
Reference number of working document: ISO/IEC JTC1/SC22/WG5 Nxxxx

Date: 2023-01-12

Reference number of document: ISO/IEC TS 99999:2019(E)

Committee identification: ISO/IEC JTC1/SC22

Secretariat: ANSI

Information technology — Programming languages — Fortran —
Coroutines and Iterators

Technologies de l’information — Langages de programmation — Fortran —
Coroutines et Iterators

ISO/IEC TS 99999:2019(E)

Contents
0 Introduction . i

0.1 History . i
0.2 What this technical specification proposes . ii

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1

2 Requirements . 2
2.1 General . 2
2.2 Summary . 2
2.3 Coroutine syntax and semantics . 3
2.4 ITERATOR and ITERATE construct syntax 10
2.5 VALUE attribute . 14
2.6 PRESENT (A) . 14

3 Examples . 15
3.1 Quadrature example . 15
3.2 Iterator for a queue . 18
3.3 Preserving automatic variables . 19
3.4 Relationship to exception handling . 19

4 Required editorial changes to ISO/IEC 1539-1:2019(E) 20

0 Introduction

0.1 History

Fortran has historically been primarily but not exclusively used to solve problems in science and en-
gineering. Solving problems in science and engineering primarily but not exclusively depends upon
computational mathematics algorithms. Computational mathematics algorithms frequently require ac-
cess to software that is provided by the user, to specify the problem. Examples include evaluating
integrals, solving differential equations, minimization, and nonlinear parameter estimation.

Software to solve problems in science and engineering also benefits from the application of principles
of software engineering, as explained, for example, in Scientific Software Design: The Object-
Oriented Way, by our colleagues Damian Rouson and Jim Xia, and their coauthor Xiaofeng Xu.
An important paradigm related to object-oriented programming is a container. Support to develop
containers in Fortran is part of the work plan for the next revision. It is important to be able to iterate
over the contents of a container, without exploiting the representation of the container. Examples include
traversing a list or tree, or a row or column of a sparse matrix. The procedures of a container that iterate
over its contents require access to software that is provided by the user, to perform actions using the
members of the container.

In Fortran, access to software that is provided by the user has been provided in three ways.

• The procedure that implements the algorithm invokes a procedure of a specific name,

• The name of the procedure that defines the problem is passed to the procedure that implements
the algorithm, or

• The procedure that implements the algorithm returns to the invoker whenever it requires a com-
putation that defines the problem.

The first two of these methods are called forward communication; the last is called reverse communica-
tion.

Forward communication works well in the simple cases where the procedure that implements the algo-

No copyright i

ISO/IEC TS 99999:2019(E)

rithm can provide all the information needed by the procedure that defines the problem.

Before Fortran 2003, when additional information was needed, programs exploited methods known to
reduce the reliability of programs or increase the cost of their development and maintenance: global
data. Fortran 2003 provides type extension, which reduces the problem substantially, but can introduce
other problems such as performance penalties caused by pointer components.

Programs developed in Fortran 2003 would probably use type extension to pass additional data to the
procedure that defines the problem. Revising existing programs that use reverse communication to use
type extension could be prohibitively expensive, especially if rigorous recertification is required, while
revising them to use coroutines would be relatively inexpensive.

Reverse communication does not require information necessary to define the problem to be passed
through the procedure that implements the algorithm, or require the procedure that defines the problem
to access such information by using global data or type extension. There is, however, no structured
support for reverse communication in Fortran. In order for the procedure to continue after the calcu-
lations that define the problem, it has to know it isn’t starting a problem, and how to find its way to
continue its process. This usually involves GO TO statements, or transformation of the procedure into
an inscrutable “state machine.” The state of the computation is usually represented in SAVE variables,
which causes the procedure that implements the algorithm not to be thread safe.

A third alternative is mutual recursion with tail calls.

In some problems, it is desirable to preserve the activation record, primarily to avoid re-creating au-
tomatic variables. If a procedure is used to solve a large number of related problems, and it requires
substantial “working storage,” re-creating working storage as automatic variables, or allocating allocat-
able variables or pointers that do not have the SAVE attribute, can be a significant fraction of the total
cost of solving one problem. Alternatives are allocatable variables or pointers with the SAVE attribute,
which are not thread safe, and host association, which militates against reuse.

If coroutines had been available during the development of Fortran 2003, defined input/output would
not have been needed. Instead, it could have been possible to specify a coroutine to process the input
or output list, having an unlimited polymorphic argument to associate with each list item in turn.

0.2 What this technical specification proposes

This technical specification proposes two forms of procedures. They both have the property that they
have a persistent internal state that is created by their initial invocation. They can be suspended and
later resumed, to proceed from the point where they were suspended. The persistent internal state is
represented by local entities. Local entities and the state of execution of the procedure are preserved in
an activation record ; local entities do not become undefined when the procedure is suspended.

A coroutine can be invoked in the same way as a subroutine. It can be resumed wherever and whenever
necessary.

An iterator can be invoked in the same way as a function, but only in a new ITERATE construct. When
a function is invoked, it returns a value. One would expect that when an iterator is resumed, it would
return a value, but there is only one way to indicate which instance of the iterator is to be resumed, to
provide a value: a looping construct. A Wikipedia article describes the iterator as

. . . one of the twenty-three well-known GoF design patterns that describe how to solve
recurring design problems to design flexible and reusable object-oriented software, that is,
objects that are easier to implement, change, test, and reuse.

The term “coroutine” first appeared in documentation of the language Simula. Tasks and protected

ii No copyright

ISO/IEC TS 99999:2019(E)

variables in Ada are similar to coroutines.

Coroutines are supported directly in the following languages:

• Aikido

• AngelScript

• BCPL

• Pascal (Borland Turbo Pas-
cal 7.0 with uThreads mod-
ule)

• BETA

• BLISS

• C#

• ChucK

• CLU

• D

• Dynamic C

• Erlang

• F#

• Factor

• GameMonkey Script

• GDScript (Godot’s script-
ing language)

• Go

• Haskell

• High Level Assembly

• Icon

• Io

• JavaScript (since 1.7, stan-
dardized in ECMAScript 6)
ECMAScript 2017 also in-
cludes await support.

• Julia

• Kotlin (since 1.1)

• Limbo

• Lua

• Lucid

• µC++

• MiniD

• Modula-2

• Nemerle

• Perl 5 (using the Coro mod-
ule)

• Perl 6

• PHP (with HipHop, native
since PHP 5.5)

• Picolisp

• Prolog

• Python (since 2.5, with im-
proved support since 3.3
and with explicit syntax
since 3.5)

• Ruby

• Sather

• Scheme

• Self

• Simula 67

• Smalltalk

• Squirrel

• Stackless Python

• SuperCollider

• Tcl (since 8.6)

• urbiscript

Iterators are supported directly in the following programming languages:

• C++

• C# and other .NET languages

• Java

• JavaScript

• Matlab

• PHP

• Python

• Ruby

• Rust

• Scala

All of the alternatives that presently exist in Fortran, described in the previous subclause, require to
invoke and return from a procedure to respond to a need to execute “user” code. In contrast, when a
coroutine or iterator is suspended its activation record is not destroyed, and when it it is resumed its
activation record is not reconstructed. Therefore, suspending and resuming a coroutine or iterator is
generally more efficient than the alternatives.

No copyright iii

J3/23-107 ISO/IEC TS 99999:2019(E)

Information technology – Programming Languages – Fortran

Technical Specification: Coroutines and iterators

1 General

1.1 Scope1

This technical specification specifies extensions to the programming language Fortran. The Fortran2

language is specified by International Standard ISO/IEC 1539-1:2019(E). The extensions are varieties3

of procedures known as coroutines and iterators. They have the property that an instance of one can4

be suspended, and later resumed to continue execution from the point where it was suspended. Local5

entities and the state of execution of the procedure are preserved in an activation record, and do not6

become undefined when the procedure is suspended. The invoking scope retains the activation record,7

and can have as many separate activation records for each procedure as necessary.8

Clause 2 of this technical specification contains a general and informal but precise description of the9

extended functionalities. Clause 3 contains several illustrative examples. Clause 4 contains detailed10

instructions for editorial changes to ISO/IEC 1539-1:2019(E).11

1.2 Normative References12

The following referenced documents are indispensable for the application of this document. For dated13

references, only the edition cited applies. For undated references, the latest edition of the referenced14

document (including any amendments) applies.15

ISO/IEC 1539-1:2019(E) : Information technology – Programming Languages – Fortran; Part 1: Base16

Language17

No copyright 1

ISO/IEC TS 99999:2019(E) J3/23-107

2 Requirements1

2.1 General2

The following subclauses contain a general description of the extensions to the syntax and semantics of3

the Fortran programming language to provide coroutines and iterators.4

2.2 Summary5

2.2.1 What is provided6

This technical specification defines new forms of procedures, called coroutines and iterators, an instance7

of which can be suspended and later resumed to continue execution from the point where it was sus-8

pended. Local entities and the state of execution of the procedure are preserved in an activation record,9

and do not become undefined when the procedure is suspended. The invoking scope retains the activa-10

tion record, and can have any number of activation records. There is presently nothing comparable in11

Fortran, but coroutines and iterators have been provided by numerous other programming languages.12

This technical specification describes statements to define coroutines and iterators, statements to sus-13

pend, resume, and terminate coroutines, an inquiry function to determine whether a coroutine is sus-14

pended, and a looping control construct that invokes an iterator.15

2.2.2 Coroutines16

A coroutine is a procedure that is invoked similarly to the way a subroutine is invoked. Unlike a17

subroutine, it can be suspended, and later resumed to continue execution from the point where it was18

suspended. Local entities and the state of execution of a coroutine are preserved in an activation record,19

and do not become undefined when it is suspended. Each invocation of a coroutine creates a new20

instance, independently of whether an instance is already in a state of execution. The invoking scope21

retains the activation record, and can have as many activation records as necessary. A coroutine can be22

pure, but it cannot be elemental. A coroutine identifier shall have explicit interface where it is invoked23

or resumed.24

2.2.3 Iterators25

An iterator is a procedure that produces a result value, as does a function subprogram. It is intended to26

be used as an abstraction to produce the elements of a data structure, one at a time. It can be invoked27

or resumed only within the ITERATE statement of an ITERATE construct. Local entities and the state28

of execution of an iterator are preserved in an activation record, and do not become undefined when it29

is suspended. A different instance exists for each ITERATE construct. Nested ITERATE constructs30

can use the same iterator. An iterator identifier shall have explicit interface where it appears in an31

ITERATE construct.32

2.2.4 ITERATE construct33

The ITERATE construct uses an iterator to process the elements of a data structure, one at a time.34

When execution of the construct commences, the iterator is invoked and a new instance of it is created.35

Therefore, an ITERATE construct within another ITERATE construct can use the same iterator. Each36

time the iterator suspends it provides a value, or a pointer associated with a value, and the body37

of the construct is executed. After the construct body is executed, the iterator is resumed at the first38

executable construct after the SUSPEND statement that suspended execution of the iterator. Execution39

of the ITERATE construct completes, the activation record of the instance is destroyed, and the instance40

of the iterator ceases to exist when41

2 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

• the iterator executes a RETURN, END, or STOP statement,1

NOTE for J3

A STOP statement is included in the description in case exception handling is provided as described
in J3/23-106. Execution of a STOP statement can raise an exception.

• an EXIT statement that belongs to the construct is executed,2

• an EXIT or CYCLE statement that belongs to an outer construct and is within the range of the3

construct is executed,4

• a branch occurs from a statement within the ITERATE construct to a statement that is neither5

the end-iterate-stmt nor within the range of the construct, or6

• a RETURN or STOP statement within the range of the construct is executed.7

2.2.5 SUSPEND statement8

When an instance of a coroutine or iterator executes a SUSPEND statement, execution of the instance9

is suspended; local variables of the instance do not become undefined. For a coroutine, the sequence of10

execution continues after the CALL statement that invoked the coroutine, or after the RESUME state-11

ment that resumed execution of the same instance of the coroutine, whichever occurred most recently.12

For an iterator, the sequence of execution proceeds to the block of the ITERATE construct.13

2.2.6 RESUME statement14

When a RESUME statement is executed the procedure designator in the RESUME statement shall15

designate an instance variable of a suspended instance of a coroutine. Execution of the specified instance16

of the specified coroutine is resumed by re-establishing argument associations and transferring control17

to the first executable construct after the SUSPEND statement that most recently suspended execution18

of the specified instance of the coroutine. Expressions in the specification part are not re-evaluated,19

and the specification part is not elaborated again. Therefore, local variables of the instance, including20

automatic variables, retain the same bounds, length parameter values, definition status, and values if21

any, that they had when the instance was suspended.22

NOTE 2.1

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

2.2.7 The TERMINATE statement23

When a TERMINATE statement is executed, the activation record of the specified instance of the24

specified coroutine is destroyed and that instance of the coroutine cannot thereafter be resumed. The25

procedure designator in the TERMINATE statement shall designate an instance variable of a suspended26

instance of the coroutine.27

An instance of a coroutine that is not suspended shall not be terminated.28

2.3 Coroutine syntax and semantics29

2.3.1 Coroutine definition syntax30

A coroutine is a subprogram. It can be an external subprogram, a module subprogram, an internal31

subprogram, or a separate module procedure. It can be bound to a type. It can be pure, but it32

cannot be elemental. Each invocation of a coroutine creates a new instance, independently of whether33

No copyright 3

ISO/IEC TS 99999:2019(E) J3/23-107

an instance is already in a state of execution. Suspending a coroutine does not destroy an instance.1

Resuming a coroutine does not create a new instance.2

R1537a coroutine-subprogram is coroutine-stmt3

[specification-part]4

[execution-part]5

[internal-subprogram-part]6

end-coroutine-stmt7

R1537b coroutine-stmt is [prefix] COROUTINE coroutine-name8

[([dummy-arg-name-list])]9

R1537c end-coroutine-stmt is END COROUTINE [coroutine-name]10

C1251a (R1537b) Neither declaration-type-spec nor ELEMENTAL shall appear in prefix .11

C1251b (R1537a) An internal coroutine subprogram shall not contain an internal-subprogram-part .12

C1251c (R1537c) If a coroutine-name appears in the end-coroutine-stmt it shall be identical to the13

coroutine-name in the coroutine-stmt .14

NOTE 2.2

When a coroutine is invoked by a CALL statement, a new instance of its activation record is
created, regardless whether it is invoked recursively. Therefore, whether RECURSIVE or NON -
RECURSIVE appears in the prefix is irrelevant.

Unresolved Technical Issue Recursive Coroutine

The appearance of RECURSIVE or NON RECURSIVE in the prefix could be prohibited instead
of ignored.

2.3.2 Coroutine interface body15

The interface of a coroutine can be declared by an interface body.16

R1505 interface-body is ...17

or coroutine-stmt18

[specification-part]19

end-coroutine-stmt20

2.3.3 Coroutine reference21

2.3.3.1 General22

An identifier of a coroutine shall have explicit interface where it is invoked or resumed.23

2.3.3.2 Coroutine instance variables24

A coroutine instance variable represents an instance of a coroutine’s activation record.25

Within a scoping unit, if the coroutine-name of a coroutine, or a name associated with one by use or host26

association, appears as the procedure-designator in a CALL statement, or as an actual argument that27

corresponds to a dummy argument that does not have the VALUE attribute, a local instance variable28

identified by that procedure-designator exists and has a scope of that inclusive scope.29

4 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

A coroutine procedure pointer, or a dummy procedure that has a coroutine interface, is an instance1

variable.2

If an object is of a type that has a type-bound coroutine, that object contains an instance variable for3

that coroutine, identified by that binding.4

An instance variable is not a local variable if it is5

• a dummy coroutine without the VALUE attribute,6

• accessed by use or host association, or7

• represented within an object of derived type that has a binding to the coroutine, and the object is8

not a local variable.9

Otherwise, it is a local variable.10

An instance variable is an object of a private derived type defined by the processor, with private compo-11

nents. It identifies a coroutine and represents an instance of its activation record. The types of different12

instance variables are not necessarily the same, but they all have a private allocatable activation record13

component, and a private procedure pointer component that identifies the coroutine. If it is a dummy14

procedure with a coroutine interface, the association of the procedure pointer component is that of the15

corresponding actual argument. Otherwise, if it is a coroutine pointer, the procedure pointer component16

has default initialization of NULL(). Otherwise, the procedure pointer component is associated with the17

coroutine specified by the procedure-designator .18

2.3.3.3 Coroutine activation records19

An instance variable has a private allocatable component that represents the coroutine’s activation20

record. It is allocated if and only if the instance of the coroutine is active. The activation record21

represents the state of execution of the instance, and its unsaved local variables. A local variable of a22

coroutine that has the SAVE attribute is shared by all instances; it is not part of an activation record.23

Variables accessed by use and host association are not part of an activation record.24

The activation record component of a local instance variable is initially deallocated, even if it is a dummy25

coroutine with the VALUE attribute. A local instance variable does not initially represent an active26

instance when the procedure is invoked, even if it is a dummy coroutine with the VALUE attribute and27

the corresponding actual argument represents an active instance. Unlike a dummy data object with the28

VALUE attribute, the allocation status, and value if any, of the allocatable component that represents29

its activation record, is not copied from the actual argument that corresponds to a dummy coroutine30

with the VALUE attribute.31

NOTE 2.3

Because the activation record component of an instance variable is allocatable, it is or becomes
deallocated, and the instance it represents is terminated, under the same conditions that an allo-
catable component of a derived-type object is or becomes deallocated.

An instance of a coroutine is accessible if and only if is represented by an accessible instance variable32

that represents an active instance.33

2.3.3.4 Creating an instance of a coroutine34

When a coroutine is invoked by a CALL statement, the following occur in the order specified:35

1. Arguments associations are established.36

No copyright 5

ISO/IEC TS 99999:2019(E) J3/23-107

2. An instance of the coroutine is created.1

3. The activation record component of its instance variable is allocated as if by an ALLOCATE2

statement.3

4. Expressions within its specification part are evaluated and its specification part is elaborated,4

creating local variables of the instance that do not have the SAVE attribute.5

When the instance executes a RETURN, END, STOP, or SUSPEND statement, or completes execution6

of the last executable construct of the coroutine’s execution-part , execution of the CALL statement is7

completed.8

2.3.3.5 Suspending a coroutine instance9

When an instance of a coroutine executes a SUSPEND statement, execution of the instance of the10

coroutine is suspended and the execution sequence continues by executing the executable construct11

following the CALL statement that invoked that instance of that coroutine, or the RESUME statement12

that resumed execution of that instance of that coroutine, whichever occurred most recently. Local13

variables of the instance, within the activation record component of its instance variable, retain their14

bounds, length parameter values, definition status, and values if any.15

2.3.3.6 Resuming a coroutine instance16

An instance of a coroutine is resumed by executing a RESUME statement (2.2.6) with a designator17

that designates its instance variable. When it is resumed, argument associations are re-established and18

control is transferred to the first executable construct after the SUSPEND statement that most recently19

suspended execution of the instance of the coroutine represented by the instance variable used to resume20

it. Its activation record is not re-created. Expressions in the specification part are not re-evaluated,21

and the specification part is not elaborated again. Therefore, local variables of the instance, including22

automatic variables, retain the same bounds, length parameter values, definition status, and values if23

any, that they had when the instance was suspended.24

NOTE 2.4

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

If a coroutine is invoked before a DO CONCURRENT construct begins execution, the same instance of it25

shall not be resumed during more than one iteration of that execution of that construct. A coroutine shall26

not be invoked using the same instance variable during more than one iteration of a DO CONCURRENT27

construct. If a coroutine is invoked during an iteration of a DO CONCURRENT construct, that instance28

of it shall be terminated during that iteration, and it it shall not be terminated or resumed during a29

different iteration of that execution of that construct.30

If a coroutine is invoked from within a CRITICAL construct or from within a procedure invoked during31

execution of a CRITICAL construct, the same instance of it shall be terminated during that execution32

of that construct, and it shall not be resumed after that execution of that construct completes. If a33

coroutine is invoked before execution of a CRITICAL construct begins, the same instance of it shall not34

be resumed from within that execution of that CRITICAL construct or from within a procedure invoked35

during that execution of that CRITICAL construct.36

Unresolved Technical Issue Critical

The restrictions concerning critical sections might not be necessary or useful.

An instance of a coroutine that has ceased to exist shall not be resumed.37

6 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

2.3.3.7 Terminating a coroutine instance1

An instance of a coroutine is terminated, and the activation record component of the instance variable2

used to terminate the instance becomes deallocated, when3

• a RETURN, STOP, or END statement is executed by the instance of the coroutine,4

• the last executable construct of the execution-part of the coroutine completes execution,5

• a TERMINATE statement that designates the instance variable is executed,6

• a CALL statement invokes the coroutine using its instance variable,7

• the instance variable is an unsaved local variable of a procedure that is not a coroutine, and8

execution of the procedure in which it is a local variable is terminated,9

• the instance variable is an unsaved local variable of a BLOCK construct and execution of the10

construct is completed,11

• the instance variable is an unsaved local variable of a coroutine and the instance of that coroutine12

is terminated,13

• the instance variable is the proc-pointer-object in a pointer assignment statement that is executed,14

• the instance variable is a proc-pointer-object in a NULLIFY statement that is executed, or15

• the instance variable corresponds to a dummy procedure pointer that has INTENT(OUT) and the16

CALL statement or function reference is executed.17

Unresolved Technical Issue Duplicate

Executing a CALL statement that references a coroutine using a designator with which an instance
is associated could alternatively be defined to be an error.

2.3.4 Coroutine procedure pointers18

A coroutine procedure pointer is an instance variable. The ASSOCIATED intrinsic function inquires19

whether the procedure pointer component is associated with a coroutine. The SUSPENDED intrinsic20

function inquires whether its activation record component is allocated, that is, whether it represents an21

instance of a coroutine that has not terminated.22

A coroutine procedure pointer shall not be a coindexed object or a subobject of a coindexed object.23

2.3.5 SUSPEND statement24

Execution of a suspend statement within a coroutine suspends execution of an instance of that coroutine25

(2.3.3.5).26

Execution of a suspend statement within an iterator suspends execution of an instance of that iterator27

(2.4.4).28

R1542a suspend-stmt is SUSPEND29

C1276a (R1241a) A suspend-stmt shall appear only within the inclusive scope of a coroutine or iterator.30

2.3.6 RESUME statement31

Execution of a RESUME statement causes execution of an instance of a coroutine to be resumed (2.3.3.6).32

R1525a resume-stmt is RESUME procedure-designator [([actual-arg-spec-list])]33

C1537b (R1525a) The procedure-designator shall designate a coroutine instance variable.34

C1537b (R1525a) The procedure-designator shall not be a coindexed object or a subobject of a coindexed35

No copyright 7

ISO/IEC TS 99999:2019(E) J3/23-107

object.1

The procedure-designator shall designate a suspended instance of a coroutine.2

When a RESUME statement is executed, argument associations are re-established, but expressions in the3

specification part of the coroutine are not re-evaluated and the specification part is not elaborated again.4

Therefore, local variables, including automatic variables, of the instance retain the same bounds, length5

parameter values, definition status, and values if any, that they had when the instance was suspended.6

NOTE 2.5

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

When the instance of the coroutine that is resumed by execution of a RESUME statement executes a7

SUSPEND, RETURN, or END statement, execution of the RESUME statement is completed.8

2.3.7 SUSPENDED (PROC)9

Description. Whether a coroutine is suspended.10

Class. Transformational function.11

Argument. PROC shall be a procedure-designator that designates a coroutine instance variable. It12

shall not be a coindexed object or a subobject of a coindexed object.13

Result Characteristics. Default logical.14

Result Value. The result has the value true if and only if the activation record component of PROC15

is allocated.16

2.3.8 The TERMINATE statement17

Execution of a TERMINATE statement causes an instance of a coroutine to be terminated (2.3.3.7).18

R1525b terminate-stmt is TERMINATE (instance-variable [terminate-opt-list]19

R1525c terminate-opt is STAT = stat-variable20

or ERRMSG = errmsg-variable21

R1525d instance-variable is procedure-name22

or proc-pointer-object23

or proc-component-ref24

C1537c (R1525c) The instance-variable shall designate a coroutine instance variable.25

C1537d (R1525c) The instance-variable shall not be a subobject of a coindexed object.26

The procedure-designator shall designate an instance variable of a coroutine, and its activation record27

component shall be allocated. A coroutine instance shall not terminate itself by executing a TERMI-28

NATE statement.29

When a TERMINATE statement is executed, the activation record component of the instance variable30

becomes deallocated, as if by execution of a DEALLOCATE statement. The effects of STAT= and31

ERRMSG= specifiers include the same effects as in a DEALLOCATE statement, including the case when32

the instance-variable designates an inactive instance. In addition, if a coroutine instance terminates itself33

8 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

by executing a TERMINATE statement, a processor-dependent nonzero value shall be assigned to stat-1

variable, and that value shall be different from any value that might be assigned by a DEALLOCATE2

statement. If the activation record component of the instance variable is not allocated or a coroutine3

instance terminates itself by executing a TERMINATE statement, and STAT= does not appear, an4

error condition exists.5

2.3.9 Coroutine to process input or output statement6

The READ and WRITE statements are revised to include an optional PROCESSOR=coroutine-name7

specifier. The PROCESSOR=specifier shall not appear in a statement that specifies namelist or list-8

directed formatting, or that has both ASYNCHRONOUS=’YES’ and SIZE= specifiers. The specified9

coroutine shall have the following interface:10

coroutine coroutine-name (unit, item, format, iostat, iomsg, size)11

integer, intent(in) :: unit12

class(*), INTENT(intent-spec), optional :: item(..)13

character(*), intent(in), optional :: format14

integer, intent(out), optional :: iostat15

character(*), intent(inout), optional :: iomsg16

integer, intent(out), optional :: size17

end coroutine coroutine -name18

Unresolved Technical Issue Item argument

Instead of requiring the item argument to be unlimited polymorphic, it could be required to be
type compatible with every data transfer list item.

If the statement is a READ statement, the intent-spec of its item argument shall be OUT. If it is a19

WRITE statement, the intent-spec of its item argument shall be IN.20

When a data transfer statement with a PROCESSOR=coroutine-name specifier is executed, the specified21

coroutine is invoked even if there is no first list item. The processor resumes the coroutine if and only22

if there is another list item, to process each list item. The item argument is present if and only if there23

is another list item.24

The format argument is present if and only if the data transfer statement is a formatted data transfer25

statement. The value of the format argument begins and ends with parentheses, and corresponds to26

the item argument, as if the item and format were processed without using the coroutine. It might27

contain edit descriptors even if the item argument is not present; for example, it might contain control28

or character string edit descriptors.29

If a list item is of a derived type that has a pointer or allocatable direct component, and the data transfer30

statement is a formatted data transfer statement, the corresponding format item shall be a DT edit31

descriptor. If the corresponding format item is a DT edit descriptor, or the list item is of a derived type32

that has a pointer or allocatable direct component, the list item is associated with the item argument.33

Otherwise, the list item is expanded as specified in subclause 12.6.3 of ISO/IEC 1539-1:2019(E)34

The iostat or iomsg argument is present if and only if the corresponding specifier appears in the data35

transfer statement; it is associated with the specified entity.36

If an error, end-of-file, or end-of-record condition occurs, and the iostat argument is present, the37

coroutine shall assign the appropriate value to that argument, as specified in subclause 12.11 of ISO/IEC38

1539-1:2019(E). If the iomsg argument is present, a value may be assigned to it. If the iostat argument39

is absent, the coroutine shall return rather than suspending. If no error occurs and the iostat argument40

No copyright 9

ISO/IEC TS 99999:2019(E) J3/23-107

is present, the value zero shall be assigned to it. A value shall not be assigned to the iomsg argument1

unless a nonzero value is or would be assigned to the iostat argument. If no error, end-of-file, or2

end-of-record condition occurs the coroutine shall suspend.3

The size argument is present if and only if the data transfer statement is a READ statement in which4

a SIZE= specifier appears. If it is present, a value shall be assigned to it, to specify the number of5

characters transferred from the file.6

If the data transfer statement is a formatted data transfer statement, data transfer statements other7

than those that specify an internal file that are executed while the coroutine is active are processed as8

if ADVANCE=’NO’ were specified, even if ADVANCE=’YES’ is specified in the statement that caused9

the coroutine to be executed.10

After processing the last list item, or if the coroutine assigns a nonzero value to the iostat argument,11

the processor terminates the coroutine. Because the coroutine might use asynchronous data transfer12

statements, after terminating the coroutine, the processor performs a wait operation if the statement13

that caused the coroutine to be executed is not an asynchronous data transfer statement.14

If the coroutine terminates instead of suspending, an error condition occurs in the statement that caused15

the coroutine to be executed.16

2.4 ITERATOR and ITERATE construct syntax17

2.4.1 ITERATOR syntax18

An iterator is a subprogram. It can be an external subprogram, a module subprogram, an internal19

subprogram, or a separate module procedure. It can be bound to a type. It can be pure, but it cannot20

be elemental.21

R1532a iterator-subprogram is iterator-stmt22

[specification-part]23

[execution-part]24

[internal-subprogram-part]25

end-iterator-stmt26

R1532b iterator-stmt is [prefix] ITERATOR iterator-name27

([dummy-arg-name-list]) [RESULT (result-name)]28

R1532c end-iterator-stmt is END ITERATOR [iterator-name]29

C1564a (R1532b) If RESULT appears, result-name shall not be the same as iterator-name.30

C1564b (R1532b) If RESULT appears, the iterator-name shall not appear in any specification statements31

in the scoping unit of the iterator subprogram.32

C1564c (R1532b) ELEMENTAL shall not appear in prefix .33

C1564d (R1532a) An internal iterator subprogram shall not contain an internal-subprogram-part .34

C1564e (R1532c) If an iterator-name appears in the end-iterator-stmt it shall be identical to the iterator-35

name in the iterator-stmt .36

The result variable name of an iterator is the result-name if one appears; otherwise it is the iterator-name.37

10 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

NOTE 2.6

When an iterator is invoked by an ITERATE construct, a new activation record is created, even if
it is invoked recursively. Therefore, whether RECURSIVE or NON RECURSIVE appears in the
prefix is irrelevant.

Unresolved Technical Issue Recursive Iterator

The appearance of RECURSIVE or NON RECURSIVE in the prefix could be prohibited instead
of ignored.

2.4.2 Iterator interface body1

An iterator interface can be declared by an interface body.2

R1505 interface-body is ...3

or iterator-stmt4

[specification-part]5

end-iterator-stmt6

2.4.3 ITERATE construct syntax7

An ITERATE construct is used to iterate over the elements of a data structure, which elements are8

provided by invoking and resuming an iterator.9

R1139a iterate-construct is iterate-stmt10

block11

end-iterate-stmt12

R1139b iterate-stmt is [iterate-construct-name:] ITERATE [CONCURRENT]13

(iteration-control)14

15

R1139c iteration-control is variable = iterator-reference16

or data-pointer-object => iterator-reference17

or declaration-type-spec [, iterate-attrib-list] ::18

variable-name [(array-spec)] = iterator-reference19

or declaration-type-spec [, POINTER] ::20

variable-name [(array-spec)] => iterator-reference21

22

R1139d iterate-attrib is ALLOCATABLE23

or TARGET24

R1139e end-iterate-stmt is END ITERATE [iterate-construct-name]25

C1143a (R1139a) If the iterate-stmt of an iterate-construct specifies an iterate-construct-name, the cor-26

responding end-iterate-stmt shall specify the same iterate-construct-name. If the iterate-stmt of27

an iterate-construct does not specify an iterate-construct-name, the corresponding end-iterate-28

stmt shall not specify an iterate-construct-name.29

C1143b (R1139c) If = appears and ALLOCATABLE does not appear, array-spec shall specify explicit30

shape. If ALLOCATABLE appears or => appears, array-spec shall specify deferred shape.31

C1143c (R1139c) If = appears, the type, type parameters, and rank of variable or variable-name shall32

conform to those of the result of iterator-reference in the same way that those of variable and33

No copyright 11

ISO/IEC TS 99999:2019(E) J3/23-107

expr are required to conform in an intrinsic assignment-stmt .1

C1143d (R1139c) If => appears, the type, type parameters, and rank of data-pointer-object or variable-2

name shall conform to those of the result of iterator-reference in the same way that those of3

data-pointer-object and data-target are required to conform in a pointer-assignment-stmt .4

C1143e (R1139c) The variable shall not be a coindexed object or a subobject of a coindexed object.5

C1143f (R1139c) If declaration-type-spec appears it shall specify the same declared type and kind type6

parameters as the result of iterator-reference, and shall not specify any assumed length type7

parameters.8

C1143g (R1139c) If => appears, either declaration-type-spec shall appear, or data-pointer-object shall9

have the POINTER attribute.10

C1143h (R1139c) If CONCURRENT appears, declaration-type-spec shall appear.11

C1143j (R1139a) If CONCURRENT appears, the construct shall not contain an EXIT statement that12

belongs to the construct or an outer construct, a CYCLE statement that belongs to an outer13

construct, or a branching statement that has a branch target that is not the END ITERATE14

statement or a statement within the block of the construct.15

C1143k (R1139d) The same iterate-attrib shall not appear more than once.16

R1520a iterator-reference is procedure-designator ([actual-arg-spec-list])17

C1524a (R1520a) The procedure-designator shall designate an iterator.18

C1524b (R1520a) The procedure-designator shall not be a coindexed object or a subobject of a coindexed19

object.20

If declaration-type-spec appears, it specifies the type and type parameter values of the variable-name,21

and variable-name is a construct entity of the ITERATE construct. If => also appears it has the pointer22

attribute, and this may be confirmed by the appearance of POINTER. If = appears the variable-name23

may be declared to have the ALLOCATABLE or TARGET attribute. It does not have any additional24

attributes.25

2.4.4 ITERATE construct and iterator execution semantics26

When the iterate-stmt of an ITERATE construct is executed the construct becomes active. If the27

procedure-designator in iterator-reference is a pointer, it shall be associated with an iterator. The values28

of the nondeferred length parameters of variable, variable-name, or data-pointer-object shall be the same29

as corresponding parameters of the result of iterator-reference.30

When an iterate-stmt is executed, the following occur in the specified order:31

1. Argument associations are established.32

2. An instance of the iterator is associated with the iterate-stmt ; it is not represented by an instance33

variable34

3. The iterator is invoked.35

4. An activation record is created for the instance by evaluating expressions within the specification36

part of the iterator and elaborating the specification part.37

5. Execution of the iterator begins with its first executable construct.38

12 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

While the construct is active, the following occur in the specified order:1

1. If = appears the iterator result value is assigned to variable or variable-name as if by an assignment2

statement; if => appears the result value is assigned to data-pointer-object or variable-name as if3

by pointer assignment.4

NOTE 2.7

Because the assignment of the result of iterator-reference to variable or variable-name is as if by
an assignment statement, it might cause finalization of variable, invocation of defined assignment,
or allocation or reallocation of an allocatable variable.

2. The block of the ITERATE construct is executed.5

3. The instance of the iterator is resumed by re-establishing argument associations and transferring6

control to the first executable construct after the SUSPEND statement whose execution suspended7

its execution. Expressions in the specification part are not re-evaluated and the specification part8

is not elaborated again. Therefore, local variables, including automatic variables, of the instance9

retain the same bounds, length parameter values, definition status, and values if any, that they10

had when the instance was suspended.11

NOTE 2.8

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

Invoking or resuming the iterator, assigning or associating its result, and executing the block , is an12

iteration. If declaration-type-spec appears, each iteration has a different instance of variable-name.13

An iterator terminates when it executes a RETURN, END, or SUSPEND statement, or completes14

execution of the final executable construct of its execution-part .15

If CONCURRENT appears, the processor may invoke and resume the iterator, and assign its value, in16

the sequence of execution that began execution of the construct, and then execute each corresponding17

block in a separate sequence of execution. Alternatively, it may invoke and resume the iterator, assign18

its value, and execute the corresponding block, in a separate sequence of execution for each iteration.19

The processor shall ensure that when the iterator is invoked or resumed, no other iteration of the same20

execution of the construct resumes the construct’s instance of the iterator until it terminates. In either21

case, the separate sequences of execution may be executed in any order, or concurrently.22

NOTE 2.9

If the processor chooses to invoke or resume the iterator, assign values to instances of variable-
name, and execute corresponding blocks, independently within separate sequences of execution,
instead of invoking and resuming the iterator within the sequence of execution that initiated the
construct, this effectively requires an iterator to be a monitor procedure, or that invoking or
resuming it is protected as if by a critical section.

Because the variable-name is a construct entity, if it is allocatable, it is not allocated before the iterator23

is invoked, and it becomes deallocated at the end of each iteration. The variable is not a construct24

entity.25

When the iterator terminates, a value is not assigned to variable or variable-name, or associated with26

data-pointer-object . If the result variable is allocatable, it shall be deallocated before the iterator termi-27

nates. Whether a non-allocatable result variable is finalized is processor dependent.28

No copyright 13

ISO/IEC TS 99999:2019(E) J3/23-107

NOTE 2.10

Because an iterator is allowed but not required to have assigned a value to its result variable when
it terminates, requiring a processor to finalize the result variable would require the processor to
keep track of its definition status.

If CONCURRENT does not appear, execution of an ITERATE construct completes, the activation1

record of the iterator instance is destroyed, the iterator instance ceases to exist, and the construct2

becomes inactive when3

• the iterator terminates,4

• an EXIT statement that belongs to the ITERATE construct is executed,5

• an EXIT or CYCLE statement that belongs to an outer construct and is within the range of the6

ITERATE construct is executed,7

• a branch occurs from a statement within the range of the ITERATE construct to a statement that8

is neither the end-iterate-stmt nor within the range of the ITERATE construct, or9

• a RETURN or STOP statement within the ITERATE construct is executed.10

If CONCURRENT appears, execution of an ITERATE construct completes, the activation record of the11

iterator instance is destroyed, the iterator instance ceases to exist, and the construct becomes inactive12

when the iterator terminates and execution of all iterations is completed.13

When execution of the ITERATE construct completes, if declaration-type-spec does not appear14

• if = appears and block was executed, the value of variable is the value assigned by the ITERATE15

statement before the final execution of block , or assigned during the final execution of block ;16

otherwise its definition status and value (if any) are the same as before execution of the ITERATE17

construct, or18

• if => appears and block was executed, the association status of data-pointer-object is as established19

by the ITERATE statement before the final execution of block , or established during the final20

execution of block ; otherwise its association status is the same as before execution of the ITERATE21

construct.22

NOTE 2.11

The variable might become undefined during the final execution of block . The association status
of data-pointer-object might become undefined during the final execution of block .

2.4.5 Restrictions on DO CONCURRENT constructs23

Subclause 11.1.7.5 of ISO/IEC 1539-1:2019(E) concerning restrictions on DO CONCURRENT constructs24

is revised to apply to ITERATE CONCURRENT constructs as well.25

2.5 VALUE attribute26

The VALUE attribute shall be allowed for a dummy coroutine or iterator.27

2.6 PRESENT (A)28

The PRESENT intrinsic function inquires whether an optional dummy argument is associated with an29

actual argument in a function or iterator reference, a CALL statement, or a RESUME statement.30

14 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

3 Examples1

3.1 Quadrature example2

This subclause presents four examples of a simple quadrature procedure. One uses forward communica-3

tion, two use reverse communication without coroutine syntax, and the fourth uses reverse communica-4

tion with coroutine syntax.5

3.1.1 Forward communication example6

subroutine INTEGRATE (A, B, ANSWER, ERROR, FUNC)7

real, intent(in) :: A, B ! Bounds of the integral8

real, intent(out) :: ANSWER, ERROR9

interface10

real function FUNC (X)11

real, intent(in) :: X12

end function FUNC13

end interface14

real, parameter :: ABSCISSAE(...) = [...]15

real, parameter :: WEIGHTS(...) = [...]16

integer :: I17

answer = weights(1) * func(0.5*(b+a))18

do i = 2, size(weights)19

answer = answer + weights(i) * func(0.5*(b+a) + (b-a) * abscissae(i))20

answer = answer + weights(i) * func(0.5*(b+a) - (b-a) * abscissae(i))21

end do22

answer = (b - a) * answer23

error = ...24

end subroutine INTEGRATE25

3.1.2 First reverse communication example26

This example uses computed GO TO to resume computation after each integrand value is computed.27

Notice that the DO construct cannot be used because computation needs to be resumed within the28

construct. Further, this subroutine is not thread safe.29

subroutine INTEGRATE (A, B, ANSWER, ERROR, WHAT)30

real, intent(in) :: A, B ! Bounds of the integral31

real, intent(inout) :: ANSWER, ERROR32

integer, intent(inout) :: WHAT33

real, parameter :: ABSCISSAE(...) = [...]34

real, parameter :: WEIGHTS(...) = [...]35

real, save :: RESULT36

integer, save :: I37

go to (10, 20, 30), what38

i = 139

answer = 0.5 * (a + b)40

what = 141

return42

10 result = answer * weights(1)43

11 i = i + 144

if (i > size(weights)) then45

what = 046

No copyright 15

ISO/IEC TS 99999:2019(E) J3/23-107

answer = (a - b) * result1

error = ...2

return3

end if4

answer = 0.5*(b+a) + (b-a) * abscissae(i)5

what = 26

return7

20 result = result + weights(i) * answer8

answer = 0.5*(b+a) - (b-a) * abscissae(i)9

what = 310

return11

30 result = result + weights(i) * answer12

go to 1113

end subroutine INTEGRATE14

This subroutine is used as follows:15

what = 016

do17

call integrate (a, b, answer, error, what)18

if (what == 0) exit19

! evaluate the integrand at ANSWER and put the value into ANSWER20

end do21

! Integral is in ANSWER here22

3.1.3 Second reverse communication example23

This example avoids GO TO statements and statement labels by structuring the quadrature subroutine24

as a “state machine.” The state indicates how to resume computation after each integrand value is25

computed. Although a DO construct can be used, control flow is difficult to follow because it is controlled26

by the state variable. This subroutine is also not thread safe.27

subroutine INTEGRATE (A, B, ANSWER, ERROR, WHAT)28

real, intent(in) :: A, B ! Bounds of the integral29

real, intent(inout) :: ANSWER, ERROR30

integer, intent(inout) :: WHAT31

real, parameter :: ABSCISSAE(...) = [...]32

real, parameter :: WEIGHTS(...) = [...]33

real, save :: RESULT34

integer, save :: I35

do36

select case (what)37

case (0)38

i = 139

answer = 0.5 * (a + b)40

what = 141

return42

case (1)43

result = weights(1) * answer44

what = 245

case (2)46

i = i + 147

if (i > size(weights)) then48

16 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

what = 01

answer = (a - b) * result2

error = ...3

return4

end if5

answer = 0.5*(b+a) + (b-a) * abscissae(i)6

what = 37

return8

case (3)9

result = result + weights(i) * answer10

answer = 0.5*(b+a) - (b-a) * abscissae(i)11

what = 412

return13

case (4)14

result = result + weights(i) * answer15

what = 216

end select17

end do18

end subroutine INTEGRATE19

This example is used the same way as the previous example.20

3.1.4 Example using a coroutine21

The coroutine organization is much clearer than the previous two examples.22

coroutine INTEGRATE (A, B, ANSWER, ERROR)23

real, intent(in) :: A, B ! Bounds of the integral24

real, intent(out) :: ANSWER, ERROR25

real, parameter :: ABSCISSAE(...) = [...]26

real, parameter :: WEIGHTS(...) = [...]27

integer :: I28

answer = 0.5*(b+a)29

suspend30

result = answer * weights(1)31

do i = 2, size(weights)32

answer = 0.5*(b+a) + (b-a) * abscissae(i)33

suspend34

result = result + answer * weights(i)35

answer = 0.5*(b+a) - (b-a) * abscissae(i)36

suspend37

result = result + answer * weights(i)38

end do39

answer = (b - a) * result40

error = ...41

end subroutine INTEGRATE42

This coroutine is used as follows:43

call integrate (a, b, answer, error)44

do while (suspended(integrate))45

! Evaluate the integrand at ANSWER and put the value into ANSWER46

resume integrate (a, b, answer, error)47

No copyright 17

ISO/IEC TS 99999:2019(E) J3/23-107

end do1

! Integral is in ANSWER here2

3.2 Iterator for a queue3

This example performs a breadh-first traversal of a binary tree. It illustrates that the block of an4

ITERATE construct might change the object that is the attention of its iterator. Whether this “makes5

sense” in the general case is the responsibility of the iterator and other procedures that act on its6

arguments, or variables to which it has access by use or host association; it is not the responsibility of7

the processor or the standard.8

type :: Tree_Node_t9

class(tree_node_t), pointer :: LeftSon => NULL(), RightSon => NULL()10

end type Tree_Node_t11

12

class(tree_node_t), pointer :: Root => NULL()13

14

type :: Queue_Element_t15

class(*), pointer :: Thing => NULL()16

class(queue_element_t), pointer :: Next => NULL()17

end type Queue_Element_t18

19

type :: Queue_t20

class(queue_element_t), pointer :: Head => NULL(), Tail => NULL()21

contains22

procedure :: DeQueue23

procedure :: EnQueue24

end type Queue_t25

26

type(queue_t) :: MyQueue27

28

call Fill_The_Tree (root)29

call myQueue%enQueue (root) ! Doesn’t enqueue if root is NULL()30

iterate (class(*) :: node => myQueue%deQueue())31

! This is an example where it ought to be possible to invoke (or resume) a32

! type-bound iterator (or function) that has no arguments other than33

! the passed-object argument without ().34

select type (node)35

class (tree_node_t)36

call node%processIt37

call myQueue%enQueue (node%leftSon)38

call myQueue%enQueue (node%rightSon)39

end select40

end iterate41

42

contains43

44

iterator DeQueue (TheQueue) result (Thing)45

class(queue_t), intent(inout) :: TheQueue46

class(*), pointer :: Thing47

class(queue_element_t), pointer :: This48

do49

this => theQueue%head50

if (.not. associated(this)) return ! terminate ITERATE construct51

18 No copyright

J3/23-107 ISO/IEC TS 99999:2019(E)

thing => this%thing1

theQueue%head => this%next2

deallocate (this)3

suspend ! Process Thing and come back here4

end do5

end iterator DeQueue6

7

subroutine Enqueue (TheQueue, Thing)8

class(queue_t), intent(inout) :: TheQueue9

class(*), intent(in), pointer :: Thing10

class(queue_element_t), pointer :: This11

if (associated(thing)) then12

allocate (this)13

this%thing => thing14

if (associated(theQueue%tail)) then15

theQueue%tail%next => this16

else17

theQueue%head => this18

end if19

theQueue%tail => this20

end if21

end subroutine Enqueue22

3.3 Preserving automatic variables23

If one needs to invoke a procedure to solve several differently-sized problems, and the expense of creating24

local automatic variables is significant, it can be posed as a coroutine and then invoked initially in such25

a way as to create its automatic variables with the maximum extents necessary for the entire spectrum26

of problems to be solved. It can then be suspended, which does not destroy its automatic variables.27

When it is resumed to solve each problem, the automatic variables are intact.28

3.4 Relationship to exception handling29

If exception handling is provided as described in J3/23-106, using an exception type defined in the30

ISO Fortran Env module, additional exception identifiers will be needed.31

No copyright 19

ISO/IEC TS 99999:2019(E) J3/23-107

4 Required editorial changes to ISO/IEC 1539-1:2019(E)1

To be provided in due course.2

20 No copyright

	Introduction
	History
	What this technical specification proposes

	General
	Scope
	Normative References

	Requirements
	General
	Summary
	Coroutine syntax and semantics
	ITERATOR and ITERATE construct syntax
	VALUE attribute
	PRESENT (A)

	Examples
	Quadrature example
	Iterator for a queue
	Preserving automatic variables
	Relationship to exception handling

	Required editorial changes to ISO/IEC 1539-1:2019(E)

