

image, it shall be executed by the same statement on all nonfailed images of the current team. When a FORM14

TEAM statement is executed, there is an implicit synchronization of all nonfailed images in the current team.15

On these images, execution of the segment following the statement is delayed until all other nonfailed images in16

the current team have executed the same statement the same number of times. If an error condition other than17

detection of a failed image occurs, the team variable becomes undefined.18

NOTE 5.3

Executing the statement

FORM TEAM (2-MOD(ME,2), ODD_EVEN)

with ME an integer with value THIS IMAGE() and ODD_EVEN of type TEAM TYPE, divides the current
team into two teams according to whether the image index is even or odd.

NOTE 5.4

When executing on P 2 images with corresponding coarrays on each image representing parts of a larger
array spread over a P by P square, the following code establishes teams for the rows with image indices
equal to the column indices.

USE, INTRINSIC :: ISO_FORTRAN_ENV

TYPE(TEAM_TYPE) :: ROW

REAL :: A[P,*]

INTEGER :: ME(2)

ME(:) = THIS_IMAGE(A)

FORM TEAM(ME(1),ROW,NEW_INDEX=ME(2))

5.6 SYNC TEAM statement19

R510 sync-team-stmt is SYNC TEAM (team-variable [, sync-stat-list])20

The SYNC TEAM statement is an image control statement. The value of team-variable shall have been established21

by execution of a FORM TEAM statement by the current team or an ancestor of the current team, or be the value22

of a team variable for the initial team. The values of the team-variables on the images of the team shall be those23

defined by execution of the same FORM TEAM statement on all the images of the team or shall be the values24

of the team variables for the initial team. Execution of a SYNC TEAM statement performs a synchronization of25

the executing image with each of the other nonfailed images of the team specified by team-variable. Execution on26

an image, M, of the segment following the SYNC TEAM statement is delayed until each nonfailed other image27

of the specified team has executed a SYNC TEAM statement specifying the same team as many times as has28

12

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

image M. The segments that executed before the SYNC TEAM statement on an image precede the segments1

that execute after the SYNC TEAM statement on another image.2

NOTE 5.5

A SYNC TEAM statement performs a synchronization of images of a particular team whereas a SYNC
ALL statement performs a synchronization of all images of the current team.

5.7 FAIL IMAGE statement3

R511 fail-image-stmt is FAIL IMAGE [stop-code]4

Execution of a FAIL IMAGE statement causes the executing image to behave as if it has failed. No further5

statements are executed by that image.6

When an image executes a FAIL IMAGE statement, its stop code, if any, is made available in a processor-7

dependent manner.8

NOTE 5.6

The FAIL IMAGE statement allows a program to test a recovery algorithm without experiencing an actual
failure.

On a processor that does not have the ability to detect that an image has failed, execution of a FAIL
IMAGE statement might provide a simulated failure environment that provides debug information.

In a piece of code that executes about once a second, invoking this subroutine on an image

SUBROUTINE FAIL

REAL :: X

CALL RANDOM_NUMBER(X)

IF (X<0.001) FAIL IMAGE "Subroutine FAIL called"

END SUBROUTINE FAIL

will randomly cause that image to have an independent 1/1000 chance of failure every second.

5.8 STAT FAILED IMAGE9

If the processor has the ability to detect that an image has failed, the value of the default integer scalar constant10

STAT FAILED IMAGE is positive and different from the value of STAT STOPPED IMAGE, STAT LOCKED,11

STAT LOCKED OTHER IMAGE, or STAT UNLOCKED; otherwise, the value of STAT FAILED IMAGE is12

negative. If the processor has the ability to detect that an image of the current team has failed and does so, the13

value of STAT FAILED IMAGE is assigned to the variable specified in a STAT=specifier in an execution of an14

image control statement, or the STAT argument in an invocation of a collective procedure. A failed image is one15

for which references or definitions of a variable on the image fail when that variable should be accessible, or the16

image fails to respond during the execution of an image control statement or a reference to a collective subroutine.17

A failed image remains failed for the remainder of the program execution. If more than one nonzero status value18

is valid for the execution of a statement, the status variable is defined with a value other than STAT FAILED -19

IMAGE. The conditions that cause an image to fail are processor dependent. STAT FAILED IMAGE is defined20

in the intrinsic module ISO FORTRAN ENV.21

NOTE 5.7

A failed image is usually associated with a hardware failure of the processor, memory system, or intercon-
nection network. A failure that occurs while a coindexed reference or definition, or collective action, is in
progress may leave variables on other images that would be defined by that action in an undefined state.
Similarly, failure while using a file may leave that file in an undefined state. A failure on one image may
cause other images to fail for that reason.

13

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

NOTE 5.8

Continued execution after the failure of image 1 might be difficult because of the lost connection to standard
input. However, the likelihood of a given image failing is small. With a large number of images, the likelihood
of some image other than image 1 failing is significant and it is for this circumstance that STAT FAILED -
IMAGE is designed.

14

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

6 Events1

6.1 Introduction2

An image can post an event to notify another image that it can proceed to work on tasks that use common3

resources. An image can wait on events posted by other images and can query if images have posted events.4

6.2 EVENT TYPE5

EVENT TYPE is a derived type with private components. It is an extensible type with no type parameters. Each6

component is fully default initialized. EVENT TYPE is defined in the intrinsic module ISO FORTRAN ENV .7

A scalar variable of type EVENT TYPE is an event variable. An event variable has a count that is updated by8

execution of a sequence of EVENT POST or EVENT WAIT statements. The effect of each change is as if it9

occurred instantaneously, without any overlap with another change. A coarray that is of type EVENT TYPE10

may be referenced or defined during the execution of a segment that is unordered relative to the execution of11

another segment in which that coarray of type EVENT TYPE is defined. The initial value of the event count of12

an event variable is zero. The processor shall support a maximum value of the event count of at least HUGE(0).13

C601 A named variable of type EVENT TYPE shall be a coarray. A named variable with a noncoarray14

subcomponent of type EVENT TYPE shall be a coarray.15

C602 An event variable shall not appear in a variable definition context except as the event-variable in an16

EVENT POST or EVENT WAIT statement, as an allocate-object in an ALLOCATE statement without17

a SOURCE= alloc-opt , as an allocate-object in a DEALLOCATE statement, or as an actual argument18

in a reference to a procedure with an explicit interface where the corresponding dummy argument has19

INTENT (INOUT).20

C603 A variable with a subobject of type EVENT TYPE shall not appear in a variable definition context21

except as an allocate-object in an ALLOCATE statement without a SOURCE= alloc-opt , as an allocate-22

object in a DEALLOCATE statement, or as an actual argument in a reference to a procedure with an23

explicit interface where the corresponding dummy argument has INTENT (INOUT).24

6.3 EVENT POST statement25

The EVENT POST statement provides a way to post an event. It is an image control statement.26

R601 event-post-stmt is EVENT POST(event-variable [, sync-stat-list])27

R602 event-variable is scalar-variable28

C604 (R602) An event-variable shall be of the type EVENT TYPE (6.2).29

Successful execution of an EVENT POST statement increments the count of the event variable by 1. If an error30

condition occurs during the execution of an EVENT POST statement, the count does not change.31

If the segment that precedes an EVENT POST statement is unordered with respect to the segment that precedes32

another EVENT POST statement for the same event variable, the order of execution of the EVENT POST33

statements is processor dependent.34

15

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

NOTE 6.1

It is expected that an image will continue executing after posting an event without waiting for an EVENT
WAIT statement to execute on the image of the event variable.

6.4 EVENT WAIT statement1

The EVENT WAIT statement provides a way to wait until an event is posted. It is an image control statement.2

R603 event-wait-stmt is EVENT WAIT(event-variable [, wait-spec-list])3

R604 wait-spec is UNTIL COUNT = scalar-int-expr4

or sync-stat5

C605 (R603) An event-variable in an event-wait-stmt shall not be coindexed.6

Execution of an EVENT WAIT statement causes the following sequence of actions:7

(1) the threshold of its event argument is set to UNTIL COUNT if this specifier is provided with a8

positive value, and to 1 otherwise,9

(2) the executing image waits until the count of the event variable is greater than or equal to its threshold10

value or an error condition occurs, and11

(3) if no error condition occurs, the event count is decreased by its threshold value.12

If the count of an event variable increases because of the execution of an EVENT POST statement on image M13

and later in the sequence decreases because of the execution of an EVENT WAIT statement on image T, the14

segments preceding the EVENT POST statement on image M precede the segments following the EVENT WAIT15

statement on image T.16

NOTE 6.2

The segment that follows the execution of an EVENT WAIT statement is ordered with respect to all the
segments that precede EVENT POST statements that caused prior changes in the sequence of values of
the event variable.

NOTE 6.3

Event variables of type EVENT TYPE are restricted so that EVENT WAIT statements can only wait on
an event variable on the executing image. This enables more efficient implementation of this concept.

16

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

7 Intrinsic procedures1

7.1 General2

Detailed specifications of the generic intrinsic procedures ATOMIC ADD, ATOMIC AND, ATOMIC CAS,3

ATOMIC OR, ATOMIC XOR, CO BROADCAST, CO MAX, CO MIN, CO REDUCE, CO SUM,4

EVENT QUERY, FAILED IMAGES, GET TEAM, TEAM DEPTH, and TEAM ID are provided in 7.4. The5

types and type parameters of the arguments to these intrinsic procedures are determined by these specifications.6

The “Argument” paragraphs specify requirements on the actual arguments of the procedures. All of these intrinsic7

procedures are pure.8

The intrinsic procedures MOVE ALLOC, NUM IMAGES, and THIS IMAGE described in clause 13 of ISO/IEC9

1539-1:2010 are extended as described in 7.5.10

7.2 Atomic subroutines11

An atomic subroutine is an intrinsic subroutine that performs an action on its ATOM argument atomically. The12

effect of executing atomic subroutines in unordered segments on a single atomic object is as if the subroutines were13

executed in some processor-dependent serial order, with none of the accesses to that object in any one subroutine14

execution interleaving with those in any other. The sequence of atomic actions within ordered segments is15

specified in 2.3.5 of ISO/IEC 1539-1:2010. For invocation of an atomic subroutine with an argument OLD, the16

determination of the value to be assigned to OLD is part of the atomic operation even though the assignment17

of that value to OLD is not. For invocation of an atomic subroutine, evaluation of an INTENT(IN) argument is18

not part of the atomic action.19

This Technical Specification does not specify a formal data consistency model for atomic references. Developing20

a formal data consistency model is left until the integration of these facilities into ISO/IEC 1539-1.21

7.3 Collective subroutines22

A collective subroutine is one that is invoked on each nonfailed image of the current team to perform a calculation23

on those images and that assigns the computed value on one or all of them. If it is invoked by one image, it shall24

be invoked by the same statement on all nonfailed images of the current team in execution segments that are not25

ordered with respect to each other. From the beginning to the end of execution as the current team, the sequence26

of invocations of collective subroutines shall be the same on all nonfailed images of the current team. A call to a27

collective subroutine shall appear only in a context that allows an image control statement.28

If the SOURCE or RESULT argument to a collective subroutine is a whole coarray the corresponding ultimate29

arguments on all images of the current team shall be corresponding coarrays as described in 2.4.7 of ISO/IEC30

1539-1:2010.31

Collective subroutines have the optional arguments STAT and ERRMSG. If the STAT argument is present in the32

invocation on one image it shall be present on the corresponding invocations on all of the images of the current33

team.34

If the STAT argument is present in an invocation of a collective subroutine and its execution is successful, the35

argument is assigned the value zero.36

If the STAT argument is present in an invocation of a collective subroutine and an error condition occurs, the37

argument is assigned a nonzero value, the RESULT argument becomes undefined if it is present, or the SOURCE38

argument becomes undefined otherwise. If execution involves synchronization with an image that has stopped,39

17

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

the argument is assigned the value of STAT STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV;1

otherwise, if no image of the current team has stopped or failed, the argument is assigned a processor-dependent2

positive value that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the3

intrinsic module ISO FORTRAN ENV. If an image of the current team has been detected as failed, but no other4

error condition occurred, the argument is assigned the value of the constant STAT FAILED IMAGE.5

If a condition occurs that would assign a nonzero value to a STAT argument but the STAT argument is not6

present, error termination is initiated.7

If an ERRMSG argument is present in an invocation of a collective subroutine and an error condition occurs8

during its execution, the processor shall assign an explanatory message to the argument. If no such condition9

occurs, the processor shall not change the value of the argument.10

NOTE 7.1

SOURCE becomes undefined in the event of an error condition for a collective with RESULT not present
because it is intended that implementations be able to use SOURCE as scratch space.

NOTE 7.2

There is no separate synchronization at the beginning and end of an invocation of a collective procedure,
which allows overlap with other actions. However, each collective involves transfer of data between images.
The rules of Fortran do not allow the value of an associated argument such as SOURCE to be changed
except via the argument. This includes action taken by another image that has not started its execution of
the collective or has finished it. This restriction has the effect of a partial synchronization of invocations of
a collective.

7.4 New intrinsic procedures11

7.4.1 ATOMIC ADD (ATOM, VALUE) or ATOMIC ADD (ATOM, VALUE, OLD)12

Description. Atomic add operation.13

Class. Atomic subroutine.14

Arguments.15

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,16

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It is17

an INTENT (INOUT) argument. ATOM becomes defined with the value of ATOM + INT(VALUE,18

ATOMIC INT KIND).19

VALUE shall be scalar and of type integer. It is an INTENT (IN) argument.20

OLD shall be a scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. It21

is defined with the value of ATOM that was used for performing the ADD operation.22

Examples.23

CALL ATOMIC ADD(I[3], 42) causes the value of I on image 3 to become its previous value plus 42.24

CALL ATOMIC ADD(M[4], N, ORIG) causes the value of M on image 4 to become its previous value plus the25

value of N on this image. ORIG is defined with 99 if the previous value of M was 99 on image 4.26

7.4.2 ATOMIC AND (ATOM, VALUE) or ATOMIC AND (ATOM, VALUE, OLD)27

Description. Atomic bitwise AND operation.28

Class. Atomic subroutine.29

18

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

Arguments.1

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,2

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It3

is an INTENT (INOUT) argument. ATOM becomes defined with the value IAND (ATOM, INT (4

VALUE, ATOMIC INT KIND)).5

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.6

OLD shall be a scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. It7

is defined with the value of ATOM that was used for performing the bitwise AND operation.8

Example. CALL ATOMIC AND (I[3], 6, IOLD) causes I on image 3 to become defined with the value 4 and9

the value of IOLD on the image executing the statement to be defined with the value 5 if the value of I[3] was 510

when the bitwise AND operation executed.11

7.4.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW)12

Description. Atomic compare and swap.13

Class. Atomic subroutine.14

Arguments.15

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND or of16

type logical with kind ATOMIC LOGICAL KIND, where ATOMIC INT KIND and ATOMIC LO-17

GICAL KIND are named constants in the intrinsic module ISO FORTRAN ENV. It is an INTENT18

(INOUT) argument. If the value of ATOM is equal to the value of COMPARE, ATOM becomes19

defined with the value of INT (NEW, ATOMIC INT KIND) if it is of type integer, and with the20

value of NEW if it is of type logical. If the value of ATOM is not equal to the value of COMPARE,21

the value of ATOM is not changed.22

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. It is23

defined with the value of ATOM that was used for performing the compare operation.24

COMPARE shall be scalar and of the same type and kind as ATOM. It is an INTENT(IN) argument.25

NEW shall be scalar and of the same type as ATOM. It is an INTENT(IN) argument.26

Example. CALL ATOMIC CAS(I[3], OLD, Z, 1) causes I on image 3 to become defined with the value 1 if27

its value is that of Z, and OLD to be defined with the value of I on image 3 that was used for performing the28

compare and swap operation.29

7.4.4 ATOMIC OR (ATOM, VALUE) or ATOMIC OR (ATOM, VALUE, OLD)30

Description. Atomic bitwise OR operation.31

Class. Atomic subroutine.32

Arguments.33

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,34

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It35

is an INTENT (INOUT) argument. ATOM becomes defined with the value IOR (ATOM, INT (36

VALUE, ATOMIC INT KIND)).37

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.38

OLD shall be a scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. It39

is defined with the value of ATOM that was used for performing the bitwise OR operation.40

Example. CALL ATOMIC OR (I[3], 1, IOLD) causes I on image 3 to become defined with the value 3 and41

the value of IOLD on the image executing the statement to be defined with the value 2 if the value of I[3] was 242

when the bitwise OR operation executed.43

19

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

7.4.5 ATOMIC XOR (ATOM, VALUE) or ATOMIC XOR (ATOM, VALUE, OLD)1

Description. Atomic bitwise exclusive OR operation.2

Class. Atomic subroutine.3

Arguments.4

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,5

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It6

is an INTENT (INOUT) argument. ATOM becomes defined with the value IEOR (ATOM, INT (7

VALUE, ATOMIC INT KIND)).8

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.9

OLD shall be a scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. It is10

defined with the value of ATOM that was used for performing the bitwise exclusive OR operation.11

Example. CALL ATOMIC XOR (I[3], 1, IOLD) causes I on image 3 to become defined with the value 2 and12

the value of IOLD on the image executing the statement to be defined with the value 3 if the value of I[3] was 313

when the bitwise exclusive OR operation executed.14

7.4.6 CO BROADCAST (SOURCE, SOURCE IMAGE [, STAT, ERRMSG])15

Description. Copy a value to all images of the current team.16

Class. Collective subroutine.17

Arguments.18

SOURCE shall have the same type and type parameters on all images of the current team. If it is an array,19

it shall have the same shape on all images of the current team. SOURCE becomes defined, as if20

by intrinsic assignment, on all images of the current team with the value of SOURCE on image21

SOURCE IMAGE.22

SOURCE IMAGE shall be a scalar of type integer. It is an INTENT(IN) argument. It shall be the image index23

of an image of the current team and have the same value on all images of the current team.24

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.25

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.26

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.27

Example. If SOURCE is the array [1, 5, 3] on image one, after execution of CALL CO BROADCAST(SOURCE,1)28

the value of SOURCE on all images of the current team is [1, 5, 3].29

7.4.7 CO MAX (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])30

Description. Compute elemental maximum value on the current team of images.31

Class. Collective subroutine.32

Arguments.33

SOURCE shall be of type integer, real, or character. It shall have the same type and type parameters on all34

images of the current team. If it is a scalar, the computed value is equal to the maximum value of35

SOURCE on all images of the current team. If it is an array it shall have the same shape on all36

images of the current team and each element of the computed value is equal to the maximum value37

of all the corresponding elements of SOURCE on the images of the current team.38

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)39

argument. If RESULT is present it shall be present on all images of the current team.40

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it41

20

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

shall be present on all images of the current team, have the same value on all images of the current1

team, and that value shall be the image index of an image of the current team.2

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.3

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.4

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images5

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to6

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.7

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all8

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to9

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.10

If RESULT is present, SOURCE is not modified.11

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.12

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image13

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO MAX(SOURCE,14

RESULT) is [4, 5, 6] on both images.15

7.4.8 CO MIN (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])16

Description. Compute elemental minimum value on the current team of images.17

Class. Collective subroutine.18

Arguments.19

SOURCE shall be of type integer, real, or character. It shall have the same type and type parameters on all20

images of the current team. If it is a scalar, the computed value is equal to the minimum value of21

SOURCE on all images of the current team. If it is an array it shall have the same shape on all22

images of the current team and each element of the computed value is equal to the minimum value23

of all the corresponding elements of SOURCE on the images of the current team.24

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)25

argument. If RESULT is present it shall be present on all images of the current team.26

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it27

shall be present on all images of the current team, have the same value on all images of the current28

team, and that value shall be the image index of an image of the current team.29

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.30

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.31

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images32

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to33

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.34

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all35

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to36

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.37

If RESULT is present, SOURCE is not modified.38

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.39

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image40

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO MIN(SOURCE,41

RESULT) is [1, 1, 3] on both images.42

21

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

7.4.9 CO REDUCE (SOURCE, OPERATOR [, RESULT, RESULT IMAGE, STAT, ER-1

RMSG])2

Description. General reduction of elements on the current team of images.3

Class. Collective subroutine.4

Arguments.5

SOURCE shall not be polymorphic. It shall have the same type and type parameters on all images of the6

current team. If SOURCE is a scalar, the computed value is the result of the reduction operation7

of applying OPERATOR to the values of SOURCE on all images of the current team. If SOURCE8

is an array it shall have the same shape on all images of the current team and each element of the9

computed value is equal to the result of the reduction operation of applying OPERATOR to all the10

corresponding elements of SOURCE on all the images of the current team.11

OPERATOR shall be a pure function with two arguments of the same type and type parameters as SOURCE. Its12

result shall have the same type and type parameters as SOURCE. The arguments and result shall13

not be polymorphic. OPERATOR shall implement a mathematically commutative and associative14

operation. OPERATOR shall implement the same function on all images of the current team.15

RESULT (optional) shall not be polymorphic. It shall be of the same type, type parameters, and shape as16

SOURCE. It is an INTENT(OUT) argument. If RESULT is present it shall be present on all17

images of the current team.18

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it19

shall be present on all images of the current team, have the same value on all images of the current20

team, and that value shall be the image index of an image of the current team.21

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.22

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.23

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all images of24

the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to25

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.26

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all27

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to28

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.29

If RESULT is present, SOURCE is not modified.30

The computed value of a reduction operation over a set of values is the result of an iterative process. Each31

iteration involves the execution of r = OPERATOR(x,y) for x and y in the set, the removal of x and y from the32

set, and the addition of r to the set. The process terminates when the set has only one element which is the value33

of the reduction.34

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.35

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image36

and [4, 1, 6] on the other image, and MyADD is a function that returns the sum of its two integer arguments,37

the value of RESULT after executing the statement CALL CO REDUCE(SOURCE, MyADD, RESULT) is [5,38

6, 9] on both images.39

7.4.10 CO SUM (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])40

Description. Sum elements on the current team of images.41

Class. Collective subroutine.42

Arguments.43

SOURCE shall be of numeric type. It shall have the same type and type parameters on all images of the44

22

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

current team. If it is a scalar, the computed value is equal to a processor-dependent and image-1

dependent approximation to the sum of the values of SOURCE on all images of the current team.2

If it is an array it shall have the same shape on all images of the current team and each element of3

the computed value is equal to a processor-dependent and image-dependent approximation to the4

sum of all the corresponding elements of SOURCE on the images of the current team.5

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)6

argument. If RESULT is present it shall be present on all images of the current team.7

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it8

shall be present on all images of the current team, have the same value on all images of the current9

team, and that value shall be the image index of an image of the current team.10

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.11

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.12

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images13

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to14

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.15

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all16

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to17

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.18

If RESULT is present, SOURCE is not modified.19

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.20

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image21

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO SUM(SOURCE,22

RESULT) is [5, 6, 9] on both images.23

7.4.11 EVENT QUERY (EVENT, COUNT [, STAT, ERRMSG])24

Description. Query the count of an event variable.25

Class. Subroutine.26

Arguments.27

EVENT shall be scalar and of type EVENT TYPE defined in the ISO FORTRAN ENV intrinsic module.28

It is an INTENT(IN) argument.29

COUNT shall be scalar and of type integer with a decimal range no smaller that that of default integer. It30

is an INTENT(OUT) argument. If no error conditions occurs, COUNT is assigned the value of31

the number of successful posts minus the number of successful waits for EVENT. Otherwise, it is32

assigned the value 0.33

STAT (optional) shall be scalar and of type default integer. It is an INTENT(OUT) argument. It is assigned34

the value 0 if no error condition occurs and a processor-defined positive value if an error condition35

occurs.36

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.37

If the ERRMSG argument is present and an error condition occurs, the processor shall assign an explanatory38

message to the argument. If no such condition occurs, the processor shall not change the value of the argument.39

Example. If EVENT is an event variable for which there have been no successful posts or waits, after the40

invocation41

CALL EVENT_QUERY (EVENT, COUNT)42

the integer variable COUNT has the value 0. If there have been 10 successful posts to EVENT[2] and 2 successful43

waits without an UNTIL COUNT specification, after the invocation44

23

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

CALL EVENT_QUERY (EVENT[2], COUNT)1

COUNT has the value 8.2

NOTE 7.3

Execution of EVENT QUERY does not imply any synchronization.

7.4.12 FAILED IMAGES ([TEAM, KIND])3

Description. Indices of failed images.4

Class. Transformational function.5

Arguments.6

TEAM (optional) shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic7

module. Its value shall represent an ancestor team.8

KIND (optional) shall be a scalar integer constant expression. Its value shall be the value of a kind type parameter9

for the type INTEGER. The range for integers of this kind shall be at least as large as for default10

integer.11

Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value12

of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one13

whose size is equal to the number of failed images in the specified team.14

Result Value. If TEAM is present, its value specifies the team; otherwise, the team specified is the current15

team. The elements of the result are the values of the image indices of the failed images in the specified team, in16

numerically increasing order.17

Examples. If image 3 is the only failed image in the current team, FAILED IMAGES() has the value [3]. If18

there are no failed images in the current team, FAILED IMAGES() is a zero-sized array.19

7.4.13 GET TEAM (TEAM VAR [,DISTANCE])20

Description. Define TEAM VAR with team value.21

Class. Subroutine.22

Arguments.23

TEAM VAR shall be scalar and of type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic module. It24

is an INTENT(OUT) argument. It shall not be the team variable of the current team, nor of any25

of its ancestors.26

DISTANCE (optional) shall be scalar nonnegative integer. It is an INTENT(IN) argument.27

If DISTANCE is not present, TEAM VAR is defined with the value of a team variable of the current team. If28

DISTANCE is present with a value less than or equal to the team distance between the current team and the29

initial team, TEAM VAR is defined with the value of a team variable of the ancestor team at that distance.30

Otherwise TEAM VAR is defined with the value of a team variable for the initial team.31

Examples.32

USE,INTRINSIC :: ISO_FORTRAN_ENV33

TYPE(TEAM_TYPE) :: WORLD_TEAM, TEAM234

35

! Define a team variable representing the initial team36

CALL GET_TEAM(WORLD_TEAM)37

END38

24

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

1

SUBROUTINE TT (A)2

USE,INTRINSIC :: ISO_FORTRAN_ENV3

REAL A[*]4

TYPE(TEAM_TYPE) :: NEW_TEAM, PARENT_TEAM5

6

... ! Form NEW_TEAM7

8

CALL GET_TEAM(PARENT_TEAM)9

10

CHANGE TEAM(NEW_TEAM)11

12

! Reference image 1 in parent’s team13

A [PARENT_TEAM :: 1] = 4.214

15

! Reference image 1 in current team16

A [1] = 9.017

END TEAM18

END SUBROUTINE TT19

20

7.4.14 TEAM DEPTH()21

Description. Team depth for the current team.22

Class. Transformational function.23

Arguments. None.24

Result Characteristics. Scalar default integer.25

Result Value. The result of TEAM DEPTH is an integer with a value equal to the team distance between the26

current team and the initial team.27

Example.28

PROGRAM TD29

USE,INTRINSIC :: ISO_FORTRAN_ENV30

INTEGER :: I_TEAM_DEPTH31

TYPE(TEAM_TYPE) :: TEAM32

33

FORM TEAM(1, TEAM)34

CHANGE TEAM(TEAM)35

I_TEAM_DEPTH = TEAM_DEPTH()36

END TEAM37

END38

On completion of the CHANGE TEAM construct, I TEAM DEPTH has the value 1.39

7.4.15 TEAM ID ([DISTANCE])40

Description. Team identifier.41

Class. Transformational function.42

Argument. DISTANCE (optional) shall be a scalar nonnegative integer.43

25

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

Result Characteristics. Default integer scalar.1

Result Value. If DISTANCE is not present, the result value is the team identifier of the invoking image in the2

current team. If DISTANCE is present with a value less than or equal to the team distance between the current3

team and the initial team, the result has the value of the team identifier that the invoking image had when it4

was a member of the team with a team distance of DISTANCE from the current team. Otherwise, the result has5

the value 1.6

Example. The following code illustrates the use of TEAM ID to control which code is executed.7

TYPE(TEAM_TYPE) :: ODD_EVEN8

:9

ME = THIS_IMAGE()10

FORM TEAM (2-MOD(ME,2), ODD_EVEN)11

CHANGE TEAM (ODD_EVEN)12

SELECT CASE (TEAM_ID())13

CASE (1)14

: ! Code for odd images in parent team15

CASE (2)16

: ! Code for even images in parent team17

END SELECT18

END TEAM19

7.5 Modified intrinsic procedures20

7.5.1 MOVE ALLOC21

The description of the intrinsic function MOVE ALLOC in ISO/IEC 1539-1:2010, as modified by ISO/IEC22

1539-1:2010/Cor 2:2013, is changed to take account of the possibility of failed images and to add two optional23

arguments, STAT and ERRMSG, and a modified result if either is present.24

The STAT argument shall be a scalar of type default integer. It is an INTENT(OUT) argument.25

The ERRMSG argument shall be a scalar of type default character. It is an INTENT(INOUT) argument.26

If the execution is successful27

(1) The allocation status of TO becomes unallocated if FROM is unallocated on entry to MOVE -28

ALLOC. Otherwise, TO becomes allocated with dynamic type, type parameters, array bounds,29

array cobounds, and value identical to those that FROM had on entry to MOVE ALLOC.30

(2) If TO has the TARGET attribute, any pointer associated with FROM on entry to MOVE ALLOC31

becomes correspondingly associated with TO. If TO does not have the TARGET attribute, the32

pointer association status of any pointer associated with FROM on entry becomes undefined.33

(3) The allocation status of FROM becomes unallocated.34

When a reference to MOVE ALLOC is executed for which the FROM argument is a coarray, there is an implicit35

synchronization of all nonfailed images of the current team. On each nonfailed image, execution of the segment36

(8.5.2 of ISO/IEC 1539-1:2010) following the CALL statement is delayed until all other nonfailed images of the37

current team have executed the same statement the same number of times.38

If the STAT argument is present and execution is successful, the argument is assigned the value zero.39

If the STAT argument is present and an error condition occurs, the argument is assigned a nonzero value.40

The value shall be that of the constant STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV41

if the reason is that a failed image has been detected in the current team; otherwise, the value shall be that42

of the constant STAT STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV if the reason is that a43

successful execution would have involved an interaction with an image that has initiated termination; otherwise,44

26

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

the value is a processor-dependent positive value that is different from the value of STAT STOPPED IMAGE or1

STAT FAILED IMAGE.2

If the ERRMSG argument is present and an error condition occurs, the processor shall assign an explanatory3

message to the argument. If no such condition occurs, the processor shall not change the value of the argument.4

7.5.2 NUM IMAGES5

The description of the intrinsic function NUM IMAGES in ISO/IEC 1539-1:2010 is changed by adding two6

optional arguments DISTANCE and FAILED and a modified result if either is present.7

The DISTANCE argument shall be a nonnegative scalar integer. If DISTANCE is not present the team specified8

is the current team. If DISTANCE is present with a value less than or equal to the team distance between the9

current team and the initial team, the team specified is the team of which the invoking image was a member with10

a team distance of DISTANCE from the current team; otherwise, the team specified is the initial team.11

The FAILED argument shall be a scalar of type LOGICAL. If FAILED is not present the result is the number of12

images in the team specified. If FAILED is present with the value true, the result is the number of failed images13

in the team specified, otherwise the result is the number of nonfailed images in the team specified.14

7.5.3 THIS IMAGE15

The description of the intrinsic function THIS IMAGE() in ISO/IEC 1539-1:2010 is changed by adding an16

optional argument DISTANCE and a modified result if DISTANCE is present.17

The DISTANCE argument shall be a scalar integer. It shall be nonnegative. If DISTANCE is not present, the18

result value is the image index of the invoking image in the current team. If DISTANCE is present with a value19

less than or equal to the team distance between the current team and the initial team, the result has the value of20

the image index of the invoking image in the ancestor team with a team distance of DISTANCE from the current21

team; otherwise, the result has the value of the image index that the invoking image had in the initial team.22

27

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

1

(Blank page)2

3

28

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

8 Required editorial changes to ISO/IEC 1539-1:2010(E)1

8.1 General2

The following editorial changes, if implemented, would provide the facilities described in foregoing clauses of this3

Technical Specification. Descriptions of how and where to place the new material are enclosed in braces {}. Edits4

to different places within the same clause are separated by horizontal lines.5

In the edits, except as specified otherwise by the editorial instructions, underwave (
:::::::::
underwave) and strike-out6

(strike-out) are used to indicate insertion and deletion of text.7

8.2 Edits to Introduction8

Include clauses a needed.9

{In paragraph 1 of the Introduction}10

After “informally known as Fortran 2008, plus the facilities defined in ISO/IEC TS 29113:2012” add “and ISO/IEC11

TS 18508:2014”.12

{After paragraph 3 of the Introduction and after the paragraph added by ISO/IEC TS 29113:2012, insert new13

paragraph}14

ISO/IEC TS 18508 provides additional facilities for parallel programming:15

• teams provide a capability for a subset of the images of the program to act as if it consists of all images for the16

purposes of image index values, coarray allocations, and synchronization.17

• collective subroutines perform computations based on values on all the images of the current team, offering the18

possibility of efficient execution of reduction operations;19

• atomic memory operations provide powerful low-level primitives for synchronization of activities among images20

and performing limited remote computation;21

• tagged events allow one-sided ordering of execution segments;22

• features for the support of continued execution after one or more images have failed; and23

• features to detect which images have failed and simulate failure of an image.24

8.3 Edits to clause 125

{In 1.3 Terms and definitions, insert new terms as follows}26

1.3.30a27

collective subroutine28

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and29

assign the computed value on one or all of them (13.1)30

1.3.85a31

failed image32

an image for which references or definitions of a variable on the image fail when that variable should be accessible,33

or the image fails to respond during the execution of an image control statement or a reference to a collective34

29

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

subroutine (13.8.2.21b)1

1.3.145a2

team3

set of images that can readily execute independently of other images (2.3.4)4

1.3.145a.15

current team6

the team specified in the CHANGE TEAM statement of the innermost executing CHANGE TEAM construct,7

or the initial team if no CHANGE TEAM construct is active (2.3.4)8

1.3.145a.29

initial team10

the current team when the program began execution (2.3.4)11

1.3.145a.312

parent team13

team from which the current team was formed by executing a FORM TEAM statement (2.3.4)14

1.3.145a.415

team identifier16

integer value identifying a team (2.3.4)17

1.3.145a.518

team distance19

the distance between a team and one of its ancestors (2.3.4)20

1.3.154.1-21

event variable22

scalar variable of type EVENT TYPE (13.8.2.8a) from the intrinsic module ISO FORTRAN ENV23

1.3.154.324

team variable25

scalar variable of type TEAM TYPE (13.8.2.26) from the intrinsic module ISO FORTRAN ENV26

8.4 Edits to clause 227

{In 2.1 High level syntax, Add new construct and statements into the syntax list as follows: In R213 executable-28

construct insert alphabetically “change-team-construct”; in R214 action-stmt insert alphabetically “event-post-29

stmt”, “event-wait-stmt”, “fail-image-stmt”, “form-team-stmt”, and “sync-team-stmt”.30

{In 2.3.4 Program execution, after the first paragraph, insert 5.1, paragraphs 1 through 3, of this Technical31

Specification with the following changes: In the first paragraph delete “in ISO/IEC 1539-1:2010” following “R624”32

and insert “(8.5.2c)” following “FORM TEAM statement”. In the third paragraph insert “(8.1.4a)” following33

“CHANGE TEAM construct”. }34

{In 2.4.7 Coarray, after the first paragraph, insert 5.1 paragraph 4 of this Technical Specification.}35

{In 2.4.7 Coarray, edit the second paragraph as follows.}36

For each coarray on an image
:
of

::
a
:::::
team, there is a corresponding coarray with the same type, type parameters,37

and bounds on every other image
::
of

::::
that

:::::
team.38

{In 2.4.7 Coarray, edit the first sentence of the third paragraph as follows.}39

The set of corresponding coarrays on all images
::
of

::
a

:::::
team is arranged in a rectangular pattern.40

30

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

{In 2.4.7 Coarray, edit the first sentence of the fourth paragraph as follows.}1

A coarray on any image
:
of

::::
the

:::::::
current

:::::
team can be accessed directly by using cosubscripts.2

8.5 Edits to clause 43

{In 4.5.6.2 The finalization process, add to the end of NOTE 4.48}4

in the current team5

8.6 Edits to clause 66

{In 6.6 Image selectors, replace R624 with}7

R624 image-selector is lbracket [team-variable ::] cosubscript-list8

[, TEAM ID = scalar-int-expr] rbracket9

C627a (R624) team-variable and TEAM ID = shall not both appear in the same image-selector .10

{In 6.6 Image selectors, edit the last sentence of the second paragraph as follows.}11

An image selector shall specify an image index value that is not greater than the number of images
::
in

:::
the

:::::
team12

:::::::
specified

:::
by

:::::::::::::
team-variable

::
or

::
a

:::::::
TEAM

:::
ID

:::::::
specifier

::
if
::::::
either

:::::::
appears

:::
or

::
in

:::
the

:::::::
current

:::::
team

:::::::::
otherwise.13

{In 6.6 Image selectors, after paragraph 2 insert the two paragraphs following C508 in 5.4 of this Technical14

Specification with the following change: following “FORM TEAM statement” insert “(8.5.2c)” }15

{In 6.7.1.2, Execution of an ALLOCATE statement, edit paragraphs 3 and 4 as follows}16

If an allocation specifies a coarray, its dynamic type and the values of corresponding type parameters shall be the17

same on every image
:
in

::::
the

:::::::
current

::::
team. The values of corresponding bounds and corresponding cobounds shall18

be the same on every image
::::
these

:::::::
images. If the coarray is a dummy argument, its ultimate argument (12.5.2.3)19

shall be the same coarray on every image
::::
these

:::::::
images.20

When an ALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit syn-21

chronization of all
:::::::
nonfailed images

:
in

::::
the

:::::::
current

:::::
team. On each image

:::::
these

::::::
images, execution of the segment22

(8.5.2) following the statement is delayed until all other
:::::::
nonfailed images

:
in

::::
the

:::::::
current

:::::
team have executed the23

same statement the same number of times.24

{In 6.7.3.2, Deallocation of allocatable variables, edit paragraphs 11 and 12 as follows}25

When a DEALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit26

synchronization of all
::::::::
nonfailed images

::
in

:::
the

::::::::
current

:::::
team. On each image

::::
these

:::::::
images, execution of the27

segment (8.5.2) following the statement is delayed until all other
::::::::
nonfailed images

::
in

::::
the

:::::::
current

:::::
team have28

executed the same statement the same number of times. If the coarray is a dummy argument, its ultimate29

argument (12.5.2.3) shall be the same coarray on every image
::::
these

:::::::
images.30

There is also an implicit synchronization of all
::::::::
nonfailed images

::
in

:::
the

:::::::
current

::::::
team in association with the31

deallocation of a coarray or coarray subcomponent caused by the execution of a RETURN or END statement or32

the termination of a BLOCK construct.33

{In 6.7.4 STAT= specifier, para 3, replace the text to the bullet list with}34

If the STAT= specifier appears in an ALLOCATE or DEALLOCATE statement with a coarray allocate-object and35

an error condition occurs, the specified variable is assigned a positive value. The value shall be that of the constant36

STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV (13.8.2) if the reason is that a failed image37

has been detected in the current team; otherwise, the value shall be that of the constant STAT STOPPED -38

31

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

IMAGE in the intrinsic module ISO FORTRAN ENV (13.8.2) if the reason is that a successful execution would1

have involved an interaction with an image that has initiated termination; otherwise, the value is a processor-2

dependent positive value that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE3

in the intrinsic module ISO FORTRAN ENV (13.8.2). In all of these cases, each allocate-object has a processor-4

dependent status.5

8.7 Edits to clause 86

{In 8.1.1 General, paragraph 1, following the BLOCK construct entry in the list of constructs insert}7

• CHANGE TEAM construct;8

{Following 8.1.4 BLOCK construct insert 5.3 CHANGE TEAM construct from this Technical Specification as9

8.1.4a, with rule, constraint, and Note numbers modified, the reference “(5.2)” in C506 changed to “(13.8.2.26)”,10

and in the third paragraph following C506, delete “of ISO/IEC 1539-1:2010”. }11

{In 8.1.5 CRITICAL construct: In para 1, line 1, after “one image” add “of the current team”. In para 3, line 1,12

after “other image” add “of the current team”.}13

{Following 8.4 STOP and ERROR STOP statements, insert 5.6 FAIL IMAGE statement from this Technical14

Specification as 8.4a, with rule and Note numbers modified.}15

{In 8.5.1 Image control statements, paragraph 2, insert extra bullet points following the CRITICAL and END16

CRITICAL line}17

• CHANGE TEAM and END TEAM;18

• EVENT POST and EVENT WAIT;19

• FORM TEAM;20

• SYNC TEAM;21

{In 8.5.1 Image control statements, edit paragraph 3 as follows}22

All image control statements except CRITICAL, END CRITICAL,
::::::
FORM

::::::::
TEAM, LOCK, and UNLOCK include23

the effect of executing a SYNC MEMORY statement (8.5.5).24

{In 8.5.2 Segments, after the first sentence of paragraph 3, insert the following }25

A coarray that is of type EVENT TYPE may be referenced or defined during the execution of a segment that is26

unordered relative to the execution of another segment in which that coarray of type EVENT TYPE is defined.27

{Following 8.5.2 Segments insert 6.3 EVENT POST statement from this Technical Specification as 8.5.2a, with28

rule and constraint numbers modified, and change the “(6.2)” in C604 to “(13.8.2.8a)”, and change the “(6.5)”29

at the end of the paragraph of text to “(13.8.2.21a)” }30

{Following 8.5.2 Segments insert 6.4 EVENT WAIT statement from this Technical Specification as 8.5.2b, with31

rule and constraint numbers modified.}32

{Following 8.5.2 Segments insert 5.4 FORM TEAM statement from this Technical Specification as 8.5.2c, with33

rule and Note numbers modified.}34

{In 8.5.3 SYNC ALL statement, edit paragraph 2 as follows}35

Execution of a SYNC ALL statement performs a synchronization of all
::::::::
nonfailed images

::
in

:::
the

:::::::
current

::::::
team.36

32

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

Execution on an image, M, of the segment following the SYNC ALL statement is delayed until each other1

::::::::
nonfailed image

::
in

:::
the

:::::
team has executed a SYNC ALL statement as many times as has image M. The segments2

that executed before the SYNC ALL statement on an image precede the segments that execute after the SYNC3

ALL statement on another image.4

{In 8.5.4 SYNC IMAGES, edit paragraphs 1 through 3 as follows}5

If image-set is an array expression, the value of each element shall be positive and not greater than the number6

of images
::
in

:::
the

:::::::
current

:::::
team, and there shall be no repeated values.7

If image-set is a scalar expression, its value shall be positive and not greater than the number of images
::
in

:::
the8

::::::
current

:::::
team.9

An image-set that is an asterisk specifies all images
::
in

:::
the

:::::::
current

:::::
team.10

{Following 8.5.5 SYNC MEMORY statement, insert 5.5 SYNC TEAM statement from this Technical Specification11

as 8.5.5a, with the rule number modified.}12

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 1 and 2 by}13

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, FORM14

TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement and its15

execution is successful, the specified variable is assigned the value zero.16

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, FORM17

TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement and an18

error condition occurs, the specified variable is assigned a positive value. The value shall be the constant STAT -19

FAILED IMAGE in the intrinsic module ISO FORTRAN ENV (13.8.2) if the reason is that a failed image has20

been detected in the current team; otherwise, the value shall be the constant STAT STOPPED IMAGE in the21

intrinsic module ISO FORTRAN ENV (13.8.2) if the reason is that a successful execution would have involved an22

interaction with an image that has initiated termination; otherwise, the value is a processor-dependent positive23

value that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the intrinsic24

module ISO FORTRAN ENV (13.8.2).25

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, SYNC26

ALL, SYNC IMAGES, or SYNC TEAM statement and an error condition other than detection of a failed image27

occurs, the effect is the same as that of executing the SYNC MEMORY statement, except for defining the STAT=28

variable.29

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 4 and 5 by}30

If the STAT= specifier does not appear in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT,31

FORM TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement32

and its execution is not successful, error termination is initiated.33

If an ERRMSG= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, FORM34

TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement and35

its execution is not successful, the processor shall assign an explanatory message to the specified variable. If the36

execution is successful, the processor shall not change the value of the variable.37

8.8 Edits to clause 1338

{In 13.1 Classes of intrinsic procedures, edit paragraph 1 as follows}39

Intrinsic procedures are divided into seven
::::
eight classes: inquiry functions, elemental functions, transformational40

functions, elemental subroutines, pure subroutines, atomic subroutines,
::::::::
collective

:::::::::::
subroutines, and (impure)41

subroutines.42

33

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

{In 13.1 Classes of intrinsic procedures, append the following text to the end of paragraph 3}1

For invocation of an atomic subroutine with an argument OLD, the assignment of the value to OLD is not part2

of the atomic action. For invocation of an atomic subroutine, evaluation of an INTENT(IN) argument is not3

part of the atomic action. If two or more variables are updated by a sequence or atomic memory operations on4

an image, and these changes are observed by atomic accesses from an unordered segment on another image, the5

changes need not be observed on the remote image in the same order as they are made on the local image, even6

if the updates in the local images are made in ordered segments.7

{In 13.1 Classes of intrinsic procedures, insert the contents of 7.3 Collective subroutines of this Technical Specific-8

ation after paragraph 3 and Note 13.1, with these changes: Paragraph 2 of 7.3. Delete “of ISO/IEC 1539-1:2010”9

Paragraph 5 of 7.3. Add “(13.8.2)” after “ISO FORTRAN ENV” twice.}10

{In 13.5 Standard generic intrinsic procedures, paragraph 2 after the line ”A indicates ... atomic subroutine”11

insert a new line}12

C indicates that the procedure is a collective subroutine13

{In 13.5 Standard generic intrinsic procedures, Table 13.1, insert new entries into the table, alphabetically}14

ATOMIC ADD (ATOM, VALUE) or A Atomic ADD operation.
(ATOM, VALUE, OLD)

ATOMIC AND (ATOM, VALUE) or A Atomic bitwise AND operation.
(ATOM, VALUE, OLD)

ATOMIC CAS (ATOM, OLD, COMPARE, A Atomic compare and swap.
NEW)

ATOMIC OR (ATOM, VALUE) or A Atomic bitwise OR operation.
(ATOM, VALUE, OLD)

ATOMIC XOR (ATOM, VALUE) or A Atomic bitwise exclusive OR operation.
(ATOM, VALUE, OLD)

CO BROADCAST (SOURCE, SOURCE IMAGE) C Copy a value to all images of the current team.
CO MAX (SOURCE [, RESULT, C Compute maximum of elements across images.

RESULT IMAGE])
CO MIN (SOURCE [, RESULT, C Compute minimum of elements across images.

RESULT IMAGE])
CO REDUCE (SOURCE, OPERATOR C General reduction of elements across images.

[, RESULT, RESULT IMAGE])
CO SUM (SOURCE [, RESULT, C Sum elements across images.

RESULT IMAGE])
EVENT QUERY (EVENT, COUNT[, STATUS]) S Count of an event.
FAILED IMAGES ([TEAM, KIND]) T Indices of failed images.
GET TEAM (TEAM VAR [, DISTANCE]) S Define TEAM VAR with team value.
TEAM DEPTH () T Team depth for this image.
TEAM ID ([DISTANCE]) T Team identifier.

{In 13.5 Standard generic intrinsic procedures, Table 13.1, edit the entries for MOVE ALLOC, NUM IMAGES,15

and THIS IMAGE as follows}16

MOVE ALLOC (FROM, TO
:
[,

::::::
STAT,

::::::::::
ERRMSG]) PS Move an allocation.17

NUM IMAGES (
::::::::::::
[DISTANCE,

::::::::
FAILED]) T Number of images.18

THIS IMAGE (
::::::::::::
[DISTANCE]) T Index of the invoking image.19

34

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

{In 13.7 Specifications of the standard intrinsic procedures, insert subclauses 7.4.1 through 7.4.15 of this Technical1

Specification in order alphabetically, with subclause numbers adjusted accordingly.}2

{In 13.7.118 MOVE ALLOC, edit the subclause title as follows}3

13.7.118 MOVE ALLOC (FROM, TO
:
[,
:::::::
STAT,

::::::::::
ERRMSG])4

{In 13.7.118 MOVE ALLOC, add the arguments descriptions as follows}5

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.6

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.7

{In 13.7.118 MOVE ALLOC, replace paragraphs 4 through 6 and the paragraph that was added by ISO/IEC8

1539-1:2010/Cor 2:2013 by paragraphs 4 through 8 of 7.5.1 of this Technical Specification, deleting “of ISO/IEC9

1539-1:2010” in paragraph 5.}10

{In 13.7.126 NUM IMAGES, edit the subclause title as follows}11

13.7.126 NUM IMAGES (
:::::::::::
[DISTANCE,

:::::::::
FAILED])12

{In 13.7.126 NUM IMAGES, replace paragraph 3 with}13

Arguments.14

DISTANCE (optional) shall be a nonnegative scalar integer. It is an INTENT(IN) argument.15

FAILED (optional) shall be a scalar of type LOGICAL. Its value determines whether the result is the number of16

failed images or the number of nonfailed images. It is an INTENT(IN) argument.17

{In 13.7.126 NUM IMAGES, replace paragraph 5 with}18

Result Value.19

If DISTANCE is not present, the team specified is the current team. If DISTANCE is present with a value less20

than or equal to the team distance between the current team and the initial team, the team specified is the team21

of which the invoking image was a member with a team distance of DISTANCE from the current team; otherwise,22

the team specified is the initial team.23

If FAILED is not present, the result is the number of images in the team specified. If FAILED is present with24

the value true, the result is the number of failed images in the team specified; otherwise, the result is the number25

of nonfailed images in the team specified.26

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) edit the subclause title as follows }27

13.7.165 THIS IMAGE (
:::::::::::
[DISTANCE]) or THIS IMAGE (COARRAY [, DIM])28

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) insert a new argument at the end of29

paragraph 3 }30

DISTANCE (optional) shall be a scalar integer. It shall be nonnegative. It shall not be a coarray.31

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) replace Case(i): in paragraph 5 with }32

Case (i): If DISTANCE is not present the result value is the image index of the invoking image in the current33

team. If DISTANCE is present with a value less than or equal to the team distance between the34

current team and the initial team, the result has the value of the image index in the team of which35

the invoking image was a member with a team distance of DISTANCE from the current team;36

otherwise, the result has the value of the image index that the invoking image had in the initial37

35

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

team.1

{In 13.7.172 UCOBOUND, edit the Result Value as follows.}2

The final upper cobound is the final cosubscript in the cosubscript list for the coarray that selects the image with3

index NUM IMAGES()
::::
equal

:::
to

:::
the

::::::::
number

::
of

:::::::
images

::
in

:::
the

:::::::
current

:::::
team

:::::
when

::::
the

:::::::
coarray

::::
was

:::::::::::
established.4

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.8a consisting of subclause5

6.2 EVENT TYPE of this Technical Specification, but omitting the final sentence of the first paragraph and the6

fourth sentence of the second paragraph.}7

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.21b consisting of subclause8

5.6 STAT FAILED IMAGE of this Technical Specification, but omitting the final sentence of the paragraph.}9

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, append a new subclause 13.8.2.26 consisting of subclause10

5.2 TEAM TYPE of this Technical Specification, but omitting the final sentence of the first paragraph.}11

8.9 Edits to clause 1612

{In 16.4 Statement and construct entities, add the following new paragraph after paragraph 8}13

The associate names of a CHANGE TEAM construct have the scope of the block. They have the declared type,14

dynamic type, type parameters, rank, and bounds of the corresponding coselector.15

{In 16.5.1.6 Construct association, append the following sentence to the paragraph 1}16

Execution of a CHANGE TEAM statement establishes an association between each coselector and the corres-17

ponding associate name of the construct.18

{At the end of the list of variable definition contexts in 16.6.7 para 1, replace the “.” at the end of entry (15)19

with “;” and add two new entries as follows}20

(16) a team-variable in a FORM TEAM statement;21

(17) an event-variable in an EVENT POST or EVENT WAIT statement.22

8.10 Edits to annex A23

{At the end of A.2 Processor dependencies, replace the final full stop with a semicolon and add new items as24

follows}25

• the conditions that cause an image to fail;26

• the manner in which the stop code of the FAIL IMAGE statement is made available;27

• the computed value of the CO SUM intrinsic subroutine;28

• the computed value of the CO REDUCE intrinsic subroutine;29

• how sequences of event posts in unordered segments interleave with each other;30

• the image index value assigned by a FORM TEAM statement without a NEW INDEX= specifier.31

36

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

8.11 Edits to annex C1

{In C.5 Clause 8 notes, at the end of the subclause insert subcauses A.1.1, A.1.2, A.1.3, A.1.4, A.2.1, and A.2.22

from this Technical Specification as subclauses C.5.5 to C.5.10.}3

{In C.10 Clause 13 notes, at the end of the subclause insert subcauses A.3.1 and A.3.2 from this Technical4

Specification as subclauses C.10.2 and C.10.3.}5

37

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

38

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

Annex A1

(Informative)2

Extended notes3

A.1 Clause 5 notes4

A.1.1 Example using three teams5

Compute fluxes over land, sea and ice in different teams based on surface properties. Assumption: Each image6

deals with areas containing exactly one of the three surface types.7

SUBROUTINE COMPUTE_FLUXES(FLUX_MOM, FLUX_SENS, FLUX_LAT)8

USE,INTRINSIC :: ISO_FORTRAN_ENV9

REAL, INTENT(OUT) :: FLUX_MOM(:,:), FLUX_SENS(:,:), FLUX_LAT(:,:)10

INTEGER, PARAMETER :: LAND=1, SEA=2, ICE=311

CHARACTER(LEN=10) :: SURFACE_TYPE12

INTEGER :: MY_SURFACE_TYPE, N_IMAGE13

TYPE(TEAM_TYPE) :: TEAM_SURFACE_TYPE14

15

CALL GET_SURFACE_TYPE(THIS_IMAGE(), SURFACE_TYPE) ! Surface type16

SELECT CASE (SURFACE_TYPE) ! of the executing image17

CASE (’LAND’)18

MY_SURFACE_TYPE = LAND19

CASE (’SEA’)20

MY_SURFACE_TYPE = SEA21

CASE (’ICE’)22

MY_SURFACE_TYPE = ICE23

CASE DEFAULT24

ERROR STOP25

END SELECT26

FORM TEAM(MY_SURFACE_TYPE, TEAM_SURFACE_TYPE)27

28

CHANGE TEAM(TEAM_SURFACE_TYPE)29

SELECT CASE (TEAM_ID())30

CASE (LAND) ! Compute fluxes over land surface31

CALL COMPUTE_FLUXES_LAND(FLUX_MOM, FLUX_SENS, FLUX_LAT)32

CASE (SEA) ! Compute fluxes over sea surface33

CALL COMPUTE_FLUXES_SEA(FLUX_MOM, FLUX_SENS, FLUX_LAT)34

CASE (ICE) ! Compute fluxes over ice surface35

CALL COMPUTE_FLUXES_ICE(FLUX_MOM, FLUX_SENS, FLUX_LAT)36

CASE DEFAULT37

ERROR STOP38

END SELECT39

END TEAM40

END SUBROUTINE COMPUTE_FLUXES41

A.1.2 Example involving failed images42

Parallel algorithms often use work sharing schemes based on a specific mapping between image indices and global43

data addressing. To allow such programs to continue when one or more images fail, spare images can be used44

39

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

to re-establish execution of the algorithm with the failed images replaced by spare images, while retaining the1

image mapping.2

The following example illustrates how this might be done. In this setup, failure cannot be tolerated for image 13

and the spare images, whose number is assumed to be small compared to the number of active images.4

PROGRAM possibly_recoverable_simulation5

USE, INTRINSIC :: iso_fortran_env6

IMPLICIT NONE7

INTEGER, ALLOCATABLE :: failed_img(:)8

INTEGER :: images_used, i, images_spare, id, me, status9

TYPE(team_type) :: simulation_team10

LOGICAL :: read_checkpoint, done[*]11

12

images_used = ... ! A value slightly less num_images()13

images_spare = num_images() - images_used14

read_checkpoint = this_image() > images_used15

16

setup : DO17

me = this_image()18

id = 119

IF (me > images_used) id = 220

!21

! set up spare images as replacement for failed ones22

failed_img = failed_images()23

if (size(failed_img) > images_spare) ERROR STOP ’cannot recover’24

DO i=1, size(failed_img)25

IF (failed_img(i) > images_used .or. &26

failed_img(i) == 1) ERROR STOP ’cannot recover’27

IF (me == images_used + i) THEN28

me = failed_img(i)29

id = 130

END IF31

END DO32

!33

! set up a simulation team of constant size.34

! id == 2 does not participate in team execution35

FORM TEAM (id, simulation_team, NEW_INDEX=me, STAT=status)36

simulation : CHANGE TEAM (simulation_team, STAT=status)37

IF (TEAM_ID() == 1) THEN38

iter : DO39

CALL simulation_procedure(read_checkpoint, status, done)40

! simulation_procedure:41

! sets up required objects (maybe coarrays)42

! reads checkpoint if requested43

! returns status on its internal synchronizations44

! returns .TRUE. in done once complete45

read_checkpoint = .FALSE.46

IF (status == STAT_FAILED_IMAGE) THEN47

read_checkpoint = .TRUE.48

EXIT simulation49

ELSE IF (done)50

EXIT iter51

END IF52

END DO iter53

END IF54

40

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

END TEAM simulation (STAT=status)1

SYNC ALL (STAT=status)2

IF (this_image() > images_used) done = done[1]3

IF (done) EXIT setup4

END DO setup5

END PROGRAM possibly_recoverable_simulation6

Supporting fail-safe execution imposes obligations on library writers who use the parallel language facilities. Every7

synchronization statement, allocation or deallocation of coarrays, or invocation of a collective procedure must8

specify a synchronization status variable, and implicit deallocation of coarrays must be avoided. In particular,9

coarray module variables that are allocated inside the team execution context are not persistent.10

A.1.3 Accessing coarrays in sibling teams11

The following program shows the subdivision of a 4 x 4 grid into 2 x 2 teams and addressing of sibling teams.12

PROGRAM DEMO13

! Initial team : 16 images. Algorithm design is a 4 x 4 grid.14

! Desire 4 teams, for the upper left (UL), upper right (UR),15

! Lower left (LL), lower right (LR)16

USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: team_type17

TYPE (team_type) :: t18

INTEGER,PARAMETER :: UL=11, UR=22, LL=33, LR=4419

REAL :: A(10,10)[4,*]20

INTEGER :: mype, teamid, newpe21

INTEGER :: UL_image_list(4) = [1, 2, 5, 6], &22

LL_image_list(4) = UL_image_list + 2, &23

UR_image_list(4) = UL_image_list + 8, &24

LR_image_list(4) = UL_image_list + 1025

26

mype = THIS_IMAGE()27

IF (any(mype == UL_image_list)) teamid = UL28

IF (any(mype == LL_image_list)) teamid = LL29

IF (any(mype == UR_image_list)) teamid = UR30

IF (any(mype == LR_image_list)) teamid = LR31

FORM TEAM (teamid, t)32

33

a = 3.1434

35

CHANGE TEAM (t, b[2,*] => a)36

! Inside change team, image pattern for B is a 2 x 2 grid37

b(5,5) = b(1,1)[2,1]38

39

! Outside the team addressing:40

41

newpe = THIS_IMAGE()42

SELECT CASE (team_id())43

CASE (UL)44

IF (newpe == 3) THEN45

b(:,10) = b(:,1)[1, 1, TEAM_ID=UR] ! Right column of UL gets46

! left column of UR47

ELSE IF (newpe == 4) THEN48

b(:,10) = b(:,1)[2, 1, TEAM_ID=UR]49

END IF50

CASE (LL)51

41

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

! Similar to complete column exchange across middle of the1

! original grid2

END SELECT3

END TEAM4

END PROGRAM DEMO5

A.1.4 Reducing the codimension of a coarray6

This example illustrates how to use a subroutine to coordinate cross-image access to a coarray for row and column7

processing.8

PROGRAM row_column9

USE, INTRINSIC :: iso_fortran_env, ONLY : team_type10

IMPLICIT NONE11

12

TYPE(team_type), target :: row_team, col_team13

TYPE(team_type), pointer :: used_team14

REAL, ALLOCATABLE :: a(:,:)[:,:]15

INTEGER :: ip, na, p, me(2)16

17

p = ... ; q = ... ! such that p**q == num_images()18

na = ... ! local problem size19

20

! allocate and initialize data21

ALLOCATE(a(na,na)[p,*])22

a = ...23

24

me = this_image(a)25

26

FORM TEAM(me(1), row_team, NEW_INDEX=me(2))27

FORM TEAM(me(2), col_team, NEW_INDEX=me(1))28

29

! make a decision on whether to process by row or column30

IF (...) THEN31

used_team => row_team32

ELSE33

used_team => col_team34

END IF35

36

... ! do local computations on a37

38

CHANGE TEAM (used_team)39

40

CALL further_processing(a, ...)41

42

END TEAM43

CONTAINS44

SUBROUTINE further_processing(a, ...)45

REAL :: a(:,:)[*]46

INTEGER :: ip47

48

! update ip-th row or column submatrix49

a(:,:)[ip] = ...50

51

SYNC ALL52

42

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

... ! do further local computations on a1

2

END SUBROUTINE3

END PROGRAM row_column4

A.2 Clause 6 notes5

A.2.1 EVENT QUERY example6

The following example illustrates the use of events via a program whose first image shares out work items to all7

other images. Only one work item at a time can be active on the worker images, and these deal with the result8

(e.g. via I/O) without directly feeding data back to the master image.9

Because the work items are not expected to be balanced, the master keeps cycling through all available images10

in order to find one that is waiting for work.11

Furthermore, the master keeps track of failed images, so the program might continue with degraded performance12

even if worker images fail progressively.13

PROGRAM work_share14

USE, INTRINSIC :: iso_fortran_env15

USE :: mod_work, ONLY: work, create_work_item, repeat_work_item, process_item, &16

WORK_ITEM_EMPTY17

TYPE(event_type) :: submit[*]18

TYPE :: asymmetric_event19

TYPE(event_type), ALLOCATABLE :: event(:)20

LOGICAL, ALLOCATABLE :: available(:)21

END TYPE22

TYPE(asymmetric_event) :: confirm[*]23

TYPE(work) :: work_item[*]24

INTEGER :: count, i, status, work_status25

26

IF (this_image() == 1) THEN27

!28

! set up master-side data structures29

ALLOCATE(confirm%event(2:num_images()))30

ALLOCATE(confirm%available(2:num_images()), SOURCE = .TRUE.)31

DO i = 2, num_images()32

EVENT POST (confirm%event(i))33

END DO34

!35

! work distribution loop36

master : DO37

image : DO i = 2, num_images()38

IF (.NOT. confirm%available(i)) CYCLE image39

CALL event_query(confirm%event(i), count, status)40

IF (status == STAT_FAILED_IMAGE) THEN41

confirm%available(i) = .FALSE.42

CYCLE image43

ELSE IF (status /= 0) THEN44

ERROR STOP45

END IF46

IF (count > 0) THEN ! avoid blocking if processing on worker is incomplete47

EVENT WAIT (confirm%event(i), STAT=status)48

IF (status == STAT_FAILED_IMAGE) THEN49

43

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

confirm%available(i) = .FALSE.1

CYCLE image2

ELSE IF (status /= 0) THEN3

ERROR STOP4

END IF5

6

work_item[i] = create_work_item()7

8

EVENT POST (submit[i], STAT=status)9

IF (status == STAT_FAILED_IMAGE) THEN10

CALL repeat_work_item()11

! previous item re-created in next iteration12

confirm%available(i) = .FALSE.13

CYCLE image14

ELSE IF (status /= 0) THEN15

ERROR STOP16

END IF17

END IF18

END DO image19

IF (.NOT. any(confirm%available)) EXIT master20

END DO master21

ELSE22

!23

! work processing loop24

worker : DO25

EVENT WAIT (submit)26

CALL process_item(work_item, work_status)27

IF (work_status == WORK_ITEM_EMPTY) confirm[1]%available(this_image()) = .FALSE.28

! Notify master that work is done, but check for master having failed29

EVENT POST (confirm[1]%event(this_image()), STAT=status)30

IF (work_status == WORK_ITEM_EMPTY .OR. status /= 0) EXIT worker31

END DO worker32

END IF33

END PROGRAM work_share34

A.2.2 EVENTS example35

A tree is a graph in which every node except one has a single “parent” node to which it is connected by an edge.36

The node without a parent is the “root”. The nodes that have a given node as parent are the “children” of that37

node. The root is at level 1, its children are at level 2, etc.38

A multifrontal code to solve a sparse set of linear equations involves a tree. Work at a node starts after work at39

all its children is complete and their data has been passed to it.40

Here we assume that all the nodes have been assigned to images. Each image has a list of its nodes and these41

are ordered in decreasing tree level (all those at level L preceding those at level L − 1). For each node, array42

elements hold the number of children, details about the parent and an event variable. This allows the processing43

to proceed asynchronously subject to the rule that a parent must wait for all its children as follows:44

PROGRAM TREE45

USE, INTRINSIC :: ISO_FORTRAN_ENV46

INTEGER,ALLOCATABLE :: NODE(:) ! Tree nodes that this image handles47

INTEGER,ALLOCATABLE :: NC(:) ! NODE(I) has NC(I) children48

INTEGER,ALLOCATABLE :: PARENT(:), SUB(:)49

! The parent of NODE(I) is NODE(SUB(I))[PARENT(I)]50

TYPE(EVENT_TYPE),ALLOCATABLE :: DONE(:)[*]51

44

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

INTEGER :: I, J, STATUS1

! Set up the tree, including allocation of all arrays.2

DO I = 1, SIZE(NODE)3

! Wait for children to complete4

EVENT WAIT(DONE(I),UNTIL_COUNT=NC(I),STAT=STATUS)5

IF (STATUS/=0) EXIT6

7

! Process node, using data from children8

IF (PARENT(I)>0) THEN9

! Node is not the root.10

! Place result on image PARENT(I) for node NODE(SUB)[PARENT(I)]11

! Tell PARENT(I) that this has been done.12

EVENT POST(DONE(SUB(I))[PARENT(I)],STAT=STATUS)13

IF (STATUS/=0) EXIT14

END IF15

END DO16

END PROGRAM TREE17

A.3 Clause 7 notes18

A.3.1 Collective subroutine examples19

The following example computes a dot product of two scalar coarrays using the co sum intrinsic to store the20

result in a noncoarray scalar variable:21

subroutine codot(x,y,x_dot_y)22

real :: x[*],y[*],x_dot_y23

x_dot_y = x*y24

call co_sum(x_dot_y)25

end subroutine codot26

The function below demonstrates passing a noncoarray dummy argument to the co max intrinsic. The function27

uses co max to find the maximum value of the dummy argument across all images. Then the function flags all28

images that hold values matching the maximum. The function then returns the maximum image index for an29

image that holds the maximum value:30

function find_max(j) result(j_max_location)31

integer, intent(in) :: j32

integer j_max,j_max_location33

call co_max(j,j_max)34

! Flag images that hold the maximum j35

if (j==j_max) then36

j_max_location = this_image()37

else38

j_max_location = 039

end if40

! Return highest image index associated with a maximal j41

call co_max(j_max_location)42

end function find_max43

A.3.2 Atomic memory consistency44

A.3.2.1 Relaxed memory model45

Parallel programs sometimes have apparently impossible behavior because data transfers and other messages can46

be delayed, reordered and even repeated, by hardware, communication software, and caching and other forms of47

45

J3/14-130 TS 18508 Additional Parallel Features in Fortran 2014/3/11

optimization. Requiring processors to deliver globally consistent behavior is incompatible with performance on1

many systems. Fortran specifies that all ordered actions will be consistent (2.3.5 and 8.5 in ISO/IEC 1539-1:2010),2

but all consistency between unordered segments is deliberately left processor dependent or undefined. Depending3

on the hardware, this can be observed even when only two images and one mechanism are involved.4

A.3.2.2 Examples with atomic operations5

When variables are being referenced (atomically) from segments that are unordered with respect to the segment6

that is is atomically defining or redefining the variables, the results are processor dependent. This supports use7

of so-called “relaxed memory model” architectures, which can enable more efficient execution on some hardware8

implementations.9

The following examples assume the following declarations:10

MODULE example11

USE,INTRINSIC :: ISO_FORTRAN_ENV12

INTEGER(ATOMIC_INT_KIND) :: x[*] = 0, y[*] = 013

Example 1:14

With x[j] and y[j] still in their initial state (both zero), image j executes the following sequence of statements:15

CALL ATOMIC_DEFINE(x,1)16

CALL ATOMIC_DEFINE(y,1)17

and image k executes the following sequence of statements:18

DO19

CALL ATOMIC_REF(tmp,y[j])20

IF (tmp==1) EXIT21

END DO22

CALL ATOMIC_REF(tmp,x[j])23

PRINT *,tmp24

The final value of tmp on image k can be either 0 or 1. That is, even though image j thinks it wrote x[j] before25

writing y[j], this ordering is not guaranteed on image k.26

There are many aspects of hardware and software implementation that can cause this effect, but conceptually this27

example can be thought of as the change in the value of y propagating faster across the inter-image connections28

than the change in the value of x.29

Changing the execution on image j by inserting30

SYNC MEMORY31

in between the definitions of x and y is not sufficient to prevent unexpected results; even though x and y are32

being updated in ordered segments, the references from image k are both from a segment that is unordered with33

respect to image j.34

To guarantee the expected value for tmp of 1 at the end of the code sequence on image k, it is necessary to ensure35

that the atomic reference on image k is in a segment that is ordered relative to the segment on image j that36

defined x[j]; SYNC MEMORY is certainly necessary, but not sufficient unless it is somehow synchronized.37

Example 2:38

With the initial state of x and y on image j (i.e. x[j] and y[j]) still being zero, execution of39

46

2014/3/11 TS 18508 Additional Parallel Features in Fortran J3/14-130

CALL ATOMIC_REF(tmp,x[j])1

CALL ATOMIC_DEFINE(y[j],1)2

PRINT *,tmp3

on image k1, and execution of4

CALL ATOMIC_REF(tmp,y[j])5

CALL ATOMIC_DEFINE(x[j],1)6

PRINT *,tmp7

on image k2, in unordered segments, might print the value 1 both times.8

This can happen by such mechanisms as “load buffering”; one might imagine that what is happening is that the9

writes (ATOMIC_DEFINE) are overtaking the reads (ATOMIC_REF).10

It is likely that insertion of SYNC MEMORY in between the calls to ATOMIC_REF and ATOMIC_DEFINE will be suffi-11

cient to prevent this anomalous behavior, but that is only guaranteed by the standard if the SYNC MEMORY12

executions cause an ordering between the relevant segments on images k1 and k2.13

Example 3:14

Because there are no segment boundaries implied by collective subroutines, with the initial state as before,15

execution of16

IF (THIS_IMAGE()==1) THEN17

CALL ATOMIC_DEFINE(x[3],23)18

y = 4219

ENDIF20

CALL CO_BROADCAST(y,1)21

IF (THIS_IMAGE()==2) THEN22

CALL ATOMIC_REF(tmp,x[3])23

PRINT *,y,tmp24

END IF25

could print the values 42 and 0.26

47

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Compatibility
	4.1 New intrinsic procedures
	4.2 Fortran 2008 compatibility

	5 Teams of images
	5.1 Introduction
	5.2 TEAM_TYPE
	5.3 CHANGE TEAM construct
	5.4 Image selectors
	5.5 FORM TEAM statement
	5.6 SYNC TEAM statement
	5.7 FAIL IMAGE statement
	5.8 STAT_FAILED_IMAGE

	6 Events
	6.1 Introduction
	6.2 EVENT_TYPE
	6.3 EVENT POST statement
	6.4 EVENT WAIT statement

	7 Intrinsic procedures
	7.1 General
	7.2 Atomic subroutines
	7.3 Collective subroutines
	7.4 New intrinsic procedures
	7.4.1 ATOMIC_ADD (ATOM, VALUE) or ATOMIC_ADD (ATOM, VALUE, OLD)
	7.4.2 ATOMIC_AND (ATOM, VALUE) or ATOMIC_AND (ATOM, VALUE, OLD)
	7.4.3 ATOMIC_CAS (ATOM, OLD, COMPARE, NEW)
	7.4.4 ATOMIC_OR (ATOM, VALUE) or ATOMIC_OR (ATOM, VALUE, OLD)
	7.4.5 ATOMIC_XOR (ATOM, VALUE) or ATOMIC_XOR (ATOM, VALUE, OLD)
	7.4.6 CO_BROADCAST (SOURCE, SOURCE_IMAGE [, STAT, ERRMSG])
	7.4.7 CO_MAX (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.8 CO_MIN (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.9 CO_REDUCE (SOURCE, OPERATOR [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.10 CO_SUM (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.11 EVENT_QUERY (EVENT, COUNT [, STAT, ERRMSG])
	7.4.12 FAILED_IMAGES ([TEAM, KIND])
	7.4.13 GET_TEAM (TEAM_VAR [,DISTANCE])
	7.4.14 TEAM_DEPTH()
	7.4.15 TEAM_ID ([DISTANCE])

	7.5 Modified intrinsic procedures
	7.5.1 MOVE_ALLOC
	7.5.2 NUM_IMAGES
	7.5.3 THIS_IMAGE

	8 Required editorial changes to ISO/IEC 1539-1:2010(E)
	8.1 General
	8.2 Edits to Introduction
	8.3 Edits to clause 1
	8.4 Edits to clause 2
	8.5 Edits to clause 4
	8.6 Edits to clause 6
	8.7 Edits to clause 8
	8.8 Edits to clause 13
	8.9 Edits to clause 16
	8.10 Edits to annex A
	8.11 Edits to annex C

	Annex A (informative) Extended notes
	A.1 Clause 5 notes
	A.1.1 Example using three teams
	A.1.2 Example involving failed images
	A.1.3 Accessing coarrays in sibling teams
	A.1.4 Reducing the codimension of a coarray

	A.2 Clause 6 notes
	A.2.1 EVENT_QUERY example
	A.2.2 EVENTS example

	A.3 Clause 7 notes
	A.3.1 Collective subroutine examples
	A.3.2 Atomic memory consistency

