X3J3 / S8.103
February 1987

American National Standard
for Information Systems
Programming Language

Fortran

S8 (X3.9-198x)
Revision of X3.9-1978

Secretariat: Computer and Business Equipment Manufacturers Association

Draft S8, Version 103
Submitted to X3 by X3J3, Americal National Standards Institute, Inc.

FOREWORD

American National Standard Language Fortran. This standard specifies the form
and establishes the interpretation of programs expressed in the Fortran language. It con-
sists of the specification of the language Fortran. No subsets are specified in this standard.

5 The previous standard, commonly known as “Fortran 77", is entirely contained within this
standard, known as “Fortran 8x”. Any standard-conforming Fortran 77 program is intended
to be a standard-conforming Fortran 8x program. New Fortran 8x features can be compatibly
incorporated into such programs, with any exceptions clearly indicated in the text of this
standard.

10 This document is released to X3 and SPARC (Standards Planning and Requirements Com-
mittee), a subcommittee of X3, the American National Standards Committee for Information
Processing Systems, operating under the procedures of the American National Standards
Institute. The Computer and Business Equipment Manufacturers Association holds the sec-
retariat.

15 Appendix A describes a “Fortran Family of Standards” as well as the philosophy used in par-
titioning the Fortran language into new or incremental features, primary features, and old or
decremental features.

Since the publication of Fortran 77 (April 1978), the technical committee, X3J3, has been
developing the draft revision. The central philosophy has been to modernize Fortran so that
20 it may continue its long history as a scientific and engineering programming language.

OVERVIEW

Among the additions to Fortran 77 in this standard, five stand out as the major ones:
(1) Array operations
(2) Improved facilities for numerical computation
25 (3) Programmer defined data types
(4) Facilities for modular data and procedure definitions
(5) The concept of language evolution

A number of other additions are also included in this standard, such as improved source
form facilities, more control constructs, recursion, and dynamically allocatable arrays. No
30 Fortran 77 features have been removed.

Array Operations. Computation involving large arrays is an important part of engineering
and scientific uses of computing. Arrays may be used as entities in Fortran 8x, and opera-
tions for processing whole arrays and subarrays (array sections) are included in the language
for two principal reasons: (1) these features provide a more concise and higher level lan-

35 guage that will allow programmers more quickly and reliably to develop and maintain
scientific/engineering applications; (2) these features can significantly facilitate optimization
of array operations on many computer architectures.

The Fortran 77 arithmetic, logical, and character operations and intrinsic functions are
extended to operate on array-valued operands. These include whole, partial, and masked
40 array assignment, array-valued constants and expressions, and facilities to define user-

Version 103 1986 December Page i

FOREWORD X3J3/58

10

16

20

25

30

35

40

45

supplied array-valued functions. New intrinsic functions are provided to manipulate and con-
struct arrays, to perform gather/scatter operations, and to support extended computational
capabilities involving arrays (for example, an intrinsic function is provided to sum the
elements of an array).

Numerica! Computation. Scientific computation is one of the principal application
domains of Fortran, and the guiding objective for all of the technical work is to strengthen
Fortran as a vehicle for implementing scientific software. Though nonnumeric computations
are increasing dramatically in scientific applications, numeric computation remains dominant.
Accordingly, the additions include portable control over numeric precision specification,
inquiry as to the characteristics of numeric information representation, and improved control
of the performance of numerical programs (for example, improved argument range reduction
and scaling).

Derived Data Types. “Derived data type” is the term given to that set of features in this
standard that allows the programmer to define arbitrary data structures and operations on
them. Data structures are user-defined aggregations of intrinsic and derived data types.
Intrinsic operations on structured objects include assignment, input/output, and use as pro-
cedure arguments. With no additional derived type operations defined by the user, the
derived data type facility is a simple data structuring mec¢hanism. With additional operation
definitions, derived data types provide an effective implementation mechanism for data
abstractions.

Procedure definitions in this standard may appear within a program unit, and may be used to
define operations on intrinsic or derived data types. These procedures are essentially the
same as external procedures, except that they also can be used to define infix operators.

wodular Definitions. In Fortran 77, there is no way to define a global data area in only
one place and have all the program units in an application use that definition. In addition,
the ENTRY statement is awkward and restrictive for implementing a related set of proce-
dures, possibly involving common data objects. Finally, there is no means in Fortran 77 by
which procedure definitions, especially interface information, may be made known locally to
a program unit. All of these deficiencies, and more, are remedied by a new type of program
unit that may contain any combination of data object declarations, derived data type
definitions, procedure definitions, and procedure interface information. This program unit,
called a MODULE, may be considered to be a generalization and replacement for the
BLOCK DATA program unit. A module may be accessed by any program unit, thereby mak-
ing the module contents available to that program unit. Thus, modules provide improved

facilities for defining global data areas, procedure packages, and encapsulated data abstrac-
tions.

Language Evoluticn. With the addition of new facilities, certain old features become
redundant and may eventually be phased out of the language as use declines. For exam-
ple, the numeric facilities alluded to above provide the functionality of DOUBLE PRECISION;
with the new array facilities, non-conformable argument association (such as associating an
array element with a dummy array) is unnecessary (and in fact is not useful as an array
operation); and BLOCK DATA program units are redundant and inferior to modules.

As part of the evolution of the language, categories of language features (obsolete, obsoles-

cent, and deprecated) are provided which allow unused features of the language to be
removed.

Version 103 1986 December Page ii

10

15

20

25

30

35

40

45

FOREWORD

DOCUMENT ORGANIZATION

This document is organized in 14 sections, dealing with 7 conceptual areas. These 7 areas,
and the sections in which they are treated are:

High/Low Level Concepts Sections 2,3
Data Concepts Sections 4,5,6
Computations Sections 7,13
Execution Control Section 8
Input/Output Sections 9,10
Program Units Sections 11,12

Scoping and Association Rules Section 14

High/Low Level Concepts. Section 2 (Fortran Terms and Concepts) contains many of
the high level concepts of Fortran. This includes the concept of an executable program and
the relationships of its major parts. Also included are the syntax of program units, the rules
on statement ordering, and the definition of many of the fundamental terms used throughout
the document.

Section 3 (Characters, Lexical Tokens, and Source Form) describes the low level elements
of Fortran, such as the character set and the allowable forms for source programs. It also
contains the rules for constructing symbolic names and constants, and lists all of the Fortran
operators.

Data Concepts. The array operations (arrays as data objects) and data structures pro-
vide a rich set of data concepts in Fortran. The main concepts are those of data type, data
object, and object control, which are respectively described in Sections 4, 5, and 6.

Section 4 (Intrinsic and Derived Data Types) describes the distinction between a data type
and a data object, and then focuses on data type. It defines a data type as a set of data
values, with corresponding forms (constants) for representing these values, and operations
on these values. The concept of an intrinsic (predefined) data type is introduced, and the
properties of Fortran’s intrinsic types (INTEGER, REAL, including specified precision REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER) are described. Note that
only type concepts are described here, and not the declaration and properties of data
objects.

Section 4 also introduces the concept of derived (user defined) data types, which are com-
pound types whose components resolve into intrinsic types. The details for defining a
derived type are given (note that this has no counterpart with intrinsic types as intrinsic types
are predefined and therefore need not—indeed cannot-—be redefined by the programmer).
As with intrinsic types, this section deals only with type properties, and not with the declara-
tion of data objects of derived type.

Section 5 (Data Object Declarations and Specifications) describes in detail how named data
objects are declared and given the desired properties (attributes). An important attribute
(the only one required for each data object) is the object’s data type, so that the type decla-
ration statement is the main feature of this section. The different attributes are described in
detail, as well as the two ways that attributes may be specified (type declaration statements
and attribute specification statements). Implicit typing and storage association (COMMON
and EQUIVALENCE) are also described in this section, as well as data object value initializa-
tion.

Section 6 (Use of Data Objects) deals mainly with the concept of a variable, and describes
the various forms that variables may take. Scalar variables include character strings and

Version 103 1986 December Page iii

FOREWORD X3J3/S8

10

15

20

25

30

35

40

45

substrings, structured (derived type) objects, structure components, and array elements.
Arrays are considered to be variables, as are array sections. Among the array facilities
described here are array sections (subarrays), array allocation and deallocation (user con-
trolled dynamic arrays), effective array ranges, and range control (SET RANGE).

Computations. Section 7 (Expressions and Assignment) describes how computations are
expressed in Fortran. This includes the forms that expression operands (primaries) may take
and the role of operators in these expressions. Operator precedence is rigorously defined in
syntax rules, and summarized in tabular form. This description includes the relationship of
defined operators (user-defined operators) to the intrinsic operators (+, *, .AND., .OR., etc.).
The rules of both expression evaluation and the interpretation (semantics) of intrinsic and
defined operators are described in detail.

Section 7 also describes assignment of computational results to data objects, which has two
principal forms: the conventional assignment statement and the WHERE
statement/construct. The WHERE statement and construct allow masked array assignment.

Section 13 (Intrinsic Procedures) describes the approximately one hundred intrinsic functions
and two intrinsic subroutines of Fortran that provide a rich set of computational capabilities.
In addition to the Fortran 77 intrinsics, this includes many array processing functions and a
comprehensive set of numerical environmental inquiry functions.

Execution Control. Section 8 (Execution Control) describes all of the control constructs
(IF, SELECT CASE, and DO), branching statements (various forms of GOTO), and other con-
trol statements (for example, logical IF, arithmetic IF, CONTINUE, STOP, and PAUSE).
These are as in Fortran 77 except for the addition of the SELECT CASE construct and
extension of the DO loop to include an END DO termination option, additional control
clauses, and addition of EXIT and CYCLE statements.

Input/Output. Section 9 (Input/Output Statements) contains definitions for records, files,
file connections (OPEN, CLOSE, and preconnected files), data transfer statements (READ,
WRITE, and PRINT), file positioning, and file inquiry (INQUIRE).

Section 10 (Input/Output Editing) describes input/output formatting. This includes the FOR-
MAT statement and FMT = specifier, edit descriptors, list-directed 1/0, and name-directed
/0 (NAMELIST). It does not include unformatted /0, which is discussed in Section 9.

Program Units. Section 11 (Program Units) describes main programs, modules, and
block data program units. Modules, along with the USE statement, are described as a
mechanism for encapsulating data and procedure definitions that are to be used by (accessi-
ble to) other program units. Modules are described as vehicles for defining global derived
type definitions, global data object declarations, procedure libraries, and combinations
thereof.

Section 12 (Procedures) contains a comprehensive treatment of procedure definition and
invocation, including that for user-defined functions and subroutines. The concepts of
implicit and explicit procedure interfaces are explained, and situations requiring explicit pro-
cedure interfaces are identified. The' rules governing actual and dummy arguments, and
their association, are described.

Section 12 also describes the use of the OPERATOR option on function definitions to allow
function invocation in the form of infix operators as well as the traditional functional form.
Similarly, the use of the ASSIGNMENT option on subroutine definitions is described as allow-
ing an alternate syntax for certain subroutine calls. This section also contains descriptions of
or pertaining to recursive procedures, the RETURN statement, the ENTRY statement,

Version 103 1986 December Page iv

10

15

20

25

30

FOREWORD

internal procedures and the CONTAINS statement, statement functions, overioaded proce-
dure names, and non-Fortran procedures.

Scoping and Association Rules. Section 14 (Entity Scope, Association, and Definition)
explains the use of the term “scope” (especially important now because of the addition of
internal procedures, modules, and other new features), and describes the scope properties
of various entities, including symbolic names, operators, and others. Also described are the
general rules governing procedure argument association, use association (accessing entities
in modules), and storage association. Finally, Section 14 describes the events that cause
variables to become defined (have predictable values) and events that cause variables to
become undefined.

X3J3 COMMITTEE

The membership of the committee since that time is listed in the following section. Adminis-
tration of X3J3 has been undertaken by a “Steering Committee” and the technical develop-
ment has been carried out by subgroups, whose work is reviewed by the full committee.
During the period of development of the draft Fortran standard, many persons assumed
important roles of leadership. Their contributions are mentioned in the following section. At
the present time, the membership consists of 37 members.

STEERING COMMITTEE

Jeanne Adams, Chair

Jerrold Wagener, Vice-Chair

Walter S. Brainerd, Director, Technical Work
Lioyd Campbell, Editor

Jeanne Martin, Secretary

Neldon Marshall, Librarian

Andrew Johnson, Interpretations

James H. Matheny, Vocabulary Representative

SUBGROUP HEADS (Assistant Heads)
Richard A. Hendrickson (Alan Wilson)

Kurt W. Hirchert (John Reid)

James H. Matheny (Murray Freeman)
Richard R. Ragan (Lawrie Schonfelder)
Andrew Johnson (Jerry Wagener)

Version 103 1986 December Page v

FOREWORD X3J3/s8

Subcommittee X3J3 on Fortran, with the guidance of the international Fortran Working Group
ISO/TC97/SC22/WGS5, developed this standard. Those who contributed to the work were:

Jeanne C. Adams, Chair

Jerrold L. Wagener, Vice-Chair

Martin N. Greenfield, Vice-Chair (1972-1985)
Walter S. Brainerd, Director, Technical Work*
Lloyd W. Campbell, Editor*

Jeanne T. Martin, Secretary* .

Loren P. Meissner, Secretary (1978-1982)
Vacant, International Representative

Frances E. Holberton, International Representative (1978-1982)
Neldon H. Marshall, Librarian*

James H. Matheny, Vocabulary Representative *

Jeanne T. Martin, Convener ISO/TC97/SC22/WG5

Cornelis G. F. Ampt
Stuart L. Anderson
Charles Arnold
Graham Barber

Gloria M. Bauer”
Valerie G. Bowe
Joanne Brixius

Neil Brutman

Albert Buckley

Larry Bumgarner

Carl D. Burch
Winfried A. Burke*
John H. Carman

T. C. Chao

Nancy Cheng

P. Alan Clarke

Joel Clinkenbeard

Joe Cointment
Theodore R. Crowley
Ingemar Dahlstrand
Chela Diaz de Villegas
David C. Dilion

Joe L. Dowdell

John T. Engle

Stuart I. Feldman
Francoise Ficheux-Vapne
Murray F. Freeman
Daniel A. Gallagher
Gary L. Graunke
Stephen R. Greenwood
Richard B. Grove™
Kevin W. Harris
Richard A. Hendrickson™
Dean A. Herington™*
Kurt W. Hirchert*
Sheryl Horowitz

Steve K. Hue
Jagmohan L. Humar

Version 103

E. Andrew Johnson*
Gregory Johnson
Peter N. Karculias
Leslie M. Klein
Wilfried Kneis
Werner Koblitz
George T. Komorowski
Joe A. Korty

Anil K. Lakhwara
Dorothy E. Lang
John E. Lauer*
Kay Leonard
Donald L. Loe
Warren E. Loper
Bruce A. Martin*
Alex L. Marusak
Christian J. Mas
John Mayer
Edward H. McCall
Brian L. Meek
Michael Metcalf
Geoff Millard
Robert M. Miller
Leonard J. Moss
Meinolf Munchhausen
David T. Muxworthy
Linda J. O’Gara
Rod R. Oldehoeft
John P. Olson*
Rex L. Page*
George Paul

Daniel Pearl

QOdd Pettersen

lvor R. Philips
Aurelio A. Pollicini
Bruce W. Puerling*
Richard R. Ragan*
John K. Reid

1986 December

Lawrence Rolison
Karl-Heinz Rotthauser
Steven M. Rowan
Werner Schenk*
Gerhard J. Schmitt
Lawrie Schonfelder
Rick N. Schubert
John C. Schwebel
Mok-Kong Shen
Richard Shepardson
Richard W. Signor*
Brian T. Smith*
Jan A. M. Snoek
Hieronymus Sobiesiak
Ken Sperka

Bruce Stowell
Sylvia Sund

Mario Surdi
Richard C. Swift
Brian L. Thompson
Christian Ullrich
Robert B. Upshaw*
Nico Vossenstijn
Richard W. Weaver
George E. Weekly
Bruce Weinman
Everett H. Whitley
Gunter Wiesner
Edward J. Wilkens
Alan Wilson

John D. Wilson

*Subgroup Head

Page vi

Version 103

TABLE OF CONTENTS

FOREWORDomteriiiiieiiieeeesetess e sssss bt et s ettt s e eeesee i
INTRODUCTION ..ottt eeeee e e er s e e e s sa e e reeeenneeeenn 1-1
1.1 PUFPOSE. ...ttt e r e e e s s e eereeea e nnnne 1-1
1.2 (0T T o) GO 1-1
1.3 S oo o RS 1-1
I 20 T | T 17T 1o Y o - OO 1-1
1.3.2 EXCIUSIONS.....covteeirretiiiie i ece i s reee e s e rarrra s eee e s eenanaeesrnnans 1-1
1.4 CONTOIMANCEciicveceeeeeie et ee ittt eer e e s e erea s sseenses e esveenanesreen 1-1
1.5 Notation Used in This Standard.........ccccoviiiiiiiiiiiimiiie e 1-2
1.5.1 Syntax RUIeS ..ot 1-2
1.5.2 Assumed Syntax RUIES..........ccccevririiiecinerienierere e 1-3
1.56.3 Syntax Conventions and Characteristics..........c.ccccceervinniinennne 1-3
1.5.4 Text CONVENtIONS......ceiiiiiiiiiiiiiieetcies e ce e s e s e e e e rsseessennan 1-4
1.6 Deleted, Obsolescent, and Deprecated Features........ccceevvvvvvvnnnnnnnnn.. 1-4
1.6.1 Nature of Deleted Features.....cccccovviriiimniniiecrireee e e veeeennas 14
1.6.2 Nature of Obsolescent Features.........ccoverreenirmmririennieeineeeereeen, 1-4
1.7 1o To 0] == RSO 1-5
FORTRAN TERMS AND CONCEPTS......ccoi it eee e 2-1
2.1 High Level SyntaX.........ccoiiiiiiieees e e e 2-1
2.2 Program Unit Concepts........ccccceer e e 2-3
221 ScopiNG UNit ... rere e eeas s srereeenens 2-4
2.2.2 Executable Programccooiicimmeemmiice e eeres e 2-4
2.2.3 Main Programccccoceiiiimrior e eccrtnes s sssssnessnsnnesssssssessssssesanase s 2-4
b S o (o Tol= Yo 1] - TR 2-4
2.2.5 MOGQUIB....coiie i e e e eeeerrnn e eennn 25
2.3 Execution CONCEPESc.ovi ittt s 2-5
2.3.1 Executable/Nonexecutable Statements...............covvvvieevririinnnnn. 2-5
2.3.2 Statement Order.........oovieeiiiiiiii et re s eae e e e nn s s nanas 2-5
2.3.3 The END Statementccceeeiriiiiieiiiiiimnicneiirneneresin e s e e e e eeeas 2-6
2.3.4 EXecution SEQUENCE.......ccuvuuriieiiiiieieeee e e eeee e e eemnsraereresr e e e 2-6
2.4 D 6 W 07T g o7=T o £ 2-7
P2 S T B - - U Y = 27
2.4.2 Data Value........ e reueeeeereneteereeaaaeeerasae ettt rrnnaraasaanrtaaeeronns 2-7
243 Data Entity......coovviiiiece i 2-7
2.4.4 Variableoccuoviie e e e ren s 2-8
2.45 SHOrAQE ...cooviiiiiiniiieeie e e r s e e 2-8
2.5 [P aTo E=Ta 0 T=T o) E- 1 N 1T o 1 RPN 2-9
2.5.1 Name and Designator..........cccccceriirrimmmemsciee v e 29
2.5.2 KEYWOId......cioiiimiiiiiiiirii i eir e e srs e s e ren s nene s e s e 2-9
2.5.3 DeClaration.......cooveeeiiiiiiice e ee s e s anaas 29
2.5.4 DefinitiON....ccceiiiiiieiii i rrere e s r e e ee e e s ene e e e raas 29
2.5.5 REfBIENCE cccuee i et e et r e s e s 2-9
2.5.6 ASSOCIALION.....ccvuiieeii it rre et e reen e e e s 2-10
2.5.7 INMNSIC e e e e e 2-10

1986 December Page vii

TABLE OF CONTENTS

Version 103

X3J3/58

2.5.8 OPOratorcccuuvuiiieieeicieei e e 2-10
CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM 3-1
3.1 Fortran Character Set...........oor i iiccicrrr s e 3-1
BA.1 Letters oo 3-1

I I T 1 (- PSPPI 3-1

B.1.3 UNAEISCOIEoieeeeiiiieeeiie s eerrrrreennn s s e erar e e e s e 3-1

3.1.4 Special Charactersc.ccceeeriiiiii i, 3-1

3.1.5 Character GraphiCS.......ccccurmmmrmreernii s e 3-2

3.1.6 Collating SeqUEeNCE.........ccvvriiiriiiiiee vt 3-2

3.2 Low-Level SYNtax.........coocceciii it 3-2
3.2.1 KeYWOIAS .c.oeneiiiiniisserin it e e 3-2

B.2.2 NEAMES .ot 3-2

B3.2.3 CONStANTS.....uvveeieiieiiiiiireee et e e 33

T B @071 - (o £ T TP 3-3

3.2.5 Statement Labels........c.ccccciiiirerenninnren e 3-4

3.2.6 DelimMiters....ccccoviirireeeiin e 3-4

3.3 LT a T oL T e o PR 3-4
3.3.1 Free Source FOIMccoocccermmermrmrrrcimrenecniee s e 34

3.3.2 Fixed Source FOrmM......cccormiemmeiiimeeririi e 3-5
INTRINSIC AND DERIVED DATA TYPES ..., 4-1
4.1 The Concept Of TYPEcccceeiriee et e e s eea e 4-1
411 Set of ValUBS.....cccoeeiiiii e ee e ernnes 41

4.1.2 ConStants.......c.covviiveriie e 4-1

T e B 0o T-1 -1 (e o V- TP 4-2

42 Relationship of Types and Values to Objects and Entities 4-2
4.3 INrinSiC Data TYPOS ..vvve i iiiieerecriec e et e eeeeee 4-2
4.3.1 NUMETIC TYPES ooiviieericce i ssii s s s 4-2

4.3.2 NONNUMENIC TYPOS.....ciivieririmmener e eeeerrtenrerte bt s essbbe e enes 4-5

4.4 Derived TYPOS. ..o i e e 4-6
4.41 Derived-Type Definitionccooveoniiiiniiicii e, 4-6

4.4.2 Derived-Type Valuesccocoeiiiiiimiiinncininniiniiis s 4-8

4.4.3 Construction of Derived-Type Values...............cceveeeeriiencennn e, 4-8

4.4.4 Derived-Type Operationscccccccmmmiimmimiiinie e 49

DATA OBJECT DECLARATIONS AND SPECIFICATIONS 5-1
5.1 Type Declaration Statements........ccccoooovo e e 5-1
5.1.1 Type-Specifier Attributes.........c....oo e 5-2

5.1.2 AHMNDULES ... e e 5-4

5.2 Attribute Specification Statementsccccceeveviiiiiiiiinc s 5-9
5.2.1 INTENT Statement......cccccceeeeiiriiinniccee e v e 5-9

5.2.2 OPTIONAL Statement.............cccevrccimiiiiniiinii e aeces e 5-9

5.2.3 Accessibility Statements..........ccooooiiiiiii 59

5.2.4 SAVE Statement.............oooiiieeceiin et 5-10

5.25 DIMENSION Statement........ccccvriariiierenenieir e eerreeeresese e 5-11

5.2.6 DATA Statement.......cccceveeeriiiieniin e r e er e 5-11

5.2.7 PARAMETER Statement..........c..occceciiiiciecen e, 5-14

1286 December Page viii

Version 103

TABLE OF CONTENTS

5.2.8 RANGE Statement........cccccoiiivccimreenireiiiree e e anaaes 5-14
5.3 IMPLICIT Statement.........cooocovviiiii e sneerse e 5-14
5.4 NAMELIST Statementccccvvimiimiicriiircciiisre e 5-15
5.5 Storage Association of Data Objects..........ccccceececiviiinrinec v, 5-16
5.5.1 EQUIVALENCE Statement...........ccccccrirciiimiiinnn e 5-16
5.5.2 COMMON Statement.........ccccoooeiriimrmeerreceieerrrer e seranaes 5-17
USE OF DATA OBJECTS ...t rreive s ens e s 6-1
6.1 SCAIAIS ... cccccerrrrrerrt et sr e e n s a b nan e anrrantarnreaetbesrnnetnaes 6-1
6.1.1 SUDBSIINGS.....ooiiiiiii e ————————— 6-1
6.1.2 Structure COMPONENtS.........covmuiiiiieerii i eees e ees 6-2
6.2 AITAYS. ..o e 6-2
6.2.1 WhOIE AIrayscocoiiiiimiiiiiiiieeiins ittt e e s er s ereenen e s 6-3
6.2.2 The ALLOCATE Statement..............cccoercrmmivininemeineeeeieeeveeeeeans 6-3
6.2.3 The DEALLOCATE Statement..........ccccevviiiiiin e, 6-4
6.2.4 Array Elements and Array SectionS....c..cccceveerriemriniririiieeeeieninn, 6-4
6.2.5 The SET RANGE Statement........cccccceiiiiviiiicnnne e 6-6
6.2.6 The IDENTIFY Statement...........ccccccciiiiiimuimriiiieeee e eereenene 6-7
6.2.7 Summary of Array Name Appearancescccecceeerverernnrrnene 6-9
EXPRESSIONS AND ASSIGNMENTccoomrmrenmirereereresesaececeeen, 7-1
7.1 EXPreSSiONS...ccuuiiiiiiiiiiii i et ea e e e ree e s 7-1
7.1.1 Form of an EXpressionccocceiiiiniiciienin s esscceccnninnneeneens 7-1
7.1.2 Intrinsic Operations.............c.cooeiimiiiiiiicic e 7-4
7.1.3 Defined Operations...........cccomeimiiiiicccimre e, 7-5
7.1.4 Data Type, Type Parameters, and Shape of an Expression...... 7-6
7.1.5 Conformability Rules for Intrinsic Operations............ccccceeennen... 7-7
7.1.6 Kinds of EXPressionscccociiieeniiinniniscccsnincnneeine e eeecse e 7-7
7.1.7 Evaluation of Operations.........ccccccociiiimmmnnciciiciten e, 7-9
7.2 Interpretation of Intrinsic Operations...........ccovveeeeeiiiiiiice e, 7-13
7.2.1 Numeric Intrinsic Operationsccccccvvivceniirerece 7-13
7.2.2 Character Intrinsic Operation............cccccvicrimresmiinerceeecee e 7-14
7.2.3 Relational Intrinsic Operations......ccccccevveeireviviii e, 7-14
7.2.4 Logical Intrinsic Operations...........cccceciciiiieiiiinirrenn e 7-15
7.3 Interpretation of Defined Operations..........ccccconiiiniinnenn e, 7-16
7.3.1 Unary Defined Operation..........ccccccuerericmiiiiinnncrceren s cvessensseeeans 7-16
7.3.2 Binary Defined Operationcccccccviiiimiiiiininincccsciveiereeeeeeenees 7-16
7.4 Precedence of Operators...........cccccverrimreririceeninn e e e s ve s 7-16
7.5 ASSIGNMENT ...ooiiiriiii e 7-18
7.5.1 Assignment Statement.........cccccemiiieiiiiii e, 7-18
7.5.2 Masked Array AssignmentWHEREccecoeeviiciimenrineeens 7-20
EXECUTION CONTROLoi vt eccercee s eeermce e eenn 8-1
8.1 Executable Constructs Containing BIOCKS..........cccovvvviviiiiccciieeeeeeeeievies 8-1
8.1.1 Rules Governing BIOCKSooeeceeriiiinire e vcrinerr e e 8-1
8.1.2 IF CONSIIUCE........crrierietineniiiicsisserrerasneererereasessnessseesareresrenes 8-1
8.1.3 CASE Construct........ccccerrierreiiiirrreirr et ssees s s e 8-3
8.1.4 Iteration Controlccoiiveiiiiiiecerr e e 8-5

1986 December Page ix

TABLE OF CONTENTS

10

Version 103

8.2

8.3
8.4
8.5

INPUT/OUTPUT STATEMENTS

9.1

9.2

9.3

9.4

9.5

9.6

9.7
9.8

INPUT/OUTPUT EDITING

10.1

10.2

10.3
10.4
10.5

Branching.......coeeuuieeeiomiimiei e
8.2.1 Statement Labels...........oooeceeiiiiiiiirci e
8.22 GO TO Statement........cccceeveiieiveireiiiiree e irr e e eee e e
8.2.3 Computed GO TO Statementcooevvmeiiiiiiiiiicicineree,
8.2.4 ASSIGN and Assigned GO TO Statement............ccccceee.
8.2.5 Arithmetic IF Statement............ccoooriveeiciiiiec e,

CONTINUE Statement

[1= o] (o L=
9.1.1 Formatted RECOTd........oceviviiieiireeiiiniieeer e eereersee e eae e
9.1.2 Unformatted Recordcooeviiiiiiiiiii e
9.1.3 Endfile Record.......cooovuuiiimiiiiiiii e e
1= P
9.21 External Files....ccvi it
0.2.2 InterNal FileS......cccoveeiiiierrieeecceiiinie e ereeeae e ereeaea e e rrenn e s e
[l =3 0o] 1= o1 (1o] o W O TR

9.3.1 Unit Existence

9.4.3 Execution of a Data Transfer Input/Output Statement

9.4.4 Printing of Formatted Records..........ccecoviiimmmiiviiiiiicicnnecnnn,
File Positioning Statementscccccceemriiieeiiinivccvcncvncrrreeeeeeeeee,
9.5.1 BACKSPACE Statement........c.cocccrverevermrmmerecnnnirieninneenisnenn.

9.5.2 ENDFILE Statement

Restrictions on Function References and List ltems

Explicit Format Specification Methodsc.cccooe s
10.1.1 FORMAT Statement........ccccoriiieni e
10.1.2 Character Format Specification...........ccccccurvniicrerecreirreenenn..

Form of a Format Item List
10.2.1 Edit Descriptors
10.2.2 Fields
Interaction Between Input/Qutput List and Format

10.5.1 Numeric Editing

1986 December

L 0] S} -1 =1 1 1 =11 | ST
PAUSE Statement......covviieiieeii et ies et sia s e e e s neass

9.3.2 Connection of a File to a Unitccccceevrimmniiieniimrnneein,
9.3.3 PreconneCtion.......cccoooeviiiiiieriiieiiiiieeeiinn e eeri e eree
9.3.4 The OPEN Statement...........ccooiviieeeriieiirerees s e
9.3.5 The CLOSE Statement.....c..ccccccceeiiieiiiieeecciee e,
Data Transfer Statements......ccccooieririeecvvrrriive e,
9.4.1 Control Information List.........ccceevrrieiieiiireiniiierecee e
9.4.2 Data Transfer Input/Output List.........cccommivimimirniiniiineannn,

9.5.3 REWIND Statement ..o
File INQUINY ..ttt e e
9.6.1 Inquiry SPecifiersccoiiiiiceiiiiiiiii e

Restriction on Input/Qutput Statements.............ceeveviiiiiiiienineennn,

Positioning by Format Control ..o,
Data Edit DesCriplorsvuiiiiceecie it eeer e

X3J3/S8

Page x

11

12

Version 103

TABLE OF CONTENTS

10.5.2 Logical Editing ... e 10-8
10.5.3 Character Eiting.......cc...cooviiirireeciiiiieeciiirc e sr e eeeeenens 10-8
10.6 Control Edit DesCriplOrSsc.iiiviiiiiiireeiiiiirire e e e e e 10-8
10.6.1 Position Editing............. N 10-8
10.6.2 Slash Editing..........cccevviiiveiiiis ettt e s e s e e s eneenens 109
10.6.3 Colon Editingccovvvivieeineiriieririccccceciin e rrmreres e e ree e eeeeeeens 109
10.6.4 S, SP, and SS Editingcoverveniiiniiiiinin e 10-10
10.6.5 P Editingccoceeee ettt 10-10
10.6.6 BN and BZ Editing..........cccoveveerreriiiiniiniie s ercer s ee e eveneens 10-10
10.7 Character String Edit Descriptors.......ccccoeooiiiiiiiecieree e 10-11
10.7.1 Character Constant Edit Descriptorccccoooviirmmniiiieeieceiennnn. 10-11
10.7.2 H EdItiNg . ccceiieeeiiie et cere e e s mee s e s s s smee e ne e 10-11
10.8 List-Directed Formatting.........ooccvvciniimmeeceiiiiii e, 10-11
10.8.1 List-Directed INpUL.......cccoviiiiiii i e 10-11
10.8.2 List-Directed Qutput..........c.vureeeeriiiemnreciiiiriiiie e 10-13
10.9 Namelist Formatting.........ccociieeiiiiicie e 10-14
10.9.1 Namelist INPUL.......cccccoiiiimiirirrrr e 10-14
10.9.2 Namelist Qutput.........ccoooieiii 10-16
PROGRAM UNITS......cciiierirriiinssres s s eresn s s s s senne e 111
111 MaIN Programocveceeir e eeciiiees e eeetr e s s s sss s s s ee e en e e e e e e s e e e e ean 1141
11.1.1 Main Program Specificationsc..ccoovviviiiiiiiiiiiininininccencvneennns 11-1
11.1.2 Main Program Executable Part........ccccccovviiiiiiininiiinnrcnnrnncnnnnn, 11-1
11.1.3 Main Program Internal Procedures.........ccccccooiiniiiiiiicniminneennnn, 1141
L - o (T e [N = PP UUPRT 11-2
11.3 MOGUIBS .. .ot ceee e eteete e e esbe s e e s b s te s s neear e e s ane e e sanaseeennin 11-2
11.3.1 Module Referencecccooeieviismiiiiiiiciin e 11-2
11.3.2 The USE Statement............cocciiiiimimrimniiiicrn e 11-2
11.3.3 Examples of Modulesccooueermriimiiimic e 11-3
11.4 Block Data Program Units.........cccconeeiiiiiininiiniiiiinineinnicii e 11-5
PROCEDURES.........o it eer e ertn s s ee s e e s ena e emnas 12-1
12.1 Procedure Classifications......ccccccciriiimimmrc e 121
12.1.1 Procedure Classification by Reference..........ccccccconiiiiiiiennnnnnn. 12-1
12.1.2 Procedure Classification by Means of Definition........................ 1241
12.2 Characteristics of Proceduresc.cociviiimminiiniinnnise e reseeenennns 12-1
12.2.1 Characteristics of Dummy Arguments............cccoceceiirrvicinecrnnnnens 12-1
12.2.2 Characteristics of Function ReSUltsccoveevieiiiiicciiiininnenen, 12-2
12.3 Procedure Interfacec.coimvieriiiin i 12-2
12.3.1 Implicit and Explicit Interfacescc.ccoviviimmrmmmrerrerenerrrernsmneenan 12-2
12.3.2 Specification of the Procedure Interface..............ccoveicccniinneennnn, 12-3
12,4 Procedure RefEreNCEe..........ccccvviiiiiiieeirrcaerirereessrersere e e es et ea e e s s neeseeeans 12-4
12.4.1 Actual Argument Listcccovimiemimiiiiiiiii e 125
12.4.2 Function Referencec.cccccniiiminiiininicssceee e 12-7
12.4.3 Elemental Function Referencecccccccovvviiiiniiiniiiiin e, 12-7
12.4.4 Subroutine Reference......ccccccccovrviiiiiiiiii s 12-8
12.4.5 Elemental Assignment.........cccooiimveiiiiiiiiiiii e 128
12.5 Procedure, Definition,.ccccccciiccviriiiiccccnirrcrieiiriii s ersceaeree e e e s e e e e e e e e 12-8
12.5.1 Intrinsic Procedure Definition.........c.cooviineniine, 12-8

1986 December Page xi

TABLE OF CONTENTS X3J3/58

13

Version 103

12.5.2 Procedures Defined by Subprograms.........cccccoeciiinniiiininnnnns 12-8
12.5.3 Definition of Procedures by Means Other Than Fortran............ 12-14
12.5.4 Statement FUNCHON............cooeeerrreeiiicc i, 12-14
12.5.5 Overloading Namesccceeveeriiiimiiir et 12-14
INTRINSIC PROCEDURESccoorrieeccrcnicrrini i 13-1
13.1 Intrinsic FUNCHONSccoceiiiiiiirc st 13-1
13.2 Elemental Intrinsic Function Arguments and Results........c.cccccocnneeee . 13-1
13.3 Argument Presence Inquiry FUNCioN..........ccccrnieinnniinccne 13-1
13.4 Numeric, Mathematical, Character, and Derived-Type Functions 1341
13.4.1 Numeric FUNCHONS.........cccciiiiiiiiccieeeiee it 13-1
.13.4.2 Mathematical FUNCHONSc.evvereeemeiciciiimiiiini e, 13-1
13.4.3 Character FUNCHONS........cooeciiiiinniiiinniiriiii e 13-1
13.4.4 CHARACTER Inquiry FUNCLiON.......ccccceiiiiiiiiiiccicininien e 13-1
13.4.5 Derived Data Type Inquiry Functions..........ccccceeveniiiiin, 13-2
13.5 Transfer FUNCHON........c.c.ooiiiiiii et 13-2
13.6 Numeric Manipulation and Inquiry FUNCtionsccccceevvivnnienninnn. 13-3
13.6.1 Models for Integer and Real Dataccccovvviiiiiiincnniininnnnnn. 13-3
13.6.2 Numeric Inquiry FUnctionsc.ccooeeeeiiiiiiiniiiiiimeneeeeeee 13-3
13.6.3 Floating Point Manipulation Functionsccccccviiiininnnnnnn. 13-3
13.7 Array Intrinsic FUNCIONS.........oovceiiiiiiiiiii e, 13-3
13.7.1 The Shape of Array Arguments...........cccceev i, 13-4
13.7.2 Mask Arguments...........cc.coeeeniiiiniiiin e 13-4
18.7.3 Vector and Matrix Multiplication Functionsccccovninenninns 13-4
13.7.4 Array Reduction FUNCHONS.........ccccooviiimiiiiiiiiiin e, 13-4
13.7.5 Array Inquiry FUNCLIONSccoviviiiiiniiiiiir e 13-4
13.7.6 Array Construction FUNCHiONS ..., 13-4
13.7.7 Array Manipulation Functions..............cccciciiiiiininnnnnncn o, 13-5
13.8 INtrinSiC SUDFOULINES ...coovviiiiiicr e e 13-5
13.8.1 Date and Time Subroutings.........cceeeeriiiiiiiiiniiiiiiiineens 13-5
13.8.2 Random NUMDErS..........ccccevveerireemeiiiin e 13-5
13.9 Tables of Generic Intrinsic Functions.................cooo v 13-5
13.9.1 Argument Presence Inquiry Function...........c.cccvninnnis 135
13.9.2 Numeric Functions............ccceevvveeeennnn. et 13-5
13.9.3 Mathematical FUNCHONScccoueeiriernccci 13-6
13.9.4 Character FUNCHONS........cecuvevermmimeiiriiinriinin e 13-6
13.9.5 Character Inquiry Functions.......... e et B 13-6
13.9.6 Numeric Inquiry FUNCHONScoeevviiiiiiiiiiireeeecee s 13-7
13.9.7 Transfer FUNCLON.......cccccveivveeeemrcrneriecinescec e s e 13-7
13.9.8 Floating-point Manipulation Functions...............ceceiviiiiiiiiinennn, 13-7
13.9.9 Vector and Matrix Multiply Functions.............ooovemernviiiinninvennins 13-7
13.9.10 Array Reduction FUNCHONS.........ccccccnniniiieiiniceiiiine e, 13-7
13.9.11 Array Inquiry FUNCtioNSc..cociiiiimiiinciiie s, 13-8
13.9.12 Array Construction FUnctions...........cccceeviiiieinicniiinenniinns 13-8
13.9.13 Array Manipulation Functions............cccccovviiiiiininiie e, 13-8
13.9.14 Array Geometric Location Functions...........cccccmmmiiiniiinininnnnn, 13-8
13.10 Table of Intrinsic SUbroutingescccccccorvvinriiiiii 13-8
13.11 Table of Specific Intrinsic FUNCtionsccccemiiiiin i, 13-9
13.12 Specifications of the Intrinsic Procedures........cccccvveeeiiiiiiiiiniiniennennian 13-10

1986 December Page xii

14

Version 103

TABLE OF CONTENTS

SCOPE, ASSOCIATION, AND DEFINITIONcoviviieieiiicirenns 14-1
14.1 Scope of NAMEScoviiriiicirir e 141
14.1.1 Global Entities ...ccoveeeeee e e 1441
14.1.2 Local ENttIeS ..ccoeeeeeeiir e e 14-1
14.1.3 Statement Entitiesccveveiriveeiiiiiieeee e 14-2
142 Scope of Labels........ccceiveeiiee et 14-3
14.3 Scope of Exponent Lettersccoooioiviinecrmmcrr e e 14-3
14.4 Scope of External Input/Output Units........coeeciveviiiviiiiiiiice e 14-3
14.5 Scope Of OPErators...........ocovveeeiiiiiirieer s rssssirerrrree s s rres e s s ee s e e ene 14-3
14.6 Scope of the Assignment Symbol...........ooviiiiiicc e 14-3
L A =TT Tor - 4 Lo] o 14-3
14.7.1 Name ASSOCIAtONc..oooviririccccrrrer e rrrrrr e e cr e r e 14-3
14.7.2 Storage Associationccceiiiiiniiiiiiiiiiin e, 14-5
14.8 Definition and Undefinition of Variables...........cccceiniiereiieercc e, 14-6
14.8.1 Variables That Are Always Definedccocverriirenee v, 14-7
14.8.2 Variables That Are Initially Definedc..ccovvveiveiirev e, 14-7
14.8.3 Variables That Are Initially Undefinedcc.ccceeereirvricenn, 14-7
14.8.4 Events That Cause Variables to Become Defined..................... 14-7
14.8.5 Events That Cause Variables to Become Undefined................. 14-8
FORTRAN FAMILY OF STANDARDScccovummumiiunrrnnctrenienenens A-1
A1 The Fortran Language Standard............cccoveiiiiiiinininccccrcern e, A-1
A1.1 Primary Features ...t A-1
A1.2 Incremental Features........cccccccvriieeriiiieeereecccc e A1
A.1.3 Decremental Featuresccovcceveeriiiriiirccccc e A-2
A.1.4 Compatibifityocovieiiiiieiiri e, A-2
N B T oo - T OO A2
A2 Supplementary Standards Based on Procedure Libraries A-2
A.2.1 Interface MeChaniSMS..........cccccveiiiirimreeniien s rrrrnrnesee e A-2
A3 Supplementary Standards Based on Module Librariesccccocueeene. A-2
A3.1 Interface MeChaniSMS.........cccciviceei i e e A-3
AB.2 RUIBS ..o e e A-3
A4 Secondary Standards.......c.ccooeoeviieciicn A-4
A5 Standard CONfOrMANCEooiiiiiiiier e ere e e A-5
A5.1 Name Registrationc.cccccvviiiniiiiiiiiiir e, A-5
A.6 Fortran Family of Standards..........ccccoovmmmiriiiimeiireieeeveeeeeeee e A-6
DELETED, OBSOLESCENT, AND DEPRECATED FEATURES..... B-1
B.1 Deleted FEaturesc..vuiuiciieiiiiiecicrccce e e e e B-1
B.2 Obsolescent Featurescccvev e iiien e B-1
B.2.1 Alternate RetUrNccocoirii e B-1
B.2.2 PAUSE Statementc.oooviiceiiii e B-2
B.2.3 ASSIGN and Assigned GO TOcccciririermr e e B-2
B.2.4 Assigned FORMAT Specifiers..........cceceririvrmiiicnerinrcicivrcceennne B-2
B.3 Nature of Deprecated Featuresccvvrreereiiiineccce e B-2
B.3.1 Storage ASSOCIAtIONccociveiiiiimniiniitirr e B-3
B.3.2 Redundant Functionalitycceceererermiecciiiei e B-5

1986 December Page xiii

TABLE OF CONTENTS X3J3/58

C SECTION NOTES. ...t rrse s resesi e s s s ss e s aan s aeee C-1
CA1 Section 1 Notesovvvvvereeevivenneenn, re et rrae e e e et aeeeeereeaa s narnrres CA1
c2 LYY (o) I o (= T P C-1
Cc3 SECHON 8 NOES .ooeri et e e s e r e e e e e C-1
C4 SECtioN 4 NOBScceeeeeeee e C-1
C5 SECHON 5 NOES .eoeviirieee ittt emr e rer e e e e e s s s C-2
C.6 Section 6 NOtESccceviv i C-3
c7 (ST (L0 T A N (=TS OO C-4
Ccs8 SECHON 8 NOIESociiiieiiiiicciciiti e s s e e e e e C4
C.9 SeCtion 9 NOEScovviieecceirrcirrer e C-4
C.10 Section 10 NOES ..veeeeiiieii ittt rcirree e et srre e r e e e e e e e e e s en e C-8
C.11 Section 11 NOtEScoeeeeeiiiie s C-10
C.12 Section 12 NOteSccceeeverrirrmmcrriirierririninecee s et e e et aner s C-14
(o T T~ 1Yo ([T B B N [(= OO C-16

C.13.1 Summary of Featuresccccceeeeiviiiiiiiiem e, C-17
C.13.2 EXAMPIES ...erieeriierieciirerereer e eecireeere e siss s s s man s s n e an e e aene e C-18
C.13.3 FORmula TRANSslation and Array Processing.......c.....cccvvvvenennen C-22
C.13.4 Variance from the Mean........c..ccomeiiiiini C-23
C.13.5 Vector Norms: Infinity-Norm and One-Normccceevvveenennnne. Cc-23
C.13.6 Matrix Norms: Infinity-Norm and One-Normc..c.cooeiiiiinnnee Cc-23
C.13.7 Logical QUEHeS.......cccceree e C-23
C.13.8 Parallel Computations.......cccccceeeveiiiiiiiiiiiiii e C-24
C.13.9 Examples of Element-by-Element Computationccceeees C-24
C.14 Section 14 Notescccceeevvinnennn. Pt eaaeassanaensnnninnanansnnneeo oot ot as s s] C-25

D SYNTAX RULES ...t s D-1

E PERMUTED INDEX FOR HEADINGSccoiiiiiiiiiiie e E-1

F REMOVED EXTENSIONS ... F-1
F.1 TYPE EXIENSIONScevevviiiereiierr et neenisesian s absses et crnnnes F-1

F.1.1 Bit Data TYPC...uueiiiiiiriirrrcrertis it e F-1
F.1.2 Variant StruCtUres........ccceccmrermvrmcimmininiii e eeeee F-12
F.2 Array Extensionsoovveervvieiimmmi e F-14
F.2.1 Structure Arrays of Arrays Treated as Higher-Order Arrays F-14
F.2.2 Vector-Valued Subscripts..........cccccciii i, F-14
F.2.3 Element Array AssignmentFORALLcccceciiiininiiiinnnnicin, F-15
F.2.4 Intrinsic FUNCHONS ...c.c..uuecce i ere s F-16
F.3 Procedure EXtENSIONS........ccoceuimiiiieeee i e s F-20
F.3.1 Nesting of Internal Procedures.........ccccccooiniiiiiiiiiiie, F-20
F.3.2 Internal Procedure Name as an Actual Argument..................... F-20
F.4 Condition Handling............ccviiiiccciiiinsnn et ee e eecs s e rrnnneees F-20
F.4.1 Definitions.....ccooceririnrieciiimeeteincii e F-21
F.4.2 Specification Statementsccccccviiiiminici F-21
F.4.3 Executable CONSIUCES.......cooviriceereimiirecii e F-23
F.4.4 Condition ENabling.......ccccciemmermmemmermmmeiieirii e eerrereeens F-25

Version 103

1986 December Page xiv

Version 103

TABLE OF CONTENTS

F.4.5 Condition Signalingcc...ccoireiriiiier et ren e F-25
F.4.6 Execution of an ENABLE Construct..............cccoocvccvviinnnnininnnnn, F-25
F.4.7 Effects of Signalling on Definition...........c...cccocociiiiinnnnnennn, F-26
F.4.8 Condition Status Inquiry FUnctionscccccccvecvvmnmiinniiceriecennn, F-28
F.4.9 Notes on Exception Handlingoooo i, F-29
F.5 Significant Blanks in Free Source FOrmccccoevveiiiniiieneccccceeeceeeee, F-29
11 G R G-1

1986 December Page xv

10

15

20

25

30

35

1 INTRODUCTION

1.1 Purpose. This standard specifies the form and establishes the interpretation of pro-
grams expressed in the Fortran language. The purpose of this standard is to promote porta-
bility, reliability, maintainability, and efficient execution of Fortran programs for use on a vari-
ety of computing systems. This standard is an upward compatible extension to the preced-
ing Fortran standard, X3.9-1978, informally referred to as Fortran 77. Any standard-
conforming Fortran 77 program is standard conforming under this standard, with the same
interpretation; however, see 1.4 regarding intrinsic procedures.

1.2 Processor. The combination of a computing system and the mechanism by which
programs are transformed for use on that computing system is called a processor in this
standard.

1.3 Scope. This standard specifies the bounds of the Fortran language by identifying both
those items included and those items excluded.
1.3.1 Inclusions. This standard specifies:

(1) The forms that a program written in the Fortran language may take

(2) The rules for interpreting the meaning of a program and its data

(3) The form of the input data to be processed by such a program

(4) The form of the output data resulting from the use of such a program

1.3.2 Exclusions. This standard does not specify:
(1) The mechanism by which programs are transformed for use on computers

(2) The operations required for setup and control of the use of programs on compu-
ters

(3) The method of transcription of programs or their input or output data to or from a
storage medium

(4) The program and processor behavior when the rules of this standard fail to estab-
lish an interpretation

(5) The size or complexity of a program and its data that will exceed the capacity of
any specific computing system or the capability of a particular processor

(6) The physical properties of the representation of quantities and the method of
rounding of numeric values on a particular processor

(7) The physical properties of input/output records, files, and units
(8) The physical properties and implementation of storage

1.4 Conformance. The requirements, prohibitions, and options specified in this standard
refer to permissible forms and relationships for standard-conforming programs rather than
for processors. The optional output forms produced by a processor, which are not under the
control of a program, are an example of an exception. The requirements, prohibitions, and
options for a standard-conforming processor must be inferred from those given for programs.

Version 103 1986 December Page 1-1

INTRODUCTION X3J3/58

10

15

20

25

30

35

40

45

An executable program (2.2.2) conforms to this standard if it uses only those forms and rela-
tionships described herein and if the executable program has an interpretation according to
this standard. A program unit (2.2) conforms to this standard if it can be included in an exe-
cutable program in a manner that aliows the executable program to be standard conforming.

A processor conforms to this standard if it executes standard-conforming programs in a man-
ner that fulfilis the interpretations prescribed herein. A standard-conforming processor may
allow additional forms and relationships provided that such additions do not conflict with the
standard forms and relationships. However, a standard-conforming processor may allow
additional intrinsic procedures even though this could cause a conflict with the name of an
external or internal procedure in a standard-conforming program. If such a conflict occurs
and involves the name of an external procedure, the processor is permitted to use the intrin-
sic procedure unless the name appears in an EXTERNAL statement within the scoping unit
(2.2.1). A standard-conforming program must not use nonstandard intrinsic procedures that
have been added by the processor.

This standard has more intrinsic procedures than did Fortran 77. Therefore, a standard-
conforming Fortran 77 program may have a different interpretation under this standard if it
invokes a procedure having the same name as one of the new standard intrinsic procedures,
unless that procedure is specified in an EXTERNAL statement as recommended for
nonintrinsic functions in the appendix to the Fortran 77 standard.

Note that a standard-conforming program must not use any forms or relationships that are
prohibited by this standard, but a standard-conforming processor may allow such forms and
relationships if they do not change the proper interpretation of a standard-conforming pro-
gram. For example, a standard-conforming processor may allow a nonstandard data type
such as INTEGER=*2.

Because a standard-conforming program may place demands on a processor that are not
within the scope of this standard or may include standard items that are not portable, such
as external procedures defined by means other than Fortran, conformance to this standard
does not ensure that a standard-conforming program will execute consistently on all or any
standard-conforming processors.

1.5 Notation Used in This Standard. In this standard, “must” is to be interpreted as a
requirement; conversely, “must not” is to be interpreted as a prohibition.

1.5.1 Syntax Rules. Syntax rules are used to help describe the form that Fortran state-
ments and constructs may take. These syntax rules are expressed in a variation of Backus-
Naur form (BNF) in which:

(1) Characters from the Fortran character set are to be written as shown, except
where otherwise noted.

(2) Lower case italicized letters and words (often hyphenated and abbreviated) repre-
sent general syntactic classes for which specific syntactic entities must be substi-
tuted in actual statements.

Some common abbreviations used in syntactic terms are:

stmt for statement attr for attribute
expr for expression dec/ for declaration
spec for specifier def for definition
int for integer desc for descriptor
arg for argument op for operator

(3) The syntactic metasymbols used are:

Version 103 1986 December Page 1-2

INTRODUCTION X3J3/58

10

15

20

25

30

35

40

is introduces a syntactic class definition

r introduces a syntactic class alternative

] encloses an optional item

] encloses an optionally repeated item
which may occur zero or more times

continues a syntax rule

(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s
is a one or two digit section number and nn is a sequence number within that sec-
tion. The syntax rules are distributed as appropriate throughout the text, and may
be referenced by number as needed.

(5) The syntax rules are not a complete and accurate syntax description of Fortran,
and cannot be used to generate automatically a Fortran parser; where a syntax
rule is incomplete, it is accompanied by an informal description of the correspond-
ing constraint.

(6) Obsolescent features are shown in a distinguishing type font. This is an example of the
font used for obsolescent features.

An example of the use of syntax rules is:
int-literal-constant is digit | digit]...
The following forms are examples of forms for an integer constant allowed by the above rule:
digit
digit digit
digit digit digit digit
digit digit digit digit digit digit digit digit
When specific entities are substituted for digit, actual integer constants might be:

4

67

1 999

10 243 852

1.5.2 Assumed Syntax Rules. To minimize the number of additional syntax rules and con-
vey appropriate constraint information, the following rules are assumed. The letters “xyz”
stand for any legal syntactic class phrase:

xyz-list is xyz [, xyz]...
Xyz-name is name
scalar-xyz is xyz

Constraint: scalar-xyz must be scalar.

1.5.3 Syntax Conventions and Characteristics.

(1) Any syntactic class name ending in “-stmt” follows the source form statement
rules: it must be delimited by end-of-line or semicolon, and may be labeled unless
it forms part of another statement (such as an IF or WHERE statement). Con-
versely, everything considered to be a source form statement is given a “-stmt”
ending in the syntax rules.

(2) The rules on statement ordering are described rigorously in the definition of
program-unit (R202-R220). Expression hierarchy is described rigorously in the

Version 103 1986 December Page 1-3

INTRODUCTION X3J3/S8

10

15

20

25

30

35

40

definition of expr (R712).

(3) The term “type parameter” applies to a data type parameter, with “type-param-
name” used for the dummy parameter and “type-param-spec” (R503) used for the
actual parameter, including the optional keyword. The part without the keyword is
called “type-param-value” (R504). These terms parallel the use of “dummy-arg-
name”, “actual-arg-spec” (R1209) and “actual-arg” (R1211), respectively, for proce-

dure arguments.

(4) The suffix “-spec” is used consistently for specifiers, such as keyword type param-
eters, keyword actual arguments, and input/output statement specifiers. It also is
used for type deciaration attribute specifications {e.g., “array-spec”), and in a few
other ad hoc cases.

(5) When reference is made to a parameter, including the surrounding parentheses,
the term “selector” is used. See, for example, “length-selector” (R508), “array-
selector” (R610), and “case-selector” (R813).

(6) The term “subscript” (e.g., R615 and R618) is used consistently in array
definitions.

1.5.4 Text Conventions. In the descriptive text, the normal English word equivalent of a
BNF syntactic term is usually used. Specific statements are identified in the text by the
upper-case keyword, e.g., “END statement”. Boldface words are also used in the text
where they are first defined with a specialized meaning.

1.6 Deleted, Obsolescent, and Deprecated Features. This standard protects the
users’ investment in existing software by including all of the language elements of ANSI
X3.9-1978. This document identifies three categories of outmoded features. There are none
in the first category, deleted features, which consists of features considered to have been
redundant and largely unused in ANSI X3.9-1978. Those in the second category, obsoles-
cent features, are considered to have been redundant in ANSI X3.9-1978, but are still used
frequently. Those in the third category, deprecated ieatures, are considered to have
become redundant by the inclusion of certain new features in this standard. Sections 1.6.1
and 1.6.2 describe the first two categories; Appendix B describes the third and lists the fea-
tures in each.

1.6.1 Maiure of Deleted Features.

(1) Better methods existed in ANS| X3.9-1978.

(2) These features are not included in this revision of Fortran.

1.6.2 Nature of Obsolescent Features.
(1) Better methods existed in ANS} X3.9-1978.

(2) It is recommended that programmers use these better methods in new programs
and convert existing code to these methods. '

(8) These features are identified in the text of this document by a distinguishing type
font (1.5.1).

(4) If the use of these features has become insignificant in Fortran programs, it is
recommended that future Fortran standards committees consider removing them
from the next revision.

(6) It is recommended that future Fortran standards committees do not consider
removing language features defined in this revision from the succeeding Fortran

Version 103 1986 December Page 1-4

INTRODUCTION X3J3/58

revision that do not appear on the list of obsolescent features.

(6) It is recommended that processors supporting the Fortran language continue to
support these features as long as they continue to be used widely in Fortran pro-
grams.

5 1.7 Modules. This standard provides facilities that encourage the design and use of mod-
ular and reusable software. Data and procedure definitions may be organized into nonexe-
cutable program units, called modules, and made available to any other program unit. In
addition to global data and procedure library facilities, modules provide a mechanism for
defining data abstractions and certain language extensions.

10 An intrinsic module is a module definition included with this standard. In addition, a module
may be standardized as a separate collateral standard. A standard module must be core
conforming. Operators defined in the module must not have the potential to alter the mean-
ing of any core-conforming intrinsic operation.

Version 103 1986 December Page 1-5

10

15

20

25

30

35

40

2 FORTRAN TERMS AND CONCEPTS

2.1 High Level Syntax. This section introduces the terms associated with program units
and other Fortran concepts above the construct, statement, and expression levels and illus-
trates their relationships. The syntax rule notation is described in 1.5.

R201 executable-program is program-unit
[program-unit 1...

Constraint: An executable-program must contain exactly one main-program program-unit.

R202 program-unit is main-program
or external-subprogram
or module
or block-data

R203 main-program is [program-stmt]
[specification-part
[execution-part]
[internal-procedure-part |
end-program-stmt

R204 external-subprogram is procedure-heading
[specification-part |
[execution-part |
[internal-subprogram-part |
procedure-ending

R205 procedure-heading is function-stmt
or subroutine-stmt

R206 procedure-ending is end-function-stmt
or end-subroutine-stmt

Constraint: In an external-subprogram, module-subprogram, or internal-subprogram, the
procedure-ending must be end-function-stmt if the procedure-heading is a
function-stmt and must be end-subroutine-stmt if the procedure-heading is
subroutine-stmt.

R207 module is module-stmt
[specification-part]
[module-subprogram-part]...
end-module-stmt

R208 block-data is block-data-simt
[specification-part |
end-block-data-stmt

Constraint: A block-data specification-part may contain only IMPLICIT, PARAMETER, INTE-
GER, REAL, DOUBLE PRECISION, COMPLEX, CHARACTER, LOGICAL, COM-
MON, DIMENSION, EQUIVALENCE, DATA, and SAVE statements.

R209 specification-part is [use-simt]...
[implicit-part]
[declaration-construct }]...
[stmt-function-part |

R210 implicit-part is [implicit-part-stmt]...

Version 103 1986 December Page 2-1

FORTRAN TERMS AND CONCEPTS

R211
5
R212
10 R213
15
R214
20
R215
R216
25
R217
R218
30
R219
35 R220
R221
40
45
Version 103

stmi-function-part

implicit-part-stmt

declaration-construct

stmi-function-part-stmt

execution-part

execution-part-construct

internal-subprogram-part

internal-subprogram

module-subprogram-part

module-subprogram

specification-stmt

or

is
or
or
or
is
or
or
or
or
or
or
is
or
or
or

is
is
or

or
or

or
or

implicit-stmt

stmt-function-stmt

[stmt-function-part-stmt 1...

data-stmt

[stmt-function-part-stmt }...

implicit-stmt
parameter-stmt
format-stmt
entry-stmt

derived-type-def
interface-block
type-declaration-stmt
specification-stmt
parameter-stmt
format-stmt
entry-stmt

format-stmt
data-stmt
entry-stmt
stmt-function-stmt

executable-construct

[execution-part-construct 1...

executable-construct
format-stmt
data-stmt

entry-stmt

contains-stmt

[internal-subprogram 1...

procedure-heading
[specification-part |
[execution-part |
procedure-ending

contains-stmt
[module-subprogram]

procedure-heading
[specification-part]
[execution-part]
procedure-ending

access-stmt
exponent-letter-stmt
external-stmt
data-stmt
intent-stmt
intrinsic-stmt
namelist-stmt
optional-stmt
range-stmt

1986 December

X3J3/58

Page 2-2

FORTRAN TERMS AND CONCEPTS

10

15

20

25

30

35

40

Version 103

or
or
or
or

X3J3/S8

save-stmt
common-stmt
dimension-stmt
equivalence-stmt

Constraint: An intent-simt or optional-stmt may appear only in the specification-part of a sub-
program(2.2.1) because they apply only to dummy arguments.

Constraint: An access-stmt may appear only in the scoping unit of a module.

R222 executable-construct is
or
or
or
or

R223 action-stmt is
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

action-stmt
case-construct
do-construct
if-construct
where-construct

allocate-stmt
assignment-stmt
backspace-stmt
call-stmt
close-stmt
computed-goto-stmt
continue-stmt
cycle-stmt
deallocate-stmt
endfile-stmt
exit-stmt
goto-stmt
identify-stmt
if-stmt
inquire-stmt
open-stmt
print-stmt
read-stmt
return-stmt
rewind-stmt
sel-range-stmt
stop-stmt
where-stmt
write-stmt
arithmetic-if-stmt
assign-stmt
assigned-goto-stmt
pause-stmt

Constraint: An entry-stmt may appear only in an external-subprogram or module-
subprogram. An entry-stmt must not appear in a construct.

Constraint: A return-stmt may appear only in a subprogram.

1986 December Page 2-3

FORTRAN TERWS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

2.2 Program Unit Concepts. Program units are the fundamental components of a For-
tran program. A program unit may be a main program, external subprogram, module, or
block data program unit. A subprogram may be a function subprogram or a subroutine sub-
program. A module contains definitions that are to be made accessible to other program
units. A block data program unit is used only to specify initial values for named common
block data objects. Each type of program unit is described in Section 11 or 12. An external
subprogram is a subprogram that is not contained within a main program, a module, or
another subprogram. An internal subprogram is a subprogram that is contained within a
main program or another subprogram. A module subprogram is a subprogram that is con-
tained in a module but is not an internal subprogram.

2.2.1 Scoping Unit. A program unit consists of a set of nonoverlapping scoping units. A
scoping unit is

(1) A derived-type definition,

(2) A procedure interface block, excluding any procedure interface blocks contained
within it, or

(3) A program unit or subprogram, excluding derived-type definitions, procedure inter-
face blocks, and subprograms contained within it.

A scoping unit that immediately surrounds another scoping unit is called the host scoping
unit.

2.2.2 Executable Program. An executable program consists of exactly one main program
and any number (including zero) of external subprograms. The set of external subprograms
in the executable program may include any combination of the different kinds of subpro-
grams in any order.

2.2.3 Main Program. Execution of an executable programv begins with the first executable
construct of the main program. The main program is described in 11.1.

2.2.4 Procedure. Procedures encapsulate arbitrary computations that may be invoked
directly during program execution. A principal difference between the two kinds of proce-
dures is the way in which each is invoked. A function is a procedure that is invoked in an
expression; its invocation causes a value to be computed which is then used in evaluating
the expression. A subroutine is a procedure that is invoked in a CALL statement or by an
assignment operation (12.4.4, 12.5.2.3). A subroutine may be used to change the program
state by changing the values of any of the data objects accessible to the subroutine; a func-
tion subprogram may do this in addition to computing the function value.

Procedures are described further in Section 12.

2.2.4.1 External Procedure. An external procedure is a procedure that is defined by an
external subprogram or by means other than Fortran. An external procedure may be
invoked by the main program or any procedure of an executable program.

2.2.4.2 MNodule Procedure. A module procedure is a procedure that is defined by a mod-
ule subprogram (R220). A module procedure may be invoked by any program unit using the
module.

Version 103 1986 December Page 2-4

FORTRAN TERMS AND CONCEPTS X3J3/S8

10

15

20

25

30

35

40

2.2.4.3 Internal Procedure. An internal procedure is a procedure whose definition is con-
tained within a main program or subprogram. The containing subprogram is called the host
of the internal procedure. An internal procedure is local to its host in the sense that the
internal procedure is accessible within the scoping unit of the host but is not accessible else-
where.

2.2.4.4 Procedure Interface Block. The purpose of a procedure interface block is to
describe the interface (12.3) to a procedure. It determines the forms of reference through
which it may be invoked.

2.2.5 Module. A module contains (or accesses from other modules) definitions that are to
be made accessible to other program units. These definitions include data object declara-
tions, type definitions, procedure definitions, and procedure interface blocks. The purpose of
a module is to make the definitions it contains accessible to all other program units in an
executable program that requests such accessibility. A scoping unit in another program unit
may request access to the definitions contained in a module. Modules are further described
in Section 11.

2.3 Execution Concepts. A program unit is a sequence of statements. Statements are
classified as executable statements and nonexecutable statements. There are restrictions
on the order in which statements may appear in a program unit, and certain executable
statements may appear only in certain executable constructs.

2.3.1 Executable/Nonexecutable Statements. Program execution is a sequence, in time,
of computational actions. An executable statement is an instruction to perform or control
one or more of these actions. Thus, the executable statements of a program unit determine
the computational behavior of the program unit. The executable statements are all of those
that make up the syntactic class of executable-construct.

Nonexecutable statements do not specify actions; they are used to configure the program
environment in which computational actions take place. The nonexecutable statements are
all those not classified as executable. All statements in a block data program unit must be
nonexecutable. A module may contain executable statements only within a procedure
definition in the module.

2.3.2 Statement Order. The syntax rules of Section 2.1 specify the statement order within
program units and subprograms. Figure 2.1 illustrates statement ordering. Vertical lines
delineate varieties of statements that may be interspersed and horizontal lines delineate
varieties of statements that must not be interspersed. USE statements, if any, must appear
immediately after the program unit heading and internal procedure definitions must follow a
CONTAINS statement. Between USE statements and internal procedure definitions, nonexe-
cutable statements generally precede executable statements, though the FORMAT state-
ment, DATA statement, and ENTRY statement may appear among the executable state-
ments.

An internal procedure definition is a function or subroutine subprogram with the same state-
ment ordering constraints (Figure 2.1) except that it may not include ENTRY or CONTAINS
statements or other internal procedure definitions and has an internal procedure END state-
ment rather than a program unit END statement.

Version 103 1986 December Page 2-5

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

45

50

Figure 2.1. Constraints on Statement Ordering.

PROGRAM, FUNCTION, SUBROUTINE,
MODULE, or BLOCK DATA Statement

USE Statements

PARAMETER | IMPLICIT
Statements Statements
PARAMETER | Derived Type Definitions
FORMAT and DATA Interface blocks
and Statements Type Declaration Statements
ENTRY Specification Statements
Statements
Statement
Function
DATA Statements
Statements
Executable
Statements

CONTAINS Statement

Internal Procedure Definitions

Program Unit END Statement

2.3.3 The END Statement. The program unit END statement must appear only as the ter-
minal statement of a program unit definition. The terminal statement of each program unit
must be an END statement. In all cases, the keyword END is a complete and valid END
statement. Variations allowed by each kind of program unit are included with the descrip-
tions of the program units (Sections 11 and 12). In main programs and subprograms, the
END statement may be executed, and its execution terminates execution of the main pro-
gram or subprogram (equivalent to a STOP statement in a main program and a RETURN
statement in a procedure). An END statement may be labeled and may be the target of a
program branch.

2.3.4 Execuiion Sequence. The execution of a main program or procedure involves exe-
cution of the executable constructs of its scoping unit. Upon invocation of a procedure, exe-
cution begins with the first executable construct appearing after the invoked entry point.
With the following exceptions, the executable constructs are executed in the order in which
they appear in the main program or procedure until a STOP, RETURN, or program unit END
statement is executed. The exceptions are:

(1) Execution of a branching statement (8.2) changes the execution sequence. These
statements explicitly specify a new starting place for the execution sequence, and
are called explicit branches.

(2) IF constructs, CASE constructs, and DO constructs contain an internal statement
structure and execution of these constructs involves implicit (i.e., automatic) inter-
nal branching. See Section 8 for the detailed semantics of each of these con-
structs.

Version 103 1986 December Page 2-6

FORTRAN TERMS AND CONCEPTS X3J3/S8

10

15

20

25

30

35

40

(3) Aternate return and END = and ERR = specifiers may result in a branch.

(4) Internal procedure definitions may precede the END statement of an executable
program unit. The execution sequence skips all such definitions.

2.4 Data Concepts. Nonexecutable statements are used to define the characteristics of
the data environment. This includes typing variables, declaring arrays, and defining new
data types.

2.4.1 Data Type. A data type consists of a set of values, together with a way to denote
these values and a collection of operations that interpret and manipulate the values. This
central concept is described in 4.1. A type may be parameterized, in which case the set of
data values depends on the values of the parameters.

There are two categories of data types: intrinsic types and derived types.

2.4.1.1 Intrinsic Type. An intrinsic type is one that is implicitly defined, along with opera-
tions, and is always accessible. The intrinsic types are INTEGER, REAL, COMPLEX, DOU-
BLE PRECISION, CHARACTER (of any length), and LOGICAL. The properties of intrinsic
types are described in 4.3.

2.4.1.2 Derived Type. A derived type is a type definition containing components, which
are of intrinsic types or other derived types. Derived types have associated with them a
small set of intrinsic operations: assignment with type agreement, comparison for equality,
use as procedure arguments and function results, inquiry functions for parameter values,
and input/output. If additional operations are needed for a derived type, they must be sup-
plied as procedure definitions.

Intrinsic types are accessible to every scoping unit. A derived-type definition is local to the
scoping unit in which it appears, but may be accessed from other scoping units by use asso-
ciation (11.3.1).

Derived types are described fUrther in 4.4,

2.4.2 Data Value. Each intrinsic type has associated with it a set of intrinsic values that a
datum of that type may take. The values for each intrinsic type are described in 4.3.
Because derived types are ultimately specified in terms of components of intrinsic types, the
values that objects of a derived type may assume are determined by the type definition and
the sets of intrinsic values.

2.4.3 Data Entity. A data entity is an entity that has, or may have, a data value. A data
entity is a constant, a variable, an expression value, or a function result. In addition, it is
either a scalar or an array.

2.4.3.1 Data Object. A data object (often abbreviated to object) is a datum or set of data
of the same type and type parameters that may be referenced as a whole.

2.4.3.2 Subobjects. Portions of certain named data objects may be referenced and
defined independently of the other portions. These include portions of arrays (array
elements and array sections), portions of character strings (substrings), and portions of struc-
tured objects (components). These subobjects are themselves considered to be data objects
and are described in Section 6.

Version 103 1986 December Page 2-7

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

2.4.3.3 Constant. A constant is a data entity whose value must not change during execu-
tion of an executable program.

A constant with a name is called a named constant. Named constants and the means by
which they are defined are described in Section 5. A constant without a name is called a
literal constant.

2.4.4 Variable. A variable is a data object whose value can be defined and redefined dur-
ing execution of an executable program. A data object explicitly declared as an array is a
variable. A nonarray data object, declared explicitly or implicitly and not having the PARAM-
ETER attribute is a variable. In some cases, a portion of a variable may itself be a variable
and may be assigned a value independently of the other portions. The following are varia-
bles:

a named scalar variable (a scalar object)
a named array variable (an array object)

an array element (a scalar subobject)
an array section (an array subobject)
a structure component (a scalar or an array subobject)
a substring (a scalar subobject)

2.4.4.1 Scalar. A scalar is a datum that is not an array. Scalars may be of any intrinsic
type or derived type.

2.4.4.2 Array. An array is a set of data, all of the same type and type parameters, whose
individual elements are arranged in a rectangular pattern. An array element is one of the
individual elements in the array and is a scalar. An array section is a subset of the
elements of an array and is itself an array.

An array with a name has one subscript for each dimension of the pattern. The pattern may
have up to seven dimensions, and any extent (size) in any dimension. The rank of the
array is the number of dimensions, and its size is the total number of elements, which is
equal to the product of the extents. Arrays may have zero size. The shane of an array is
determined by its rank and its extent in each dimension; shape is a rank one array whose
elements are the extents. The rank of a scalar is zero. All named arrays must be declared,
and the rank of a named array is specified in its declaration. The rank of a named array,
once declared, is constant and the extents may be constant also. However, the extents may
vary during execution for dummy argument arrays, automatic arrays, alias arrays, ranged
arrays, and allocatable arrays.

Two arrays are said to be conformable if they have the same shape. A scalar is conform-
able with any array. Any operation defined for scalar objects may be applied to conformable
objects. Such operations are performed element-by-element to produce a resultant array
conformable with the array operands. Element-by-element operation means corresponding
elements of the operand arrays are involved in a “scalar-like” operation to produce the cor-
responding element in the result array, and all such element operations may be performed
simultaneously,

A rank-one array may be constructed from scalars and other rank-one arrays and may be
reshaped into any allowable array shape (4.4).

Array objects may be of any intrinsic type or derived type and are described further in 6.2.

Version 103 1986 December Page 2-8

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

45

2.4.5 Storage. Many of the facilities of this standard make no assumptions about the physi-
cal storage characteristics of data objects. However, program -units that include storage
association dependent features (Section 14) must observe certain storage constraints.

There are two kinds of physical storage units: numeric and character. When used in a stor-
age association context, scalar objects of type integer, default real, and logical each use a
single numeric storage unit. When used in a storage association context, scalar objects of
type double precision and default complex each use two contiguous numeric storage units.
When used in a storage association context, each character in an object of type character
uses one character storage unit and scalar character objects employ a contiguous set of
such units. When used in a storage association context, array objects are assigned contigu-
ous storage units of the appropriate type, by subscript order value (Section 6). For example,
the storage order for a two-dimensional array is the first column followed by the second col-
umn, etc.

Objects having different kinds of storage units must not be storage associated. Nondefault
precision objects and derived-type objects must not appear in a storage association context.

2.5 Fundamental Terms. -The following terms are defined here and used throughout
this standard.

2.5.1 Name and Designator. A name is used to identify a program constituent, such as a
program unit, named variable, named constant, dummy argument, or a derived type. The
rules governing the construction of names are given in 3.2. A subobject designator is a
name followed by one or more component selectors, array section selectors, array element
selectors, and substring selectors.

2.5.2 Keyword. The term keyword is used in two ways in this standard. A word that is
part of the syntax of a statement and that may be used to identify the statement is a state-
ment keyword. Examples of this kind of keyword are: IF, READ, WHERE, and INTEGER.
These keywords are not “reserved words”; that is, names with the same spellings are
allowed.

Argument keywords are dummy argument names. Section 13 defines argument keywords
for all of the intrinsic procedures. Argument keywords for external procedures may be
specified in a procedure interface block (Section 12).

2.5.3 Declaration. The term declaration refers to the specification of attributes for various
program entities. Often this involves specifying the data type of a named data object or
specifying the shape of a named array object.

2.5.4 Definition. The term definition is used in two ways. First, when a data object is
given a valid value during program execution, it is said to become defined. This is often
accomplished by execution of an assignment statement or input statement. Under certain
circumstances, a variable ceases to have a predictable value and is said to become unde-
fined. Section 14 describes the ways in which variables may become defined and
undefined. The second use of the term definition is for the definition of derived types and
procedures.

2.5.5 Reference. A data object or subobject reference is the appearance of the data
object name or subobject designator in a context requiring its value at that point during exe-
cution.

A procedure reference is the appearance of the procedure name or its operator symbol in a
context requiring execution of the procedure at that point.

Version 103 1986 December Page 2-9

FORTRAN TERMS AND CONCEPTS X3J3/S8

10

156

The appearance of a data object name, data subobject designator, or procedure name in an
actual argument list does not constitute a reference to that data object, data subobject, or
procedure unless such a reference is needed to complete the specification of the actual
argument.

2.5.6 Association. An association exists if an entity may be identified by different names
in the same scoping unit or by the same name or different names in different scoping units.
It may be name association (14.7.1) or storage association (14.7.2). Name association may
be argument association, use association, or alias association.

2.5.7 Intrinsic. The term intrinsic applies to intrinsic data types, intrinsic procedures, and
intrinsic operators that are defined in this standard. These may be used in any scoping unit
without further definition or specification.

2.5.8 Operator. An operator specifies a particular computation involving one (unary opera-
tor) or two (binary operator) data values (operands). Fortran contains a number of intrinsic
operators (e.g., the arithmetic operators +, —, *, /, and ** with numeric operands and the
logical operators .AND., .OR., etc. with logical operands). Additional operators also may be
defined.

Version 103 1986 December Page 2-10

10

15

20

25

30

35

40

3 CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM

This section describes the Fortran character set and the various lexical tokens such as
names and operators. This section also describes the rules for the forms that Fortran pro-
grams may take.

3.1 Fortran Character Set. The Fortran character set consists of twenty-six letters, ten
digits, underscore, and twenty-three special characters.

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit

or underscore

3.1.1 Letters. The twenty-six letters are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

If a processor also permits lower-case letters, the lower-case letters are equivalent to upper-
case letters in program units except in character constants, delimited character edit descrip-
tors, and H edit descriptors.

3.1.2 Digits. The ten digits are:
0123456789
When used in numeric constants, the digits are interpreted according to the decimal base
number system.
3.1.3 Underscore.

R303 underscore is __

The underscore may be used as a significant character in a name.

3.1.4 Special Characters. The twenty-three special characters are:

Character Name of Character Character Name of Character
Blank : Colon
= Equals ! Exclamation Point
+ Plus ” Quotation Mark or Quote
- Minus % Percent
* Asterisk & Ampersand
/ Slash ; Semicolon
(Left Parenthesis Less Than
) Right Parenthesis Greater Than

Comma

Decimal Point or Period
Currency Symbol
Apostrophe

Question Mark
Left Bracket
Right Bracket

—t—)\ A~

- &7 -

The special characters are used for operator symbols, bracketing, and various forms of sepa-
rating and delimiting of other lexical tokens. The special characters $ and ? have no

Version 103 1986 December Page 3-1

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM X3J3/S8

10

15

20

25

30

35

40

specified use.

3.1.5 Character Graphics. Except for the currency symbol, the graphics used for the char-
acters must be as given in 3.1.1, 3.1.2, 3.1.3, and 3.1.4. However, the style of any graphic
is not specified.

3.1.6 Collating Sequence. Each implementation defines a collating sequence for the char-
acter set. A collating sequence is a one-to-one mapping of the characters into the nonneg-
ative integers such that each character corresponds to a different nonnegative integer. The
intrinsic functions CHAR and ICHAR (see Section 13) provide conversions between the char-
acters and the integers according to this mapping. Thus,

ICHAR (character)

returns the integer value of the specified character according to the collating sequence of
the processor.

The only constraints on the collating sequence are:
(1) ICHAR(A’) < ICHAR(B’) < --- <« ICHAR('Z’) for the twenty-six letters.
(2) ICHAR(0) < ICHAR('1’)) < -+: < ICHAR (’9:) for the ten digits.
(3) ICHAR(") < ICHAR(0") < ICHAR('9’) < ICHAR('A’) or
ICHAR(’ ') < ICHAR('A’) < ICHAR(’Z’) < ICHAR('0")

(4) ICHAR(a’) < ICHAR(DP’) < --- <« ICHAR(Z), if a processor supports lower
case letters.

(6) ICHAR(’) < ICHAR('0’) < ICHAR('9') < ICHAR(’a’} or
ICHAR(’ ') < ICHAR(’a’) < ICHAR('z’) < ICHAR('0’), if a processor supports lower
case letters.

Except for blank, there are no constraints on the location of the special characters and
underscore in the collating sequence, nor is there any specified collating sequence relation-
ship between the upper-case and lower-case letters.

Note that the intrinsic functions ACHAR and IACHAR provide conversions between the char-
acters and the integers according to the mapping specified in ANS X3.4-1977 (ASCII).

3.2 Low-Level Syntax. The low-level syntax describes the fundamental lexical tokens
of a program unit. These are sequences of characters and include keywords, names, con-
stants, operators, labels, and delimiters.

3.2.1 Keywords. Keywords appear as upper-case words in the syntax rules in Sections 4
through 12.

3.2.2 Names. Names are used for various entities such as variables, program units,
dummy arguments, named constants, and derived types.

R304 name is letter [alphanumeric-character ...
Constraint: The maximum length of a name is 31 characters.

Examples of names:

A1

NAME__LENGTH (single underscore)

S_P_R EAD_ O U_T (two consecutive underscores)
TRAILER__ (trailing underscore)

Yersion 103 1986 December Page 3-2

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM X3J3/S8

R305 constant
R306 literal-constant
5
R307 named-constant
10 R308 int-constant
Constraint:
R309 char-constant
Constraint:
3.2.4 Operators.
15 R310 intrinsic-operator
20
R311 power-op
25 R312 muit-op
R313 add-op
R314 concat-op
30 R315 relop
35
40
R316 not-op
R317 and-op
Version 103

3.2.3 Constants.

is literal-constant
or named-constant

is int-literal-constant

or real-literal-constant

or complex-literal-constant
or logical-literal-constant
or char-literal-constant

‘is name

is constant

int-constant must be of type integer.

is constant

char-constant must be of type character.

Is power-op
or mult-op
or add-op
or concat-op
or rel-op

or not-op

or and-op
or or-op

or equiv-op

is **
is *
or /

is +
or —
is //
is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or <>
or <
or <=
or >
or >=

is .NOT.
is .AND.

1986 December Page 3-3

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM

R318
R319

R320

R321

R322
R323

or-op

equiv-op

defined-operator

defined-unary-op
defined-binary-op

overloaded-intrinsic-op

is .OR.

is .EQV.
or .NEQV.

is defined-unary-op
or defined-binary-op
or overloaded-intrinsic-op

is . letter [letter }... .
is . letter [letter

is intrinsic-operator

X3J3/S8

10 Constraint: A defined-unary-op and a defined-binary-op must not contain more than 31 char-
acters and must not be the same as any intrinsic-operator or logical-constant.

3.2.5 Statement Labels. Any statement not forming part of another statement may be
labeled.

R324

15 Constraint:

label

Is digit [digit | digit [digit [digit1111]

At least one digit in the label must be nonzero.

In free source form (3.3.1), a label is considered a lexical token that must immediately pre-
cede the statement. In fixed source form (3.3.2), a label may appear only in character posi-
tions 1-5; blanks may appear within a label. The same statement label must not be given to
more than one statement in a scoping unit. Blanks and leading zeros are not significant in
20 distinguishing between statement labels.

3.2.5 Delimiters. The special characters blank, comma, equals, colon, left parenthesis,
right parenthesis, left bracket, right bracket, percent, slash, and asterisk are used in various
delimiting ways, as described in the syntax rules.

3.3 Source Form. A Fortran program is a sequence of source records, called lines.
25 These records contain the characters that make up the statements of a program unit. Lines
following a program unit END statement are not part of that program unit.

Any syntax rule term that ends with “-stmt” is a Fortran statement.

: ’ \y-“-\' A character context means characters within (between the delimiters for) character con-
‘tm— "(/\ stants, format-item lists in FORMAT statements, and comments.
4 —
Vi 30 !Blank characters outside of a character context are insignificant and may be used freel
, y

!throughout the program.

There are two source forms: free and fixed. Free form has no character position restric-
tions and statements may appear in any character positions on the lines. Fixed form
reserves character positions 1-6 of each source line for special purposes. Free form and

35 fixed form must not be mixed in the same program unit.

source form of a program unit is processor dependent.

The means for specifying the

3.3.1 Free Source Form. In free form, each source record may contain from zero to a

maximum of 132 characters.

Version 103

1986 December

Page 3-4

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM X3J3/S8

10

15

20

25

30

35

3.3.1.1 Commentary. The character “!” initiates a comment except when it appears within
a character context. The comment extends to the end of the source line. A comment,
including its “!I” delimiter, is processed as though it were a blank character. Lines contain-
ing only blanks or blank equivalents are ignored and may appear anywhere in a program
unit.

3.3.1.2 Statement Separation. The character “;” separates statements on a single source
line except when it appears within a character context. Statements containing no characters
or only blanks are ignored.

3.3.1.3 Statement Continuation. Outside of a comment, the character “&” as the last
nonblank character on a line signifies that the statement is continued on the next line. If the
first nonblank character on the next line is also “&”, the statement continues at the next
character position following the “&”; otherwise, it continues at character position 1. When
used for continuation, the “&” is not part of the statement. If a character context other than
a comment is being continued, the “&” signifying continuation cannot be followed by com-
mentary and the continued portion must begin with an “&". If the continuation is not within a
character context, the “&” signifying continuation may be followed by commentary. A state-
ment must not contain more than 1320 characters.

3.3.2 Fixed Source Form. Fixed form is the same as free form, with the following excep-
tions:

(1) Source lines are exactly 72 character positions long.

(2) Lines with a “C” or “#” in character position 1 are additional forms of commen-
tary.

(3) The “&” continuation is not used in fixed form; rather, character position 6 is used.
If character position 6 contains a blank or zero, a new statement begins in charac-
ter position 7 of this line and character positions 1-5 may contain a label. If char-
acter position 6 contains some character other than a blank or zero, character
positions 7-72 of this line constitute a continuation of the preceding (noncomment)
line. Columns 1-5 of such continuation lines must be blank. A statement must not
have more than 19 continuation lines.

(4) An “!” in character position 6 indicates a continuation line.

(5) Statement labels may appear only in character positions 1-5 and the continuation
indicator may appear only in character position 6.

(6) The program unit END statement must not be continued and no other statement in
the program unit may have an initial line that appears to be a program unit END
statement.

Version 103 1986 December Page 3-5

10

15

20

25

30

35

40

4 INTRINSIC AND DERIVED DATA TYPES

The language provides an abstract means that permits the categorization of data without
relying on a particular underlying representation. This abstract means is the concept of data
type. Each data type has a name. The names of the intrinsic types are defined by the lan-
guage; the names of any derived types must be defined in type definitions (4.4.1). A data
type is characterized by a set of values, a means to denote the values, and a set of opera-
tions that can manipulate and interpret the values.

For example, the logical data type has a set of two values, denoted by the symbols .TRUE.
and .FALSE. and manipulated by logical operators.

For example, a less restricted data type is the integer data type, that has a processor-
dependent set of integer numeric values, each of which is denoted by an optional sign fol-
lowed by a string of digits, and which may be manipulated by integer arithmetic and rela-
tional operators. :

The means by which a value is denoted indicates both the type of the value and a particular
member of the set of values characterizing that type. Some data types may be parameter-
ized. In this case, the set of values is constrained by the parameter or parameters.

For example, the data type character has a length parameter that constrains the set of char-
acter values to those whose length is equal to the value of the parameter.

An intrinsic type is one that is predefined by the language. The intrinsic types are integer,
real and double precision, complex, character, and logical. The phrase “defined intrinsi-
cally” will be used later in this section to mean “predefined” in this sense. An intrinsic type
is always accessible.

In addition to the intrinsic types, application specific types may be derived. Derived types
have components. Each component is of an intrinsic type or of other derived type. A type
definition (4.4.1) is required to supply the name of the type and the names and types of its
components.

For example, if the complex data type were not intrinsic but had to be derived, a type
definition would be required to supply the name “complex” and declare two components,
each of type real.

Means are provided to denote values of a derived type (4.4.3) and to define operations that
can be used to manipulate objects of a derived type (4.4.4). A derived type must be com-
pletely defined, whereas an intrinsic type is predefined.

4.1 The Concept of Type. A data type has (1) a name, (2) a set of valid values, (3) a
means to denote such values (constants), and (4) a set of operations provided on and
between the values. A type may be parameterized, in which case the set of data values is
constrained by the values of the parameters.

4.1.1 Set of Values. For each data type, there is a set of valid values. The set of valid
values may be completely specified, as is the case for logical, or may be specified by a
processor-dependent method, as is the case for integer and real. For complex or derived
types, the set of valid values consists of the set of all the combinations of the values of the
individual components. For parameterized types, the set of valid values depends on the
values of the parameters.

Version 103 1986 December Page 4-1

INTRINSIC AND DERIVED DATA TYPES X3J3/S8

10

15

20

25

30

35

40

4.1.2 Constants. For each of the intrinsic data types, the form for literal constants of that
type is specified in this standard. These literal constants are described in 4.3 for each intrin-
sic type.

A constant value may be given a name.

Constant values of derived type may be constructed (4.4.3) from an appropriate sequence of
constant expressions (7.1.6.1). Such a constant value is considered to be a scalar even
though the value may have components.

4.1.3 Operations. For each of the intrinsic data types, a set of operations and correspond-
ing operators are defined intrinsically. These are described in Section 7. The intrinsic set
may be augmented with operations and operators defined by operator functions (12.5.2.2).
Operator definitions are described in Sections 7 and 12.

For derived types, the only intrinsic operation is assignment. All other operations must be
defined.

4.2 Relationship of Types and Values to Objects and Entities. The name of a
data type serves as a type specifier and may be used to declare objects of that type. A
declaration specifies the type attribute for a named object. A data object may be declared,
explicitly or implicitly. Once a derived type is defined, an object may be declared to be of
that type. Data objects may have attributes in addition to their types. Section 5 describes
the way in which a data object is declared and how its type and other attributes are
specified.

Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to com-
pose an array. An array is an object and has a type just as a scalar object does. Thus data
objects, such as arrays, may be collections of subobjects.

An object of derived type is referred to as a structure or a structured object with compo-
nents. The components of a structured object are subobjects.

Variables may be objects or subobjects. The data type of a variable determines which
values, from the possible sets of values, that a variable may take. Assignment provides one
means of defining or redefining the value of a variable of any type. Assignment is defined
intrinsically for all types when the type, type parameters, and effective shape of both the
variable and the value to be assigned to it are identical. Assignment between objects of cer-
tain differing intrinsic types is described in Section 7.

For example, assignment of an integer value to a real variable is intrinsically defined.

For an assignment that is not intrinsically defined, conversions may be defined by assign-
ment subroutines (Section 7 and 12.5.2.3).

The data type of a variable determines the operations that may be used to manipulate the
variable.

A data entity is an entity that has or may have a data value. It may be a constant, a vari-
able, an expression value, or a function result. Each data entity has a data type. The type
may be specified (if the entity is a variable or function resuit) or it may be determined by the
rules in Section 7 (if the entity is an expression value).

4.3 intrinsic Data Types. The intrinsic data types are:

numeric types: Integer, Real, Complex
nonnumeric types: Character and Logical

Version 103 1986 December Page 4-2

INTRINSIC AND DERIVED DATA TYPES X3J3/S8

10

15

20

25

30

35

40

45

4.3.1 Numeric Types. The numeric types are provided for numerical computation. The
normal operations of arithmetic, addition (+), subtraction (—), multiplication (*), division (/),
exponentiation (**), negation (unary —), and identity (unary +), are defined intrinsically for
this set of types.

Each numeric type includes a zero value, which is considered to be neither negative nor
positive. In this standard, the unqualified term “literal constant” means “unsigned literal con-
stant” when applied to numeric types.

4.3.1.1 Integer Type. The set of values for the integer type is a subset of the mathemati-
cal integers. This subset includes all of the integer values from some processor-dependent
minimum negative value to some processor-dependent maximum positive value.

The type specifier (R502) for the integer type is the keyword INTEGER.
Any integer value may be represented as a signed-int-literal-constant.
R401 signed-int-literal-constant is [sign] int-literal-constant

R402 int-literal-constant is digit [digit]...
R403 sign is +
or —

Examples of unsigned and signed integer literal constants are:

473

5 000 000
+56

-101

An integer constant is interpreted as a decimal value.

4.3.1.2 Real and Double Precision Real Type. The real type has values that approximate
the mathematical real numbers. A processor .must provide two or more approximation
methods that define sets of values for data of type real. Each such method is characterized
by an effective decimal precision and an effective decimal exponent range. The effective
decimal precision of an approximation method is returned by the inquiry intrinsic function
EFFECTIVE__PRECISION (13.12.33) and the effective decimal range is returned by the
inquiry intrinsic function EFFECTIVE__EXPONENT_RANGE (13.12.32).

A data entity of type real may have a precision parameter and an exponent range parame-
ter specified for precision and exponent range. The values specified for these type parame-
ters indicate minimum requirements for the approximation method selected for the data
object. A processor must select an approximation method with an effective decimal preci-
sion that is greater than or equal to the specified precision, and with an effective decimal
exponent range that is greater than or equal to the specified exponent range. If more than
one such method exists, the processor must select the method with effective decimal preci-
sion that exceeds the specified precision required by the least margin. If more than one
method still exists, the processor must select the method with effective decimal exponent
range that exceeds the specified exponent range by the least margin. If more than one
method still exists, the method selected is processor dependent. If no method exists that
satisfies the specified precision and exponent range, the processor must indicate an error
condition, but other processor action is undefined.

If one of the type parameters is omitted in the specification of a data object of type real, a
processor-dependent default is used which is the same as the effective decimal precision or
effective decimal gxponent range, as appropriate. The type parameters of such an object
are regarded as different from those of any object for which both parameters are specified.

Version 103 1986 December Page 4-3

iNTRINSIC AND DERIVED DATA TYPES X3J3/s8

10

15

20

25

30

35

40

45

If neither type parameter is specified, a processor-defined default real method is selected
and the data object is of type deiault real. Objects of default real type have processor-
dependent type parameters which have the same values as the effective precision and
effective exponent range for the default real approximation method. The type parameters of
such an object are regarded as different from those of any object for which one or both
parameters are specified.

If double precision is specified for a data object, a processor-defined double precision
method is selected and the object is of type doubkie precision real. Objects of double preci-
sion real have processor-dependent type parameters which have the same values as the
effective precision and effective exponent range for the double precision real approximation
method. The type parameters of such an object are regarded as different from those of any
object of type real for which one or both parameters are specified. The effective decimal
precision of the double precision method must be greater than that of the default real
method.

The type specifier for the real type is the keyword REAL and the type specifier for the dou-
ble precision real is the keyword DOUBLE PRECISION.

R404 signed-real-literal-constant is [sign] real-literal-constant

R405 realliteral-constant is significand [exponent-letter exponent |
or intliteral-constant exponent-letter exponent
R406 significand is int-literal-constant . [int-literal-constant |
or . intliteral-constant
R407 exponent is signed-int-literal-constant
R408 exponent-letter is E
or D
or defined-exponent-letter
R409 exponent-letter-stmt is EXPONENT LETTER [precision-selector | @

W defined-exponent-letter
R410 defined-exponent-letter is letter
Constraint: A defined-exponent-letter must be a letter other than E, D, or H.

A given letter may be specified as the defined exponent letter in one and only one EXPO-
NENT LETTER statement in a given declaration part sequence.

Real literal constants written without an exponent part, or with exponent letter E, are default
real objects; exponent letter D specifies a double precision constant. A specified precision
real constant must use the exponent.character specified for that precision in an EXPONENT
LETTER statement. A defined exponent letter and its association with a particular precision
selector (5.1.1.2) may be made accessible to a scoping unit by a USE statement (11.3.1).

Examples of signed real literal constants are:

-12.78
+1.6E3
2.1

Examples of unsigned real literal constants are:

0.45€-4
10.93L7
123
3E4

Version 103 1986 December Page 4-4

INTRINSIC AND DERIVED DATA TYPES X3J3/S8

In the second example (10.93L7), the letter L must have been defined as an exponent letter
in an EXPONENT LETTER statement.

The exponent represents the power of ten scaling to be applied to the significand. The
meaning of these constants is as in decimal scientific notation.
. Tha 5t
5 4.3.1.3 Complex Type. The complex type has values that approximate the mathematical :
complex numbers. The values of a complex type are ordered pairs of real values. PFB_a-I—”_
part, and the second real value is called the imaginary part.

Any approximation method used to represent data entities of type real may be used for both
the real and imaginary parts of a data entity of type complex. The precision and exponent

10 range type parameters may be specified for complex data objects. They express the
required minimum precision and exponent range requirements for the real approximation
method used for both the real and imaginary parts of the complex data object. The
specified precision and exponent range select one real approximation method for both parts
following the same rules as for the real type.

15 If neither the precision nor the exponent range is specified, the default real method is
selected for both parts and the complex data object is default complex.

The type specifier for the complex type is the keyword COMPLEX.

R411 complex-literal-constant is (real-part , imag-part)

R412 real-part is signed-int-literal-constant
20 or signed-real-literal-constant

R413 imag-part is signed-int-literal-constant

or signed-real-literal-constant

If the real part and imaginary part of a complex literal constant do not have the same preci-
sion and exponent range type parameters, both are converted to an approximation method

25 consistent with the maximum of the two precisions and the maximum of the two exponent
ranges.

If both the real and imaginary parts are signed integer constants, they are converted to the

default real approximation method and the constant is of type default complex. If only one

of the parts is a signed integer constant, the signed integer constant is converted to the
30 approximation method selected for the signed real constant.

Examples of complex literal constants are:

1.0, 1.0
3, 3.1E6)

4.3.2 Nonnumeric Types. The nonnumeric types are provided for nonnumeric processing.
35 The intrinsic operations defined for each of these types are indicated below.

4.3.2.1 Character Type. The character type has a set of values composed of character
strings. A character string is a sequence of characters, numbered from left to right 1, 2, 3,
.. up to the number of characters in the string. The number of characters in the string is
called the length of the string. The length is a type parameter and its value must be

40 greater than or equal to zero. Any character representable in the processor may occur in a
character string. Strings of different lengths are all of type character.

The type specifier for the character type is the keyword CHARACTER.

Literal character constants are written as a sequence of characters, delimited by either
apostrophes or quotation marks.

Version 103 1986 December Page 4-5

INTRINSIC AND DERIVED DATA TYPES X3J3/S8

R414 char-constant is ' [character ...’
or “ [character]... ”

An apostrophe character within a character constant delimited by apostrophes is represented
as two consecutive apostrophes (without intervening blanks); in this case, the two apostro-

5 phes are counted as one character. Similarly, a quotation mark character within a character
constant delimited by quotation marks is represented as two consecutive quotation marks
and the two quotation marks are counted as one character.

The intrinsic operation concatenation (//) is defined between two data entities of type char-
acter (7.2.3).

10 Examples of character literal constants are:

HDONIT"
IDONI lTl

4.3.2.2 Logical Type. The logical type has two values which represent true and false.

R415 logical-constant is .TRUE.
15 or .FALSE.

The intrinsic operations defined for data entities of logical type are: negation (.NOT.), con-

junction (.LAND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical non-

equivalence (.NEQV.) as described in 7.2.5. There is also a set of intrinsically defined rela-

tional operators that compare the values of data entities of other types and yield a logical
20 value. These operations are described in 7.2.4.

The type specifier for the logical type is the keyword LOGICAL.

4.4 Derived Types. Additional data types may be derived from the intrinsic data types.
A type definition is required to define the name of the type and the names and types of its
components. A component may be declared to be of any intrinsic or previously defined

25 derived type. Ultimately, a derived type is resolved into a sequence of components of intrin-
sic type.

The type specifier for derived types is the keyword TYPE followed by the name of the type
in parentheses.
4.4.1 Derived-Type Definition.

30 R416 derived-type-def is derived-type-stmt
[PRIVATE] 4—
component-def-stmt
[component-def-stmt ...
end-type-stmt

35 R417 derived-type-stmt is [access-spec | TYPE type-name [(type-param-name-iist) |
Constraint: A name must not occur more than once in a type-param-name-list.

Constraint: If either PRECISION or EXPONENT-RANGE occurs in a type-param-name-list,
both must occur.

R418 end-type-stmt is END TYPE [type-name]

40 Constraint: A derived type type-name must not be the same as any intrinsic type-name nor
the same as any accessible derived type-name.

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as
that in the corresponding derived-type-stmt.

Version 103 1986 December Page 4-6

INTRINSIC AND DERIVED DATA TYPES X3J3/S8

10

15

20

25

30

35

40

R419 component-def-stmt is type-spec [[, ARRAY (explicit-shape-spec-list)]... :: | B
B component-decl-list

Constraint: A type-spec in a component-def-stmt must not contain a type-param-value that is
an asterisk.

Constraint: Each bound in the explicit-shape-spec (5.1.2.4.1) must be a nonprecision type-
parameter expression.

Constraint: An access-spec or a PRIVATE statement within the definition is permitted only
if the type definition is within a module.

R420 component-dec! is component-name [(explicit-shape-spec-list)]

If a type definition is specified to be PRIVATE, the type name, the component names, the
type parameter names (if any), and the corresponding structure value constructor are acces-
sible only within the module containing the definition.

If a type definition contains a PRIVATE statement, the component names for the type are
accessible only within the module containing the definition, even if the type itself is PUBLIC.
The name of a component of a derived type, provided the name is accessible, may be used
to qualify the name of a structured object of this type to select the component of the object.
Note that a component may be an array; when selected by component name qualification,
such an object is an array even though the parent object may have been a scalar object.

When the components of a derived type are specified to be PRIVATE, component selection
by qualification is permitted only in the module containing the type definition. The compo-
nent names and hence the internal structure of the type are inaccessible in any program
unit accessing the module via a USE statement. Similarly, the structure constructor for such
a type may be employed only within the defining module.

An example of a derived-type definition is:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50> NAME
END TYPE PERSON

An example of declaring a variable J__SMITH of type person is:
TYPE (PERSON) J_SMITH

A type definition may have a component that is an array. For example:

TYPE LINE
REAL, ARRAY (2, 2) :: COORD b X1, Y1, X2, Y2
REAL :: WIDTH I LINE WIDTH
INTEGER :: PATTERN ! SOLID, DASH, DOT

END TYPE LINE
INTEGER, PARAMETER :: SOLID = 1, DASH =2, DOT =3

TYPE (LINE) :: LINE_SEGMENT

The scalar variable LINE__SEGMENT has a component that is an array. In this case the
array is a subobject of a scalar.

4.4.1.1 Type Parameters of Derived Type. If a derived-type definition includes a type
parameter name list, these names are integer dummy parameters of the definition and may
be used as primaries in the expressions for component declarations. When an object of
such a type is declared or a value of such a type constructed, actual values for these

Version 103 1986 December Page 4-7

INTRINSIC AND DERIVED DATA TYPES X3J3/58

10

15

20

25

30

35

40

dummy parameters must be specified. These establish the relevant values for the compo-
nent attributes via the component type-parameter expressions in which the dummy parame-
ters appear.

The type parameters named PRECISION and EXPONENT__RANGE, if present, are analo-
gous to parameters of the same names that may be used with the intrinsic types real and
complex. Type parameters with other names are called nonprecision type parameters and
are analogous to the length parameter of intrinsic type character.

An example of a derived-type definition with type parameters is:

TYPE STRING (MAX_SIZE)

INTEGER LENGTH

CHARACTER (LEN = MAX_SIZE) VALUE
END TYPE STRING

A precision type parameter is a type parameter named PRECISION. An exponent range
type parameter is a type parameter named EXPONENT_RANGE.

If the precision parameter value of a component is the expression PRECISION, the exponent
range parameter value must be the expression EXPONENT__RANGE, and if the exponent
range parameter value of a component is the expression EXPONENT_RANGE, the preci-
sion parameter value must be the expression PRECISION.

Neither the precision nor exponent range parameter name may be used as a primary in
nonprecision type-parameter expressions (7.1.6.2).

A nonprecision type parameter may be used as a primary in any type-parameter expression
determining the value for an actual nonprecision type parameter for any component, or
determining the bounds of any array component.

4.4.1.2 Equivalence of Derived Typ=2s. A particular type name may be defined at most
once in a scoping unit. Derived-type definitions with the same type name may appear in
different scoping units, in which case they are independent and define different derived
types.

Two data objects have the same type if they are declared with reference to the same
derived-type definition; conversely, two objects are of different type if they reference
different derived-type definitions, even if the two derived types have identical components
defined in the same order.

4.4.2 Derived-Type Values. The set of values of a specific derived type consists of all
possible sequences of component values consistent with the definition of that derived type.

4.4.3 Construction of Derived-Type Values. A derived-type definition defines a corre-
sponding derived-type constructor that allows a value to be constructed from a sequence of
values, one value for each component of the derived type.

R421 structure-constructor is lype-name | (lype-param-spec-list) | (expr-list)

Constraint: The type-param-spec option must be supplied if and only if the referenced type
definition includes type parameters.

The sequence of expressions in a derived-type constructor specifies component values that
must agree in number, order, type, and shape with the components of the derived type. If
necessary, each value is also converted according to the rules of assignment so that its
value has the same actual type parameters as those specified by type-param-value. A con-
structor whose values are all constant expressions is a derived-type constant expression.

Version 103 1986 December Page 4-8

INTRINSIC AND DERIVED DATA TYPES X3J3/s8

10

15

20

25

30

These examples use the derived types illustrated in 4.4.1 and 4.4.1.1.

PERSON (21,'JOHN SMITH')
STRING (20 (19, 'NOW IS THE TIME FOR')

A derived-type definition may have a component that is an array. Arrays may be constructed
as objects or subobjects.

An array constructor is defined as a sequence of specified scalar values and interpreted as
a rank-one array whose element values are those specified in the sequence. The sequence
of values may be specified by any combination of individual scalar values, ranges of values,
rank-one arrays, and other array constructors.

R422 array-constructor is [array-constructor-value-list]
or (/ array-constructor-value-list /)
In the preceding syntax rule, the brackets are part of the syntax.
R423 array-constructor-value is scalar-expr
or rank-1-expr
or scalar-int-expr : scalar-int-expr [: scalar-int-expr |
or [int-constant-expr | array-constructor

R424 rank-1-expr is expr
Constraint: rank-1-expr must have rank one.

The int-constant-expr in the fourth form of array-constructor-value specifies the number of
consecutive copies of the associated array-constructor. The type and type parameters of an
array constructor are those of the scalar value interpreted as the first array element. Each
subsequent scalar value in the sequence must have intrinsic assignment conformance as
described in 7.5.1.4, and the value is so converted.

If every expression in an array constructor is a constant expression, the array constructor is
a constant expression. An example is:

REAL X (3
X=13.2, 4.01, 6.51

An example of an array constructor is:

[2 [1:4], 61

which is a rank-one integer array with components 1, 2, 3, 4, 1, 2, 3, 4, 6.

4.4.4 Derived-Type Operations. Any operations on derived-type entities must be defined

explicitly by operator functions. Such definitions are made as described in Section 12.
Function values and arguments may be of any derived or intrinsic type.

Version 103 1986 December Page 4-9

10

15

20

25

30

35

40

5 DATA OBJECT DECLARATIONS AND SPECIFICATIONS

Every data object has a type, a rank, and a shape and may also have a humber of additional
properties. These properties determine the characteristics of the data and the uses of the
objects. Collectively these properties, including the type, are termed the attributes of the
data object. A named data object must not be explicitly specified to have a particular attri-
bute more than once in a scoping unit. The type of a named data object is either deter-
mined implicitly by the first letter of its name (5.3) or is specified explicitly in a type declara-
tion statement. Additional attributes also may be specified by separate specification state-
ments; all of them may be included in a type declaration statement.

For example:

INTEGER INCOME, EXPEND

declares the two data objects named INCOME and EXPEND to have the type integer.

REAL, ARRAY(-5:+5) :: X, Y, 2

declares three data objects with names X, Y, and Z. These all have default real type and

are explicit-shape rank-one arrays with a lower bound of —5, an upper bound of +5, and a
size of 11.

5.1 Type Declaration Statements.
R501 type-declaration-stmt is type-spec [[, attr-spec ... :: | object-decHlist

R502 type-spec is INTEGER
or REAL [precision-selector |
or DOUBLE PRECISION
or COMPLEX [precision-selector |
or CHARACTER [length-selector]
or LOGICAL
or TYPE (type-name [(type-param-spec-list)])

R503 type-param-spec is [type-param-name = | type-param-value
R504 type-param-value is specification-expr

or *
R505 attr-spec is value-spec

or access-spec

or ALIAS

or ALLOCATABLE
or ARRAY (array-spec)
or INTENT (intent-spec)

or OPTIONAL
or RANGE [/ range-list-name / |
or SAVE

R506 object-dec! is object-name | (array-spec)| R

@ [* char-length | [= constant-expr]
Constraint: No attr-spec may appear more than once in a given type-declaration-stmt.

Constraint: The object-name -may be the name of a data object, an external function, an
intrinsic function, or a statement function.

Version 103 1986 December Page 5-1

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

40

45

Constraint: The = constant-expr must appear if and only if the statement contains a value-
spec attribute (5.1.2.1, 7.1.6.1).

Constraint: The * char-length option is permitted only if the fype-spec is CHARACTER.

Constraint: The ALLOCATABLE and RANGE attributes may be used only when declaring
array objects.

Constraint: An array must not have both the ALLOCATABLE and the ALIAS attribute.
Constraint: The ALIAS attribute may be specified with type and array attributes only.

Constraint: An array declared with an ALIAS attribute must be specified with a deferred-
shape-spec.

Constraint: The value, accessibility, ALIAS, and SAVE attributes must not be specified for
dummy arguments.

Constraint: The type-param-value for a precision type parameter must be a specification
expression in which no primary is a reference to a variable except as the argu-
ment of the EFFECTIVE_PRECISION function or an asterisk. The type-param-
value for an exponent range type parameter must be a specification expression
in which no primary is a reference to a variable except as the argument of the
EFFECTIVE_EXPONENT__RANGE function or an asterisk.

A name that identifies a specific intrinsic function in a program unit has a type as specified
in 13.12. An explicit type declaration statement is not required; however, it is permitted. If
a generic function name appears in a type declaration statement, such an appearance is not
sufficient by itself to remove the generic properties from that function.

Examples of type declaration statements are:

LOGICAL, ARRAY (5, 5) :: MASK1, MASK2

REAL (PRECISION = 100 A (10)

TYPE (STRING (10)) :: S ! TYPE STRING IS DEFINED IN 4.3.1.1
COMPLEX, DATA :: CUBE_ROOT = (-0.5, 0.866)

5.1.1 Type-Specifier Attributes. A type specifier specifies the type of all objects declared
in an object declaration list. This type may override or confirm the implicit type indicated by
the first letter of the object name as declared by the implicit typing rules in effect (5.3).

5.1.1.1 INTEGER. The INTEGER type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type integer (4.3.1.1).

5.1.1.2 REAL. The REAL type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type real (4.3.1.2). If a precision-selector is pre-
sent, it has the form:

R507 precision-selector is (lype-param-value &
B [, [EXPONENT_RANGE =] type-param-value |)
or (PRECISION = type-param-value M
B [, EXPONENT_RANGE = type-param-value])
or (EXPONENT_RANGE = type-param-value '@
B [, PRECISION = type-param-value])

Constraint: The lype-param-value for a precision type parameter must be a specification
expression in which no primary is a reference to a variable except as the argu-
ment of the EFFECTIVE__PRECISION function or an asterisk. The type-param-
value for an exponent range type parameter must be a specification expression
in which no primary is a reference to a variable except as the argument of the

Version 103 1986 December Page 5-2

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

EFFECTIVE_EXPONENT__RANGE function or an asterisk.

Let p be the value of the precision type-param-valug and let r be the value of the exponent
range type-param-value. Then the value of p is the minimum decimal precision and r is the
minimum decimal exponent range required of the real approximation method used by the
processor to implement the objects.

If either p or r is an asterisk, both must be asterisks and all objects being. declared in the
statement must be dummy arguments. The asterisks specify that the type-parameter values
will be assumed from the corresponding actual arguments.. In a procedure reference, all
actual arguments associated with dummy arguments having precision or exponent range
parameters specified as asterisks must have the same declared precision value and the
same declared exponent range value. If all dummy arguments having precision or exponent
range parameters specified as asterisks are optional, at least one must be present in each
reference to the procedure.

If either part of the precision selector is omitted, a processor-dependent default value is
used for the omitted type parameter, which is regarded as different from any explicitly
specified value.

If the precision selector is omitted entirely, a processor-dependent default approximation
method is selected and the objects declared are of the default real type. Their type param-
eter values are regarded as different from any that are expilicitly specified.

5.1.1.3 DOUBLE PRECISION. The DOUBLE PRECISION type specifier specifies that
objects whose names are declared in this statement are of intrinsic type double precision
real (4.3.1.2).

5.1.1.4 COMPLEX. The COMPLEX type specifier specifies that all objects whose names
are declared in this statement are of intrinsic type complex (4.3.1.3).

The precision-selector, if present, is as for the real type (R507). The precision-selector
specifies the minimum decimal precision and exponent range requirements for the real
approximation method used by the processor to implement the two real values making up
the real and imaginary parts of the complex value.

If either the precision or exponent range parameter of an object of type complex is specified
as an asterisk, both must be asterisks and all objects being declared in the statement must
be dummy arguments. The asterisks specify that the type-parameter values will be assumed
from the corresponding actual arguments. In a procedure reference, each actual argument
associated with a dummy argument having precision or exponent range parameters specified
as asterisks must have the same declared precision value and the same declared exponent
range value (5.1.1.2).

If the precision selector is omitted, the processor-dependent default real approximation
method is used for both parts and objects declared are of default complex type.

Examples of type declarations with precision selectors are:

REAL (10, 15) A
REAL (PRECISION = 10) B
COMPLEX (EXPONENT_RANGE = 60) :: C

5.1.1.5 CHARACTER. The CHARACTER type specifier specifies that all objects whose
names are declared in this statement are of intrinsic type character (4.3.2.1). The length
selector specifies the length of the character objects. The *char-length may be part of an
object-decl, in which case the length is specified for this single object and overrides the
length specified in the length selector. If neither a length selector nor a *char-length is
specified, the length of the data object is 1.

Version 103 1986 December Page 5-3

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

R508 length-selector is ([LEN =] type-param-value)
or * char-length [,]

R509 char-length is (type-param-value)
or scalar-int-constant

If the type parameter value evaludtes to a negative value, the length of character entities
declared is zero. A type parameter value of * may be used only in the following ways:

(1) A type parameter value of * may be used to declare a dummy argument of a pro-
cedure, in which case such a dummy argument assumes the length of the associ-
ated actual argument when the procedure is invoked.

(2) A type parameter value of * may be used to declare a named constant, in which
case the length is that of the constant value.

(3) In an external function, the name of the function itself may be specified with a
type parameter value of *; in this case, any scoping unit invoking the function
must declare this function name with a type parameter value other than * or
access such a definition. When the function is invoked, the length of the result
variable in the function is assumed from the value of this type parameter value.

The length specified for a character-valued statement function or statement function dummy
argument of type character must be an integer constant expression.

Examples of character type statements are:

CHARACTER (LEN = 10) A
CHARACTER *10 B, C *20

5.1.1.6 LOGICAL. The LOGICAL type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type logical (4.3.2.2).

5.1.1.7 Derived Type. A TYPE type specifier specifies that all objects whose names are
specified in this statement are of the derived type specified by the type name in the type-
spec. The declared objects have a component structure as defined by the derived-type-def
(4.4.1).

Each type parameter value is associated with the corresponding type parameter name in a
manner similar to the association of arguments in a procedure reference (12.4.1). The asso-
ciation may be positional or the type parameter names may be used as keywords, as with
procedure arguments (Section 12).

Objects declared with a type-parameter value specified as an asterisk must be dummy argu-
ments in a procedure. The value for such a parameter is assumed from the actual argument
that becomes associated with the dummy argument when the procedure is referenced. If
the derived-type definition defining the type has precision and exponent range parameters
and either the precision or exponent range parameter is specified as an asterisk, both must
be asterisks. In this case, only one value for precision and one value for exponent range is
assumed on any reference to the procedure. Hence, all dummy arguments that have a pre-
cision and exponent range specified as asterisks assume the same value for precision and
the same value for exponent range. All actual arguments that become associated with such
dummy arguments must be declared with the same value for precision and the same value
for exponent range. For a type parameter other than precision or exponent range, the value
specified as an asterisk is assumed independently for each object.

A declaration for a dummy argument object must specify a derived type that is defined in a
host procedure or module because the same definition must be used to declare both the
actual and dummy arguments to ensure that both are of the same derived type.

Version 103 1986 December Page 5-4

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

40

45

5.1.2 Attributes. The additional attributes that may appear in the attribute specification of a
type declaration statement further specify the nature of the objects being declared or specify
restrictions on their use in the program.

5.1.2.1 Value Attribute. The value-spec specifies that the objects whose names are
declared in the statement have a defined initial value. Those objects declared with the
PARAMETER attribute are named constants whose values must not be changed and those
objects declared with the DATA attribute are variables whose values may be changed. The
appearance of a value-spec in a specification requires that the =constant-expr option appear
for all objects in the object-decl-list.

R510 value-spec is PARAMETER
or DATA

Examples of value attribute statements are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DATA :: NEXT = 1

5.1.2.1.1 PARAMETER Attribute. The PARAMETER attribute specifies that objects
whose names are declared in this statement are named constants. The object-name
becomes defined with the value determined from the constant-expr that appears on the right
of the equals, in accordance with the rules of intrinsic assignment (7.5.1.4).

Any named constant that appears in the constant expression must have been defined pre-
viously in the same type declaration statement, defined in a prior PARAMETER statement or
type declaration statement using the PARAMETER attribute, or made accessible by an
explicit or implicit USE statement.

A named constant must not appear as part of a format specification.

5.1.2.1.2 DATA Attribute. The DATA attribute specifies that objects whose names are
declared in this statement are variables whose values are initially defined. The object-name
becomes defined with the value determined from the constant-expr that appears on the right
of the equals, in accordance with the rules of intrinsic assignment (7.5.1.4).

The presence of a DATA attribute implies that all the variables declared in this statement
are saved. That is, DATA is equivalent to the combination DATA, SAVE. The implied SAVE
attribute may be reaffirmed by explicit use of the SAVE attribute in the type declaration
statement, or by the inclusion of the object names in a SAVE statement (5.2.4). The DATA
attribute must not be specified for a dummy argument, a function result, an object in a
named common block unless the type declaration is in a block data program unit, an object
in blank common, an alias object, an allocatable array, or an automatic array.

5.1.2.2 Accessibility Attribute. The accessibility attribute specifies the accessibility of
the objects in the object-decl-list to other program units by a USE statement. The accessibil-
ity attribute may appear only in the specification-part of a module-subprogram.

R511 access-spec is PUBLIC
or PRIVATE

Objects that are declared with a PRIVATE attribute may be accessed only by procedures
defined in that module. Objects that are declared with a PUBLIC attribute may be made
accessible in other program units by the USE statement. The default for objects without an
explicitly specified access-spec is PUBLIC, but this may be changed by a PRIVATE state-
ment (5.2.3).

An example of an accessibility specification is:

Version 103 1986 December Page 5-5

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

40

REAL, PRIVATE :: X, Y, Z

5.1.2.3 INTENT Attribute. The INTENT attributes may appear only within a procedure
and may be specified only for dummy arguments. An INTENT attribute specifies the
intended use of the dummy argument within the procedure.

R512 intent-spec is IN
or OUT
or INOUT

The INTENT (IN) attribute specifies that the dummy argument must not be redefined within
the procedure.

The INTENT (OUT) attribute specifies that the dummy argument must be defined within the
procedure before a reference to the dummy argument is made and any actual argument that
becomes associated with such a dummy argument must be definable. On invocation of the
procedure, such a dummy argument becomes undefined.

The INTENT (INOUT) attribute specifies that the dummy argument is intended for use both
to receive data from and to return data to the invoking scoping unit. Any actual argument
that becomes associated with such a dummy argument must be definable.

Objects declared with an INTENT attribute must not also be declared with a value-spec,
access-spec, or SAVE attribute. Dummy procedures and allocatable dummy arguments must
not be declared with an INTENT attribute.

An example of an INTENT specification is:

SUBROUTINE TRANSFER (FROM, TO)
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

5.1.2.4 ARRAY Attribute. The ARRAY attribute specifies that objects whose names are
declared in this statement are arrays. The rank and shape are specified by the array-spec in
the object-decl if there is one, or by the array-spec in the ARRAY attribute, otherwise. An
array-spec in an object-dec! specifies rank and shape for a single object and overrides the
array-spec in the ARRAY attribute. If the ARRAY attribute is omitted, an array-spec must be
specified in the object-dec/ to declare an array object.

R513 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec

Examples of array attribute specifications are:

SUBROUTINE EX (N, A, B, S)
REAL, ARRAY (N, 10) ::
REAL A (), B (02
REAL, ALIAS :: D (:, =)
REAL, ARRAY (N, *) :: S

| EXPLICIT-SHAPE ARRAY
I ASSUMED-SHAPE ARRAYS
! DEFERRED-SHAPE ARRAY
! ASSUMED-SIZE ARRAY

5.1.2.4.1 Explicit Shape Array. An explicit shape array is declared with an explicit-
shape-spec-list. This specifies explicit values for the dimension bounds of the array.

R514 explicit-shape-spec is [lower-bound :] upper-bound
R515 Jlower-bound is scalar-int-expr
R516 upper-bound is scalar-int-expr

Version 103 1986 December Page 5-6

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

Constraint: An explicit shape array whose bounds depend on the values of nonconstant
expressions must be either a dummy argument or a local array of a procedure.

Constraint: The bounds in an explicit-shape array declaration must be specification expres-
sions (7.1.6.3).

If any bound of a local array depends on the value of a nonconstant expression, such an
array is termed automatic. An automatic array must not appear in a SAVE statement, be
initialty defined, nor be declared with a SAVE attribute.

If an explicit shape array is a dummy argument that has bounds that are nonconstant
specification expressions, the bounds, and hence shape, are declared at entry to the proce-
dure. The bounds of such an array are unaffected by any redefinition or undefinition of the
specification expression variables during execution of the procedure.

The values of the lower-bound and upper-bound determine the bounds of the array along a
particular dimension and hence the extent of the array in that dimension. The declared sub-
script range of the array in that dimension is the set of integer values between and including
the lower and upper bounds, provided the upper bound is not less than the lower bound. If
the upper bound is less than the lower bound, the range is empty, the extent in that dimen-
sion is zero, and the array is of zero size. If the lower-bound is omitted, the default value is
1. The number of sets of bounds specified is the rank. The maximum rank is seven.

The declared bounds of an explicit shape array are the lower and upper bounds. The
declared shape is the shape determined by the declared bounds. The declared extents are
the sizes determined by the declared bounds.

5.1.2.4.2 Assumed-Shape Array. An assumed-shape array is a dummy argument array
that takes its shape from the associated actual argument array.

R517 assumed-shape-spec is [lower-bound | :

The size of a dimension of an assumed-shape array is the size of the corresponding dimen-
sion of the associated actual argument array. If the lower bound value is represented by d
and the size of the corresponding dimension of the associated actual argument array is s,
then the value of the upper bound is s + d — 1. If the lower bound is omitted, the default
value is 1.

5.1.2.4.3 Allocatable Array. An allocatable array is a named array whose type, type
parameters, name, and rank are specified in a type declaration statement containing an
ALLOCATABLE attribute, but whose bounds, and hence shape, are declared when space is
allocated for the array by execution of an ALLOCATE statement (6.2.2).

R518 deferred-shape-spec is :
The rank is equal to the number of colons in the deferred-shape-spec-list.

The size, bounds, and shape of an unallocated allocatable array are undefined, and no refer-
ence may be made to any part of it, nor may any part of it be defined. The declared lower
and upper bounds of each dimension are those specified in the ALLOCATE statement when
the array is allocated.

An allocatable dummy array argument may be associated only with an allocatable actual
argument. An actual argument that is an allocated array may be associated with a
nonallocatable array dummy argument. An array-valued function may declare its result to be
an allocatable array. A component of a derived type must not have the ALLOCATABLE attri-
bute.

Version 103 1986 December Page 5-7

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X343/S8

10

16

20

25

30

35

40

5.1.2.4.4 Assumed-Size Array. An assumed-size array is a dummy array where the size
is assumed from that of an associated actual argument. The rank and extents may differ for
the actual and dummy arrays; only the size of the actual array is assumed by the dummy
array.

R519 assumed-size-spec is [explicit-shape-spec-list , 1 [lower-bound :] *
Constraint: assumed-size-spec must not be included in an ARRAY attribute.

Constraint: The value to be returned by an array-valued function must not be declared as
an assumed-size array.

The size of an assumed-size array is determined as follows:

(1) If the actual argument associated with the assumed-size dummy array is an array
name of any type other than character, the size is that of the actual array.

(2) If the actual argument associated with the assumed-size dummy array is an array
element of any type other than character with a subscript order value of r (6.2.4.2)
in an array of size x, the size of the dummy array is MAX (x —r + 1, 0).

(3) If the actual argument is a character array name, character array element name,
or a character array element substring name (6.1.1), and if it begins at character
storage unit ¢ of an array with ¢ character storage units, the size of the dummy
array is MAX (INT ((c —t + 1) / e), 0), where e is the length of an element in the
dummy character array.

If an assumed-size array has rank n, the product of the extents of the first n — 1 dimensions
must be less than or equal to the size of the associated actual array.

An assumed-size array has no bounds in its last dimension and therefore has no shape or
size.

If an assumed-size array has bounds that are nonconstant specification expressions, the
bounds are declared at entry to the procedure. The bounds of such an array are unaffected
by any redefinition or undefinition of the specification expression variables during execution
of the procedure.

5.1.2.5 SAVE Attribute. The SAVE attribute specifies that the objects declared in a dec-
laration containing this attribute retain their allocation status, definition status, effective
range, and value after execution of a RETURN or END statement in the scoping unit con-
taining the declaration. Such an object is called a saved object.

The SAVE attribute or SAVE statement may appear in declarations in a main program and
has no effect.

Objects in the scoping unit of a module may be declared with a SAVE attribute. Such
objects retain their definition status, effective range, and value when any procedure that
accesses the module in a USE statement executes a RETURN or END statement. The
SAVE attribute must not be specified for an object that is in a common block, a dummy argu-
ment name, a procedure name, a function result name, an automatic array name, or an alias
name.

5.1.2.6 OPTIONAL Attribute. The OPTIONAL attribute may be specified only for dummy
arguments within a subprogram. The OPTIONAL attribute specifies that the dummy argu-

ment need not be associated with an actual argument in a reference to the procedure
(12.5.2.8).

Version 103 1986 December Page 5-8

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

5.1.2.7 ALIAS Attribute. The ALIAS attribute specifies that only the type, type parame-
ters, rank, and name of the objects declared in the statement are specified. The object
must not be referenced unless, as a result of executing an IDENTIFY statement (6.2.6), it is
alias associated with an object that may be referenced or defined. If it is an array, it does
not have a shape unless it is alias associated.

5.1.2.8 RANGE Attribute. The RANGE attribute may be specified only for a
nonassumed-size array object and specifies that the array may have an effective shape that
differs from its declared shape. The appearance of an array name in an executable con-
struct specifies the set of elements determined by the effective shape. This set of elements
is known as the range. The range is changed by execution of a SET RANGE statement.
The initial effective shape of each explicit-shape array is its declared shape. For an alias or
allocatable array, the effective shape following the execution of an IDENTIFY or ALLOCATE
statement is the declared shape.

If the range list name is omitted, the arrays declared in that type declaration may have
different shapes, and the individual array names may appear explicitly in SET RANGE state-
ments. If the range list name is specified, the arrays must all have explicit shapes, must be
declared with the same rank, lower bounds, and upper bounds, and may be reshaped only
by execution of a SET RANGE statement containing that range list name.

5.2 Attribute Specification Statements. Most of the atiributes (other than type) may
be specified for objects, independently of type, by single attribute specification statements.
A data object must not be explicitly given any of the following attributes more than once in a
scoping unit: type, value, accessibility, intent, array, save, optional, alias, and range.

5.2.1 INTENT Statement.

R520 intent-stmt is INTENT (intent-spec) [::] dummy-arg-name-list

Constraint: An intent-stmt may occur only in the scoping unit of a subprogram or an inter-
face block.

This statement specifies the intended use of the specified dummy arguments (5.1.2.3). Each
specified dummy argument has the INTENT attribute.

An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

5.2.2 OPTIONAL Statement.
R521 optional-stmt is OPTIONAL [:: | dummy-arg-name-list

Constraint: An optional-stmt may occur only in the scoping unit of a subprogram or an inter-
face block.

This statement specifies that any of the specified dummy arguments need not be associated
with actual arguments on an invocation of the procedure (5.1.2.6). Each specified argument
has the OPTIONAL attribute.

An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: A

Version 103 1986 December Page 5-9

DATA OBJECT DECLARATIONS AND SPECIFICATIONS %X3J3/58

10

15

20

25

30

35

40

5.2.3 Accessibility Statements.
R522 access-simt is access-spec [[:: } use-name-list]

Constraint: An access-stmt may appear only in the scoping unit of a module and only one
accessibility statement with an omitted object name list is permitted in a scop-
ing unit.

Constraint: Each use-name must be the name of a variable, procedure, type, constant,
range list, or namelist group.

This statement declares the accessibility, PUBLIC or PRIVATE, of the object names (5.1.2.2).
Each specified object name has the accessibility attribute.

If the object name list is omitted, the statement sets the default accessibility that applies to
all potentially accessible objects in the module. The statement

PUBLIC

confirms the default of public accessibility. The statement
PRIVATE

sets the default to private accessibility.

Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C

5.2.4 SAVE Statement.
R523 save-stmt is SAVE [[::] saved-objeci-list]

R524 saved-object is object-name
or / common-block-name /

Constraint: An object name must not be a dummy argument name, a procedure name, a
function result name, an automatic array name, an alias name, or the name of
an object in a common block. Its type parameters must be constant.

Constraint: If a SAVE statement with an omitted saved object list occurs in a scoping unit,
no other occurrence of the SAVE attribute or SAVE statement is permitted in
the same scoping unit.

All objects named explicitly or included within a common block named explicitly have the
SAVE attribute (5.1.2.5). If a particular common block name is specified in a SAVE state-
ment in any subprogram of an executable program, it must be specified in a SAVE state-
ment in every subprogram in which that common block appears. For a common block
declared in a SAVE statement, the current values of the objects in a common block storage
sequence (14.7.2) at the time a RETURN or END statement is executed are made available
to the next scoping unit in the execution sequence of the executable program that specifies
the common block name. If a named common block is specified in the scoping unit of the
main program, the current values of the common block storage sequence are made avalil-
able to each subprogram that specifies the named common block; a SAVE statement in the
subprogram has no effect. The definition status of each object in the named common block
storage sequence depends on the association that has been established for the common
block storage sequence.

A SAVE statement with an empty saved object list is treated as though it contained the
names of all objects in a scoping unit that may be saved.

Version 103 1986 December Page 5-10

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

An example of a SAVE statement is:
SAVE A, B, C, /BLOCKA/, D

5.2.5 DIMENSION Statement.

R525 dimension-stmt is DIMENSION array-name (array-spec) B
B [, array-name (array-spec) |...

Constraint: In a DIMENSION statement, only explicit shape and assumed-size array-specs
are permitted.

This statement specifies a list of object names to have the ARRAY attribute and specifies
the array properties that apply for each object named.

Each specified array name has the ARRAY attribute. The array properties for an array must
not be specified in more than one of these statements in a scoping unit.

An example of a DIMENSION statement is:
DIMENSION A (10, B (10, 70), C (-3:12,)

5.2.6 DATA Statement. A DATA statement is used to provide initial values for variables.

R526 data-stmt . is DATA data-stmt-init [[, | data-stmt-init]...
or DATA (data-value-def-list)

R527 data-stmt-init is data-stmi-object-list / data-stmt-value-fist /

R528 data-stmt-object is object-name

or array-element
or data-implied-do

R529 data-stmt-value is [data-stmi-repeat * | data-stmt-constant

R530 data-stmt-constant is constant
or signed-int-literal-constant
or signed-real-literal-constant

R531 data-stmt-repeat is scalar-int-constant
R532 data-implied-do is (data-i-do-object-list, data-i-do-variable = W
W scalar-int-expr, scalar-int-expr [, scalar-int-expr 1)
R533 data-i-do-object is array-element
or data-implied-do
R534 data-i-do-variable is scalar-int-variable
R535 data-value-def is variable = constant-expr

or data-init-implied-do = data-init-implied-do-value
R536 data-init-implied-do is (data-init-implied-do-object , data-init-implied-do-control)

R537 data-init-implied-do-object is array-element
or data-init-implied-do

R538 data-init-implied-do-control is data-i-do-variable = Wl
W scalar-int-expr , scalar-int-expr [, scalar-int-expr |

R539 data-init-implied-do-value s array-constructor

Constraint: data-i-do-variable must pe a named variable.

Version 103 1986 December Page 5-11

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

40

45

Constraint: The data statement repeat factor must be positive. If the data statement repeat
factor is a named constant, it must have been declared previously in the scop-
ing unit or made accessible by a USE statement.

Constraint: A variable whose name is included in a data-stmt-object-list or a data-i-do-
object-list must not be of a derived type, a structure component, a dummy argu-
ment, made accessible by a USE statement, in a named common block unless
the DATA statement is in a BLOCK DATA program unit, in a blank common
block, or a function name. An array whose name is included in either of the
above object lists must not be an automatic array, an allocatable array, or a
zero-sized array.

Constraint: Neither the name of variable in data-value-def (R534) nor the name of array-
element in data-init-implied-do-object (R536) can be accessible names of the
whole or part of dummy arguments, procedures, function results, automatic or
allocatable arrays, alias objects, or objects in a common block.

Constraint: The only variables that may appear in subscripts of the array-element in a data-
init-implied-do-object (R536) are DO variables from some level of the data-init-
implied-do. Each such DO variable must appear in some subscript of the array-
element.

Constraint: Each data-init-implied-do-control must conform to the rules of the DO construct
(8.1.4.1). The DO variable must be an integer. The only variables that may
appear in scalar-int-expr are DO variables from an outer data-init-implied-do-
control.

Constraint: A variable, or part of a variable, must not be initialized more than once.

Constraint: The size of the array-constructor must be equal to the number of elements ref-
erenced by the data-init-implied-do-controls.

Constraint: Each element of the array constructor must be a scalar constant expression.

The data-stmt-object-list is expanded to form a sequence of scalar variables. An array whose
unqualified name appears in a data-stmt-object-list is equivalent to a complete sequence of
its elements, ordered by subscript order value (6.2.4.2). A data-implied-do is expanded to
form a sequence of array elements, under the control of the implied-do DO variable, as in
the DO loop (8.1.4.1, 9.4.2). A subscript in an array element data-i-do-object must be an
expression whose primaries are either constants or DO variables containing data-implied-dos.
Each array-element data-i-do-object must include at least one subscript whose value depends
on that of the DO variable, for each data-implied-do in which it is contained. A scalar-int-
expr of a data-implied-do must involve as primaries only constants or DO variables of the
containing data-implied-dos.

The data-stmt-value-list is expanded to form a sequence of constant values. Each value
must be either a constant that is either previously defined or made accessible by a USE
statement. A data statement repeat factor indicates the number of times the following con-
stant is to be included in the sequence; omission of a data statement repeat factor has the
effect of a repeat factor of one.

The expanded sequences of scalar variables and constant values are in one to one corre-
spondence. Each constant defines the initial value for the corresponding variable. The
lengths of the two expanded sequences must be the same.

The value of the constant must be assignment compatible with its corresponding variable,
according to the rules of intrinsic assignment (7.5.1.4), and the constant defines the initial
value of the variable according to those rules.

Version 103 1986 December Page 5-12

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

The data-init-implied-do assignment is performed as if:

(1) The set of data-init-implied-do-controls are converted to nested DO constructs with
the outermost control being the outermost construct, and the innermost control
being the innermost construct and with the array element assignment appearing
inside the innermost construct.

(2) The assignments are made from the array-constructor in array element order in
accordance with the rules of intrinsic assignment (7.5.1.2).

The variable in data-value-def (R534) becomes defined with the value determined from the
constant-expression that appears on the right of the equal sign in accordance with the rules
of intrinsic assighment.

A variable that appears in a DATA statement and is typed implicitly may appear in a subse-
quent declaration only if that subsequent declaration confirms the implicit typing.

If a named variable or part of a named variable that is initialized in a DATA statement, the
named variable has the SAVE attribute, but this may be reaffirmed by a SAVE statement or
a type declaration statement containing the SAVE attribute.

Examples of DATA statements are:

CHARACTER (LEN = 10> NAME

INTEGER, ARRAY (0:9) :: MILES

REAL, ARRAY (100, 100) :: SKEW

DATA NAME / 'JOHN DOE' /, MILES / 10%0 /

DATA ((SKEW (K, J), 4 =1, K, K =1, 100) / 5050 0.0 /

DATA ((SKEW (K, J), J =K+ 1,100, K=1, 99 / 4950 = 1.0 /

REAL S

REAL, ARRAY (1, 10) :: A

REAL, ARRAY (10, 10> :: B

INTEGER I, J, K, L, M, N

DATA (I =1, J =1, § =0.00

DATA (A (K, K=1,9, 2) =[5 [1.01D

DATA (((B (M, N), M =1, N), N=1,100 = [55 [0.011, L =100

The character variable NAME is initialized with the value JOHN DOE with padding on the
right because the length of the constant is less than the length of the variable. All ten
elements of the integer array MILES are initialized to zero, and the two dimensional array
SKEW is initialized so that the lower triangle of SKEW is zero and upper triangle is one.

There must be the same number of items specified by each data-stmt-object-list and its cor-
responding data-stmt-value-list. There is a one-to-one correspondence between the items
specified by a data-stmt-object-list and the constants specified by a data-stmt-value-list such
that the first item of a data-stmt-object-list corresponds to the first constant of a data-stimt-
value-list, etc. By this correspondence, the initial value is established and the data object is
initially defined. If an array name without a subscript is in the list, there must be one con-
stant for each element of that array. The ordering of array elements is determined by the
array element subscript order value (6.2.4.2).

The type of the object item and the type of the corresponding constant must agree when
either is of type character or logical. When the object item is of type integer, real, or com-
plex, the corresponding constant must also be of type integer, real, or complex; if necessary,
the constant is converted to the type of the object according to the rules for numeric conver-
sion and assignment (7.5.1.4). Note that if an object is of type double precision and the con-
stant is of type real, the processor may supply more precision derived from the constant
than can be contained in a real datum. A constant of type character is assigned to the

Version 103 1986 December Page 5-13

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/s8

10

15

20

25

30

35

40

object according to the rules for intrinsic assignment (7.5.1.4).

5.2.7 PARAMETER Statement. The PARAMETER statement provides a means of
defining a named constant. Named constants defined by a PARAMETER statement have

exactly the same properties and restrictions as those declared in a type statement specifying
a PARAMETER attribute (5.1.2.1.1).

R540 parameter-stmt is PARAMETER (named-constant-def-list)
R541 named-constant-def is named-constant-name = constant-expr

The named constant must have its type, shape, and any type parameters specified either by
a previous occurrence in a type declaration statement in the same scoping unit, or must be
determined by the implicit typing rules currently in effect for the scoping unit. If the named
constant is typed by the implicit typing rules, its appearance in any subsequent type declara-
tion statement must confirm this implied type and the values of any implied type parameters.

Each named constant becomes defined with the value determined from the constant expres-
sion that appears on the right of the equals, in accordance with the rules of intrinsic assign-
ment (7.5.1.4).

A named constant that appears in the constdnt expression must have been defined pre-
viously in the same PARAMETER statement, defined in a prior PARAMETER statement or
type declaration statement using the PARAMETER attribute, or made accessible by an
explicit or implicit USE statement.

Each named constant has the PARAMETER attribute.
An example of a PARAMETER statement is:
PARAMETER (ONE = 1.0, SQRTZ2 = SQRT (2.0))

5.2.8 RANGE Statement. A RANGE statement specifies the RANGE attribute (5.1.2.8) for
each array name in the array name list.

R542 range-stmt is RANGE [/ range-list-name / | array-name-list

If the range list name is present, the arrays in the array name list must all be declared with
the same rank, lower bounds, and upper bounds, but they may be of any type. The
effective shape of all arrays in the array name list may be changed by the execution of a
SET RANGE statement containing only the range list name.

If the range list name is omitted, the arrays in the array name list may have different ranks,
lower bounds, and upper bounds and each array name may appear independently in
different SET RANGE statements. An array must not be given the RANGE attribute more
than once in a scoping unit.

Examples of RANGE statements are:

RANGE /RLIST/ A, B, C
RANGE X, Y

5.3 IMPLICIT Statement. An IMPLICIT statement specifies a type, and possibly type
parameters, for all implicitly typed data objects whose names begin with one of the letters
specified in the statement. Alternatively, it may indicate that no implicit typing rules are to
apply in a particular scoping unit.

R543 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE
R544 implicit-spec is type-spec (letter-spec-list)

Version 103 1986 December Page 5-14

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

R545 letter-spec is letter [— letter |

A letter-spec consisting of two letters separated by a minus is equivalent to writing all of the
letters in alphabetical order in the alphabetic sequence from the first letter through the sec-
ond letter. For example, A—C is equivalent to A, B, C.

5 If IMPLICIT NONE is specified, all objects local to the scoping unit and all external functions
referenced must be declared explicitly and there must be no other IMPLICIT statements in
the scoping unit.

Any data object not explicitly declared by a type declaration statement, or made accessible
by a USE statement, that has a name starting with one of the letters in letter-spec-list is
10 declared implicitly to be of type (and type parameters) type-spec.

An IMPLICIT statement applies only to the scoping unit containing it. An IMPLICIT state-
ment does not change the type of any intrinsic function. The same letter must not appear
as a single letter, or be included in a range of letters, more than once in all of the IMPLICIT
statements in a scoping unit.

15 If no IMPLICIT statement is present, the default in program units containing USE statements
with the ONLY option omitted, module procedure definitions, and internal procedure
definitions is equivalent to:

IMPLICIT NONE
and in any other scoping unit is equivalent to:
20 IMPLICIT INTEGER (I-N), REAL (A-H, 0-2)

5.4 NAMELIST Statement. A NAMELIST statement specifies a group of named data
objects which can then be referred to by a single name for the purpose of data transfer (9.4,

10.9).

R546 namelist-stmt is NAMELIST / namelist-group-name / namelist-group-object-list il
25 W [[,]/ namelist-group-name / namelist-group-object-list]...

R547 namelist-group-object is variable-name

Constraint: namelist-group-name must not be the same name as any variable within the cur-
rent scoping unit.

Constraint: A namelist-group-object must not be an array dummy argument with nonconstant
30 bounds, an array element or section, a structure component, a structure with
assumed parameters, an allocatable array, or a substring.

Constraint: If a namelist-group-name has the PUBLIC attribute, no item in the namelist-
group-object-list may have the PRIVATE attribute.

The order in which the data objects (variables) are specified in the NAMELIST statement
35 controls the order in which the values appear on output.

Any namelist-group-name may occur in more than one NAMELIST statement in a scoping
unit. The namelist-group-object-list following each successive appearance of the same
namelist-group-name is treated as a continuation of the list for that namelist-group-name.

A namelist-group-object may be a member of more than one namelist group.

40 A namelist group object either must have its type and shape specified by a previous occur-
rence in a type declaration statement in the same scoping unit, or must be determined by
the implied typing rules currently in effect for the scoping unit. If a namelist group object is
typed by the implied type rules, its appearance in any subsequent type declaration state-
ment must confirm this implied type.

Version 103 1986 December Page 5-15

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

An example of a NAMELIST statement is:
NAMELIST /NLIST/ A, B, C

5.5 Storage Association of Data Objects. In general, the physical storage units or
storage order for data objects is not specifiable. However, the EQUIVALENCE statement
and the COMMON statement provide for control of the “order” and “layout” of storage units.
Section 14.7.2 describes the general mechanism of storage association.

5.5.1 EQUIVALENCE Statament. An EQUIVALENCE statement is used to specify the
sharing of storage units by two or more objects in a program unit. This causes association
of the objects that share the storage units.

If the equivalenced objects are of different data types, the EQUIVALENCE statement does
not cause type conversion or imply mathematical equivalence. For example, if a scalar and
an array are equivalenced, the scalar does not have array properties and the array does not
have the properties of a scalar.

R548 equivalence-stmt is EQUIVALENCE equivalence-set-list
R549 equivalence-set is (equivalence-object , equivalence-object-list)
R550 equivalence-object is object-name

or array-element
or substring

Constraint: object-name must be a scalar variable name or an array variable name.

Constraint: An equivalence-object must not be the name of a dummy argument, an object of
derived type, a structure component, an alias object, an allocatable array, an
automatic array, an object of real or double precision real type uniess of default
real type, an object of complex type unless of default complex type, an array of
zero size, or a function name.

Constraint: Within an equivalence-set, if one equivalence-object is of type character, all must
be of type character.

Constraint: Each subscript or substring range expression in an equivalence-object must be
an integer constant expression.

5.5.1.1 Equivalence Association. An EQUIVALENCE statement specifies that the storage
sequences of the data objects whose names appear in an equivalence-set have the same
first storage unit. This causes the association of the data objects in the equivalence-set and
may cause association of other data objects.

5.5.1.2 Equivalence of Character Objects. A data object of type character may be
equivalenced only with other objects of type character. The lengths of the equivalenced
objects are not required to be the same.

An EQUIVALENCE statement specifies that the storage sequences of the character data
objects whose names appear in an equivalence-set have the same first character storage
unit. This causes the association of the data objects in the equivalence-set and may cause
association of other data objects. Any adjacent characters in the associated data objects
may also have the same character storage unit and thus may also be associated. In the
example:

CHARACTER (LEN=4) :: A, B
CHARACTER (LEN=3) :: C(2)
EQUIVALENCE (A, C(1)), (B, C(2))

Version 103 1986 December Page 5-16

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

the association of A, B, and C can be illustrated graphically as:
1 2 3 4 5 6 7

- —A = —

|— ™ -] |— @ -

5.5.1.3 Array Names and Array Element Names. If an array element name appears in an
EQUIVALENCE statement, the number of subscripts must be the same as the rank of the
array.

The use of an array name unqualified by a subscript in an EQUIVALENCE statement has the
same effect as using an array element name that identifies the first element of the array.

5.5.1.4 Restrictions on EQUIVALENCE Statements. An EQUIVALENCE statement must
not specify that the same storage unit is to occur more than once in a storage sequence.
For example,

REAL, ARRAY(2) :: A
REAL :: B
EQUIVALENCE (A(1), B), (A(2), B)

is prohibited, because it would specify the same storage unit for A(1) and A(2). An EQUIVA-
LENCE statement must not specify that consecutive storage units are to be nonconsecutive.
For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE (A(1), D(1)), (A(2), D(2))

5.5.2 COMMON Statement. The COMMON statement specifies blocks of physical storage,
called common blocks, that may be accessed by any of the scoping units in an executable
program. Thus, the COMMON statement provides a global data facility based on storage
association (14.7.2). The common blocks specified by the COMMON statement may be
named and are called nhamed common blocks or may be unnamed and are called blank
common.

R551 common-stmt is COMMON [/ [common-block-name] /] B
B common-block-object-list i
W [[,]/[common-block-name]/ M
B common-block-object-list]...

R552 common-block-object is object-name [(explicit-shape-spec-iist) |

Constraint: object-name must be a scalar-variable-name or an array-variable-name. Only
one appearance of a given object-name is permitted in all common-
block-object-lists within a scoping unit.

Constraint: A common-block-object must not be the name of a dummy argument, an object
of derived type, a structure component, an alias object, an allocatable array, an
automatic array, an object of real or double precision real type unless of default
real type, an object of complex type unless of default complex type, an array of
zero size, or a function name.

Constraint: Each bound in the explicit-shape-spec must be an integer constant expression.
Each omitted common block name specifies the blank common block.

In each COMMON statement; the data objects whose names appear in a common block
object list following a common block name are declared to be in that common block. If the

Version 103 1986 December Page 5-17

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

first common block name is omitted, all data objects whose names appear in the first com-
mon block list are specified to be in blank common. Alternatively, the appearance of two
slashes with no common block name between them declares the data objects whose names
appear in the common block list that follows to be in blank common.

Any common block name or an omitted common block name for blank common may occur
more than once in one or more COMMON statements in a scoping unit. The common block
list following each successive appearance of the same common block name is treated as a
continuation of the list for that common block name.

If a character variable or character array is in a common block, all of the entities in that com-
mon block must be of type character.

An array in a common block may have the RANGE attribute.
Examples of COMMON statements are:

COMMON /BLOCKA/ A, B, D (10, 30)
COMMON I, J, K

5.5.2.1 Common Block Storage Sequence. For each common block, a common block
storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the storage sequences of all data
objects in the common block object lists for the common block. The order of the
storage sequence is the same as the order of the appearance of the common
block object lists in the scoping unit.

(2) The storage sequence formed in (1) is extended to include all storage units of any
storage sequence associated with it by equivalence association. The sequence
may be extended only by adding storage units beyond the last storage unit. Data
objects associated with an entity in a common block are considered to be in that
common block.

5.5.2.2 Size of a Common Block. The sizz of a common block is the size of its common
block storage sequence, including any extensions of the sequence resulting from equiva-
lence association.

5.5.2.3 Common Association. Within an executable program, the common block storage
sequences gf all common blocks with the same name have the same first storage unit.
Within an executable program, the common block storage sequences of all blank common
blocks have the same first storage unit. This results in the association of objects in different
scoping units.

5.5.2.4 Differences between Named Common and Blank Common. A blank common
block has the same properties as a named common block, except for the following:

(1) Execution of a RETURN or END statement may cause data objects in named com-
mon blocks to become undefined unless the common block name has been
declared in a SAVE statement, but never causes data objects in blank common to
become undefined (14.8.5). -

(2) Named common blocks of the same name must be of the same size in all scoping
units of an executable program in which they appear, but blank common blocks
may be of different sizes.

(3) A data object in a named common block may be initially defined by means of a
DATA statement in a BLOCK DATA program unit, but objects in blank common
must not be initially defined (11.5). ,\ '

NV

‘\

Version 103 1986 December Page 5-18

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

5.5.2.5 Restrictions on Common and Equivalence. An EQUIVALENCE statement must
not cause the storage sequences of two different common blocks in the same scoping unit
to be associated. Equivalence association must not cause a common block storage
sequence to be extended by adding storage units preceding the first storage unit of the first

5 object specified in a COMMON statement for the common block. For example, the following
is not permitted:

COMMON /X/ A
REAL B(2)
EQUIVALENCE (A, B(2))

10 The name of a PUBLIC data object accessible from a module must not appear in a COM-
MON or EQUIVALENCE statement in the scoping unit containing the USE statement. If a
common block is declared in a module, it must not be declared in another program unit
accessing entities from the module.

Version 103 1986 December Page 5-19

10

15

20

25

30

35

40

6 USE OF DATA OBJECTS

The appearance of a data object name or subobject designator in a context that requires its
value is termed a reference. A reference is permitted only if the data object is defined. A
data object becomes defined with a value when the data object name or subobject designa-
tor appears in certain contexts and when certain events occur (14.8).

A data object that is not a constant is a variable.

R601 variable is scalar-variable-name
or array-variable-name
or array-element
or array-section
or structure-component
or substring

R602 [ogical-variable is variable
Constraint: logical-variable must be of type logical.
R603 char-variable is variable
Constraint: char-variable must be of type character.
R604 int-variable is variable
Constraint: int-variable must be of type integer.

Under some circumstances, alias variables (6.2.6), allocatable arrays (6.2.2), dummy argu-
ments, and variables associated with dummy arguments (7.5.1.1, 7.5.2.1, 12.4.1.1, 12.5.2.1,
12.5.2.8) must not be defined.

A literal constant is a scalar denoted by a syntactic form which indicates its type, type
parameters, and value. A named constant is a constant that has been associated with a
name with the PARAMETER attribute (5.1.2.1.1, 5.2.7). A reference to a constant is always
permitted; redefinition of a constant is never permitted.

For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! SEE 4.4.1

then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables.

6.1 Scalars. A scalar (2.4.4.1) is a data entity that is not array valued. lts value, if
defined, is a single element from the set of values comprising its data type.

A scalar has rank zero.

6.1.1 Substrings. A substring is a contiguous portion of a character string (4.3.2.1). The
following rules define the forms of a substring:

R605 substring is parent-string (substring-range)

R606 parent-string] is scalar-variable-name
or array-element
or scalar-structure-component
or scalar-constant

R607 substring-range : is [scalar-int-expr | : [scalar-int-expr |

Version 103 1986 December Page 6-1

USE OF DATA OBJECTS . X3J3/S8

10

15

20

25

30

35

40

Constraint: parent-string must be of type character.

The first scalar-int-expr in substring-range is called the starting point and the second one is
called the ending point. The length of a substring is the number of characters in the
substring and is max (ending-point — starting-point + 1, 0).

Let the characters in the parent string be numbered 1,2,3,...,n, where n is the length of
the parent string. Then the characters in the substring are those from the parent string from
the starting point and proceeding in sequence up to and including the ending point. Both
the starting point and the ending point must be within the range 1, 2,..., n unless the starting
point exceeds the ending point, in which case the substring has length zero.

If the parent is a variable, the substring is also a variable. If the parent is an array section
(6.2.4.3), the substring is an array of the same shape as the array section and each element
is the designated substring of the corresponding element of the array section.

Examples of character substrings are:

B (1) (1:5) array element as parent string
P % NAME (1:1) structure component as parent string
ID (4:9) scalar variable name as parent string

'0123456789"' (N:N) character constant as parent string

6.1.2 Structure Components. A derived-type definition contains one or more component
definitions (4.4). A structure-component is one of the components of a structure.

R608 structure-component is parent-structure % component-name [array-selector |

R609 parent-structure is scalar-variable-name
or array-variable-name
or array-element
or array-section
or structure-component
or named-constant

Constraint: parent-structure must be of derived type.

Constraint: An array-selector may appear only if the component specified by component-
name is an array.

R610 array-selector is (subscript-list)
or (section-subscript-list)

The type of the structure component is the same as the type declared for the component in
the derived-type definition. Each type parameter, if any, of the type of a structure compo-
nent is declared for the component in the derived-type definition (4.4.1) and is either a con-
stant or is a type parameter of derived type (4.4.1.1) whose actual value is established in the
declaration of a parent object or component (5.1.1.7, 4.4.1).

The resulting data subobject is an array if either the parent structure is an array or the com-
ponent is an array without an array selector that is a subscript list, but not both.

Examples of structure components are:

SCALAR_PARENT % SCALAR_FIELD scalar component of scalar parent

ARRAY PARENT (J) % SCALAR _FIELD component of array element parent
ARRAY_ PARENT (1:N) % SCALAR FIELD component of array section parent
SCALAR_PARENT % ARRAY_FIELD (K) array element component of scalar parent

ARRAY_PARENT (K) % ARR_AY_FIELD (J) array element component of array element parent

Version 103 1986 December Page 6-2

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

45

6.2 Arrays. An array is a set of scalar data, all of the same type and type parameters,
whose individual elements are arranged in a rectangular pattern. The scalar data that make
up a named array are the array elements.

6.2.1 Whole Arrays. A whole array is a named array.

6.2.1.1 Array Constants and Variables. A whole array is either a constant or variable. A
whole array constant is the name of a constant expression (6.1.2.1.1 and 5.2.7) and com-
prises those elements determined by the declared shape of the named constant.

The appearance of a whole array variable in an executable construct specifies thoséﬂ;

elements determined by the effective shape (6.2.1.2). An assumed-size array is permitted to
appear as a whole array in an executable construct only as an actual argument in a proce-
dure reference.

The appearance of a whole array name in a nonexecutable statement specifies the entire

array as determined by the declared shape. ——

No ordering of the elements of an array is indicated by the appearance of the array name,
except when the name occurs in an input list (9.4.2), an output list (9.4.2), an initial value
definition (5.2.6), an internal file unit (9.2.2), a format specifier (9.4.1.1), or a DATA statement
object (5.2.6), where the order of reference is determined by the array element ordering
(6.2.4.2).

6.2.1.2 Declared and Effective Array Range. The declared range for an array is the set
of elements determined by the declared bounds for each dimension of the array. The effec-
tive range for an array is the subset of elements determined by the effective bounds of the
array as specified in the most recently executed SET RANGE statement for the array. The
declared shape for an array is the shape determined by the bounds of the array. The
effective shape for an array is the shape determined by the effective range bounds of the
array. If no SET RANGE statement has been executed for the array, the effective range is
the declared range. The effective range of an array that is local to a scoping unit reverts to
the declared range after execution of a RETURN or END statement in that scoping unit,
unless the array has the SAVE attribute.

The appearance of an array name in an executable construct refers to the elements in the
effective range. The appearance of a whole array name in a nonexecutable statement
refers to the entire array.

6.2.2 The ALLOCATE Statement. The ALLOCATE statement dynamically creates
allocatable arrays.

R611 allocate-stmt is ALLOCATE (array-allocation-list B
B [, STAT = stat-variable])
R612 stat-variable is scalar-int-variable

Constraint: The stat-variable must not be allocated within the ALLOCATE statement in
which it appears.

R613 array-allocation is array-name (explicit-shape-spec-list)
Constraint: array-name must be the name of an allocatable array.

Constraint: A bound in an array-allocation explicit-shape-spec must not be an expression
involving as a primary an array inquiry function whose argument is any other
array in the same ALLOCATE statement.

Constraint: The number of explicit-shape-specs in an array-allocation explicit-shape-spec-list
must be the same as the declared rank of the array.

Version 103 1986 December Page 6-3

et

Ly ke

USE OF DATA OBJECTS X3J3/58

Example:
ALLOCATE (X (N>, B (-3 : M, 0:9))

The values of the lower bound and upper bound expressions in an explicit shape
specification determine the declared bounds of an allocatable array.

5 If the STAT = specifier is present, successful execution of the ALLOCATE statement causes
the stat-variable to become defined with a value of zero. If an error condition occurs during
the execution of the ALLOCATE statement, the stat-variable becomes defined with a
processor-dependent nonzero value.

If an error condition occurs during execution of an ALLOCATE statement that does not con-
10 tain the STAT = specifier, execution of the executable program is terminated.

An allocatable array that has been allocated by an ALLOCATE statement and has not been
subsequently deallocated (6.2.3) is currently allocated and is definable. Allocating a cur-
rently allocated array causes an error condition in the ALLOCATE statement. At the begin-
ning of execution of an executable program, allocatable arrays have not been allocated and

15 are not definable. At the beginning of the execution of a function whose result is an
allocatable array, the result is not allocated.

6.2.3 The DEALLOCATE Siatemient. The DEALLDCATE statement causes an allocatable
array that has been allocated to become deallocated; hence, it becomes not definable.

R614 deallocate-stmt is DEALLOCATE (array-name-list [, STAT = stat-variable])

20 Constraint: The stat-variable must not be deallocated within the same DEALLOCATE state-
ment in which it appears.

If the STAT = specifier is present, successful execution of the DEALLOCATE statement

causes the stat-variable to become defined with a value of zero. If an error condition occurs

during the execution of the DEALLOCATE statement, the stat-variable becomes defined with
25 a processor-dependent nonzero value.

If an error condition occurs during execution of a DEALLOCATE statement that does not
contain the STAT = specifier, execution of the executable program is terminated.

Deallocating an array that is not currently allocated causes an error condition in the DEAL-
LOCATE statement. When the execution of a procedure is terminated by execution of a

30 RETURN or END statement, any array allocated within the procedure is deallocated unless it
is one of the following:

(1) An allocatable dummy argument or function result,
(2) An allocatable array with the SAVE attribute,

(3) An allocatable array in a module if the module also is accessed by another scop-
35 ing unit that is currently in execution

which retain their definition status.
An example of a DEALLOCATE statement is:
DEALLOCATE (X, B)

6.2.4 Array Elements and Array Sections.
40 Ré615 array-element is parent-array (subscript-list)
Constraint: The number of subscripts must equal the declared rank of the array.

R616 array-section is parent-array (section-subscript-list) [(substring-range)]

Version 103 1986 December Page 6-4

USE OF DATA OBJECTS . X3J3/S8

10

15

20

25

30

35

40

45

R617 parent-array is array-variable-name
or array-constant-name

Constraint: At least one section-subscript must be a subscript-triplet.

Constraint: The number of section-subscripts must equal the declared rank of the array.

R618 subscript is scalar-int-expr
R619 section-subscript is subscript
or subscript-triplet
R620 subscript-triplet is [subscript] : [subscript] | : stride]
R621 stride is scalar-int-expr

An array element is a scalar. An array section is an array. For example, with the declara-
tion:

REAL A (10, 100
A (1, 2) is an array element and A (1:N:2, M) is a rank-one array section.

6.2.4.1 Array Elements. The value of a subscript expression in an array element must be
within the declared bounds for that dimension.

6.2.4.2 Subscript Order Value. The elements of an array form a sequence known as the
array element ordering. The position of an array element in this sequence is determined
by the subscript order value of the subscript list designating the element. The subscript
order value is computed from the formulas in Table 6.1.

Table 6.1. Subscript Order Value

Explicit Subscript
Rank Shape Subscript Order
n Specifier List Value
1 Jiky 81 1+(s1—/1)
2 j1:k1,jzika 51,52 1+(s1—/4)

+(s2—f2)xd4

3 Jikqjaka,j3ks $1,52:83 1+(S1—ij)
+(s2—jz)xd4
+(s3—Jja)xdaxd;

n i1:k1!---sin:kn 815---38p

Version 103 1986 December Page 6-5

USE OF DATA OBJECTS X3J3/S8

10

156

20

25

30

35

40

1+(s1=-/1)
+(s2—Jj2) xd;
+(s3—Ja) X dyxd;
+ e .
+(Sn_in)an—1
Xdp_oX -+ Xdy

Notes for Table 6.1:
(1) d; = max (k; — j; + 1, 0) is the size of the ith dimension.
(2) If the size of the array is nonzero, jy < §; < k foralli = 1,2,...,n.

6.2.4.3 Array Sections. An array section is an array subobject designated by an array
name with a section subscript list, optionally followed by a substring range. Each subscript
in a section subscript must be within the declared bounds for that dimension.

Each subscript triplet in the section subscript list indicates a sequence of subscripts (6.2.4.4).
The array section is the set of elements from the named array determined by all possible
subscript lists obtainable from the single subscripts or sequences of subscripts specified by
each section subscript.

The rank of the array section is the number of subscript triplets in the section subscript list.
The shape is the rank one array whose ith element is the number of integer values in the
sequence indicated by the ith subscript triplet. |f any of these sequences is empty, the
array section has size zero. The subscript order of the elements of an array section is that
of the array data object that the array section represents.

6.2.4.4 Triplet Notation. The subscripts and strides of subscript triplet are optional. An
omitted first subscript in a subscript triplet is equivalent to a subscript whose value is the
effective lower bound for the named array and an omitted second subscript is equivalent to
the effective upper bound (5.1.2.4, 5.1.2.8, 6.2.6). An omitted stride is equivalent to a stride
of one.

The second subscript must not be omitted in the last dimension of an assumed-size array.

When the stride is positive, the subscripts specified by a triplet form a regularly spaced
sequence of integers beginning with the first subscript and proceeding in increments of the
stride to the largest such integer not exceeding the second subscript; the sequence is empty
if the first subscript exceeds the second.

The stride must not be zero.

When the stride is negative, the sequence begins with the first subscript and proceeds in
increments of the stride down to the smallest such integer equal to or exceeding the second
subscript; the sequence is empty if the second subscript exceeds the first.

For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of
shape [2] consisting of the elements B (3) and B (10), in that order. The section
B(@©:1: —2)is the array of shape [5] whose elements are B (9), B (7), B (5), B (3), and
B (1), in that order.

For another example, suppose an array is declared as A (5, 4,3). The section
A(3:5,2,1:2)is the array of shape [3, 2] shown below:

A(B,2,1) A@B 22
A@4,2,1) A@4 22
A5, 2, 1) AG, 2 2)

Version 103 1986 December Page 6-6

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

45

6.2.5 The SET RANGE Statement. Execution of a SET RANGE statement establishes the
effective ranges for the arrays in the array name list or for the members of the range list
specified by the range list name (5.2.8).

R622 set-range-stmt is SET RANGE (| effective-range-list |) array-name-list
or SET RANGE ([effective-range-list |) / range-list-name /

R623 effective-range is explicit-shape-spec
or [lower-bound | : [upper-bound |

Constraint: In an effective-range with two bounds, the value of one bound must not depend
on the value of the other bound.

Constraint: The number of effective ranges in an effective-range-list must equal the rank of
the arrays being ranged.

Constraint: All arrays being ranged must have the same rank and declared lower bounds in
corresponding dimensions.

Constraint: An array that is a member of a range list must not appear in an array-name-list
of a SET RANGE statement.

Each effective range specifies the effective lower and upper bounds for a dimension of each
array in array-name-list or range-list.

An array name must not appear in the array name list of a SET RANGE statement unless it
has the RANGE attribute. A SET RANGE statement must not be used to establish the
effective ranges for an allocatable array that is not allocated or an alias array that is not alias
associated. The values of each effective lower bound and each effective upper bound must
be within the declared bounds for the corresponding dimension of every array in the array
list or every member of the range list specified by the range list name. The effect of a SET
RANGE is global to all scoping units accessing those arrays by use association. If a lower
bound or an upper bound of an effective range is omitted, the default value is the current
effective lower bound or effective upper bound, respectively, for each array being ranged. If
the effective range list is omitted, the effective lower bounds and the effective upper bounds
revert to the declared lower and upper bounds, respectively, for each array being ranged.

An example of a SET RANGE statement is:

REAL, RANGE / RLIST /, ARRAY (10, 10) :: A, B, C, D, E
N=3
SET RANGE (N:2*N, N:2*N) / RLIST /

6.2.6 The IDENTIFY Statement. An IDENTIFY statement provides a dynamic aliasing
facility involving an alias object and a parent object. An alias may be an array whose
elements are associated with a subset of the elements of a given parent. Such an alias has
properties similar to those of an array section, but can specify a greater variety of subsets of
the array elements of the parent. For example, an alias may be the diagonal of an array of
rank two, or may have one subscript selecting an array of derived type and another indexing
a component of the array elements (Examples 2 and 3 below).

R624 identify-stmt is IDENTIFY (alias-name = parent)

or IDENTIFY (alias-element = parent-element , B
W alias-range-spec-list)

R625 alias-element is alias-name (subscript-name-list)

R626 parent-element is parent-name (subscript-mapping) B
B [% component-name [(subscript-list)]]...

R627 subscript-mapping is subscript-list

Version 103 1986 December Page 6-7

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

45

7
R628 alias-range-spec is subscript-name = subscript : subscript > .

Constraint: The alias and parent objects must conform in type,("r'grhfli;;dﬁd iype parameters.

Constraint: Each subscript in a subscript-mapping must be in a canonical form in which
each of the alias-element subscript-names appears at most once, and each sub-
script must be linear in each of the alias-element subscript-names.

Constraint: The alias object must have the ALIAS attribute and must not have the SAVE
attribute.

Constraint: The number of subscript-names in an alias-element and the number of alias-
range-specs must equal the rank of the alias.

Constraint: Each subscript-name in the subscript-name-list must be identical to the
subscript-name in the corresponding alias-range-spec. The subscript-names in
both lists must appear in the same order. A subscript-name must not appear
more than once in each list.

Constraint: A subscript in an alias-range-spec must not depend on any other expression in
the same IDENTIFY statement.

An alias is alias associated with a nonalias object following a valid execution of an IDEN-
TIFY statement. An alias must not be referenced or defined unless it is alias associated.
Execution of an IDENTIFY statement for an alias array that has the RANGE attribute sets the
actual ranges and the effective ranges of the alias array to bounds specified by the ranges
in the IDENTIFY statement.

The scope of the subscript names is the IDENTIFY statement itself, and the subscripts are
implicitly of type integer.

If there is an alias range specification list, the elements of the alias are specified by the sub-
script names varying over the corresponding ranges. The IDENTIFY statement specifies the
mapping between the elements of the alias and the elements of the parent.

The expressions in the subscript lists of the parent element must be mathematically equiva-
lent to expressions of the form kg + ky X iy + kaX iz + - -+ + k, X i, where each k; is
a scalar integer expression not involving any i and each i; is named in the subscript name
list of the alias element. The mapping is established by evaluating ko, k4, ..., K.

An alias must not appear in more than one IDENTIFY statement in a scoping unit unless it
appears with the same parent. If the parent is an alias, it must be definable and the new
alias is regarded as belonging to the nonalias object to which the parent belongs. If the par-
ent is an allocatable array, it must be currently allocated. Whenever an allocatable array is
deallocated, all aliases associated with it cease to be alias associated. On return from a
procedure, an alias ceases to be alias associated if it is alias associated with an unsaved
local object or to an unsaved object in 2 module that is not also accessed by another scop-
ing unit that is currently in execution.

Two or more elements of an alias array must not be alias associated with the same datum.
If an alias is alias associated, it may be used according to the rules that govern the use of
data objects.

The inquiry and transformational array intrinsic functions operate on each array argument as
a whole. The declared shape or effective shape of the corresponding actual argument
therefore must be defined; that is, if the actual argument is an alias array, it must be alias
associated.

The following are examples of aliasing:
(1) Simple alias

Version 103 1986 December Page 6-8

USE OF DATA

2

3

(4)

OBJECTS

IDENTIFY (PART = STRUCTURE % COMPONENT)

Skew section

IDENTIFY (DIAG (I) = ARRAY (I, I), I = 1:N)
Array of structure components
IDENTIFY (PART (I) = STRUCTURE % ARRAY (I), I = 1:N)

X3J3/58

IDENTIFY (PATTERN (I, J) = STRUCTURE (I) % ARRAY (J), I = 1:M, J = 1:N)

Dynamic simple alias

IDENTIFY (PIECE = STRUCTURE % A (1))

6.2.6.1 Alias Restrictions. There are some restrictions on the use of aliasing. A specified
10 precision or exponent range complex data object must not be associated with a default com-
plex object in an IDENTIFY statement.

An object name in a SAVE statement must not be an alias name.

The variables or arrays whose names are included in the data-stmt-object-list must not be
associated with an object in blank COMMON or an alias object.

15 A SET RANGE statement must not be used to establish the effective range for an
allocatable array that is not allocated or alias array that is not alias associated.

6.2.7 Summary of Array Name Appearances.

Table 6.2. Allowed Appearances of Array Names

20

25

30

35

40

Version 103

Explicit Structure
Shape Alias Component Allocatable

Place of Appearance Array Array Array Array
dummy-arg Yes No No Yes
use-stmt Yes Yes No Yes
type-declaration-stmt Yes Yes No Yes
namelist-stmt Yes No Yes No

equivalence-stmt Yes No No No

data-stmt Yes No No No

common-stmt Yes No No No

input-item-list or output-item-list Yes Yes Yes Yes
internal-file-unit Yes Yes Yes Yes
format Yes Yes Yes Yes
save-stmt Yes No No Yes
primary Yes Yes Yes Yes
assignment-stmt Yes Yes Yes Yes
identify-stmt Yes Yes Yes Yes
allocate-stmt No No No Yes
deallocate-stmt No No No Yes
actual-arg in a reference Yes Yes Yes Yes

to an external-subprogram

1986 December

Page 6-9

10

15

20

25

30

35

40

7 EXPRESSIONS AND ASSIGNMENT

This section describes the formation, interpretation, and evaluation rules for expressions and
the assignment statement.

7.1 Expressions. An expression is either a data reference or a computation, and its
value is either a scalar or an array. An expression is formed from operands, operators, and
parentheses. Simple forms of an operand are constants and variables, such as:

3.0
.FALSE.
A

B(D

(G END

An operand is either a scalar or an array. An operation is either intrinsic (7.2) or defined
(7.3). More complicated expressions can be formed using operands which are themselves
expressions.

Examples of intrinsic operators are:

+
*
>
-AND.

7.1.1 Form of an Expression. Evaluation of an expression produces a value, which has a
type, type parameters (if appropriate), and a shape (7.1.4).

Examples of expressions are:

A+B
(A—B)*C
A**B
C.AND.D
F//6

An expression is defined in terms of several categories: primary, level-1 expression, level-2
expression, level-3 expression, level-4 expression, and level-5 expression.

These categories are related to the different operator precedence levels and, in general,
defined in terms of other categories. The simplest form of each expression category is a pri-
mary. The rules given below specify the syntax of an expression. For convenience, the
low-level operator construction rules, but not the constraints, have been duplicated below
from Section 3 where appropriate. See Section 3.2.4 for the constraints on defined-unary-op
(7.1.1.2) and defined-binary-op (7.1.1.7). The semantics are specified in 7.2 and 7.3.

7.1.1.1 Primary.

R701 primary is constant
or variable
or array-constructor
or slructure-constructor
or function-reference
or (expr)

Version 103 1986 December Page 7-1

EXPRESSIONS AND ASSiGNMENT

Examples of a primary are:

Example

X3J3/S8

Syntactic Class

1.0
5 A
1.0,2.0]

PERSON('Jones"', 12)

F(X,Y)
(s+T)

constant

variable
array-constructor
structure-constructor
function-reference

{(expr)

10 7.1.1.2 Level-1 Expressions. Defined unary operators have the highest operator preced-
ence (Table 7.1). Level-1 expressions are primaries optionally operated on by defined unary

operators:
R702
R321

15 Simple examples of a level-1-expr are:

level-1-expr

defined-unary-op

Example

is | defined-unary-op | primary
is . letter [letter

Syntactic Class

A

-INVERSE. B

primary (R701)
level-1-expr (R702)

20 A more complicated example of a level-1 expression is:

.INVERSE. (A + B)

7.1.1.3 Level-2 Expressions. Level-2 expressions are level-1 expressions optionally involv-
ing the numeric operators power-op, mult-op, and add-op.

is level-1-expr [power-op mult-operand |
is | add-operand mult-op | mult-operand
is [add-op] add-operand

or level-2-expr add-op add-operand

R703 muit-operand
25 R704 add-operand
R705 [level-2-expr
R311 power-op is k%
R312 muit-op is #
30 or /
R313 add-op is +
or —

Simple examples of a level-2 expression are:

35 Example Syntactic Class Remarks
A level-1-expr A is a primary. (R702)
B*x(mult-operand B is a level-1-expr,
*% iS a power-op,
and C is a mult-operand. (R703)
40 D*E add-operand D is an add-operand,
% is a mult-op,
and E is a mult-operand. (R704)
+ level-2-expr + is an add-op
and 1 is an add-operand. (R705)
45 F-1 level-2-expr F is a level-2-expr,
Version 103 1986 December

Page 7-2

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

— is an add-op,
and | is an add-operand. (R705)

A more complicated example of a level-2 expression is:

— A+D*E+B* (

7.1.1.4 Level-3 Expressions. Level-3 expressions are level-2 expressions optionally involv-
ing the character operator concat-op.

R706 level-3-expr is [Ievei-3-expr concat-op | level-2-expr

R314 concat-op is //

Simple examples of a level-3 expression are:

Example Syntactic Class

A level-2-expr (R705)
B//C level-3-expr (R706)

A more complicated example of a level-3 expression is:
X /7Y // "ABCD'

7.1.1.5 Level-4 Expressions. Level-4 expressions are level-3 expressions optionally involv-
ing the relational operators rel-op.

R707 level-4-expr is [level-3-expr rel-op] level-3-expr

R315 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or <>
or <
or <=
or >
or >=

Simple examples of a level-4 expression are:

Example Syntactic Class

A level-3-expr (R706)
B .EQ. C Jevel-4-expr (R707)
D<E level-4-expr (R707)

A more complicated example of a level-4 expression is:
(A +B) .NE. C

7.1.1.6 Level-5 Expressions.” Level-5 expressions are level-4 expressions optionally involv-
ing the logical operators not-op, and-op, or-op, and equiv-op.

R708 and-operand is [not-op] level-4-expr
R709 or-operand is [or-operand and-op]| and-operand
R710 equiv-operand is [equiv-operand or-op | or-operand

Version 103 1986 December Page 7-3

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

R711 level-5-expr is [level-5-expr equiv-op] equiv-operand
R316 not-op is .NOT.
R317 and-op is .AND.
R318 or-op is .OR.
R319 equiv-op is .EQV.
or .NEQV.

Simple examples of a level-5 expression are:

Example Syntactic Class

A level-4-expr (R707)

.NOT. B and-operand (R708)
C .AND. D or-operand (R709)

E .OR. F equiv-operand (R710)
G .EQV. H level-5-expr (R711)

S .NEQV. T level-5-expr (R711)

A more complicated example of a level-5 expression is:
A .AND. B .EQV. .NOT. C

7.1.1.7 General Form of an Expression. Expressions are level-5 expressions optionally
involving defined binary operators.

R712 expr is [expr defined-binary-op | level-5-expr
R322 defined-binary-op is . letter [letter]... .
Simple examples of an expression are:

Example Syntactic Class

A level-5-expr (R711)

B .UNION. C expr (R712) .
More complicated examples of an expression are:

(B .INTERSECT. C) .UNION. (X-Y)
A+B .EQ. C*D

.INVERSE. (A + B)

A+B .AND. C * D

E// G .EQ. H(1:1D

7.1.2 Intrinsic Operations. An intrinsic cperation is either an intrinsic unary operation or
an intrinsic binary operation. An intrinsic unary operation is an operation of the form
intrinsic-operator x, where x, is of an intrinsic type (4.3) listed in Table 7.1 for the unary
intrinsic operator.

An intrinsic binary operation is an operation of the form x, intrinsic-operator x, where
either x, and x, are of the intrinsic types (4.3) listed in Table 7.1 for the binary intrinsic oper-
ator and are in shape conformance (7.1.5).

An intrinsic operator is the operator in an intrinsic operation.

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a
numeric-operator (+, —, *, /, or **). A numeric intrinsic operator is the operator in a
numeric intrinsic operation.

Version 103 1986 December Page 7-4

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

50

For numeric intrinsic binary operations, the two operands may be of different numeric types
or different type parameters. Except for a value raised to an integer power, if the operands
do not have the same types or type parameters, each operand that differs in type or type
parameters from those of the result is converted to the type and type parameters of the
result before the operation is performed. When a value of type real or complex is raised to
an integer power, the integer operand need not be converted.

A character intrinsic operation, relational intrinsic operation, and logical intrinsic opera-
tion are similarly defined.in terms of a character intrinsic operator (//), relational intrinsic
operator (.EQ., .NE., .GT., .GE,, .LT, .LE,, ==, <>, >, >=, <, and < =), and logical
intrinsic operator (.AND., .OR., .NOT., .EQV., and .NEQV.), respectively.

A numeric relational ‘intrinsic operation is a relational intrinsic operation where the oper-
ands are of numeric type. A character relational .intrinsic. operation is a relational intrinsic
operation where the operands are of type character.

Table 7.1. Type of Operands and Result for the Intrinsic Operation [x,] op x,. (The symbols
I, R, Z, C, and L stand for the types integer, real, complex, character, and logical, respec-
tively. Where more than one type for x, is given, the type of the result of the operation is
given in the same relative position in the next column.)

Intrinsic Operator Type of Type of Type of
op X1 X2 [x41] op x2
unary +, — LR Z LR, Z
binary +, —, *, /, %% | LR, Z LR, Z
R LR, Z R, R Z
Z LR, Z 2,Z2,2 2
// Cc Cc C
EQ., NE., ==, <> l LR, Z L LLL
R LR Z L LLL
z LR, Z L LLL
C C L
.GT., .GE., .LT., .LE. I I, R L, L L
>, >=,<,<= R I, R L, L L
Cc C L
.NOT. L L
.AND., .OR., .EQV., NEQV. L L L

7.1.3 Defined Operations. A defined operation is either a defined unary operation or a
defined binary operation. A defined unary operation is an operation of the form defined-
unary-op x, where there exists a function whose interface is explicit (12.3.1) in the scoping
unit containing defined-unary-op x, that specifies the operation (7.3) for the operator defineo-
unary-op, or of the form intrinsic-operator x, where the type of x, does not match that for the
intrinsic-operator given in Table 7.1, and there exists a function whose interface is explicit
(12.3.1) in the scoping unit containing intrinsic-operator x, that specifies the operation for the
operator intrinsic-operator.

A defined binary operation is an operation of the form x, defined-binary-op x, where there
exists a function whose interface is explicit (12.3.1) in the scoping unit containing x, defined-
binary-op x, that specifies the operation (7.3), or of the form x, intrinsic-operator x, where
the types or shapes of x; and x, are not those required for a binary intrinsic operation

Version 103 1986 December Page 7-5

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

(7.1.2), and there exists a function whose interface is explicit in the scoping unit containing
x, intrinsic-operator x, that specifies the operation for the operator intrinsic-operator.

Note that an intrinsic operator may be used as the operator in a defined operation. In such
a case, the intrinsic operator is said to be an overloaded intrinsic operator.

A defined operator is the operator in a defined operation.

An extension operation is a defined operation in which the operator is of the form defined-
unary-op or defined-binary-op. Such an operator is called an extension operator. Note that
the operator used in an extension operation may be overloaded in that more than one func-
tion whose interface is explicit in the scoping unit specifying the same operator may exist.

7.1.4 Data Type, Type Paramaters, and Shape of an Expression. The data type and
shape of an expression depend on the operators and on the data types and shapes of the
primaries used in the expression, and are determined recursively from the syntactic form of
the expression. The data type of an expression is one of the intrinsic types (4.3) or a
derived type (4.4).

R713 logical-expr ' is expr

Constraint: logical-expr must be type logical.

R714 char-expr is expr

Constraint: char-expr must be type character.

R715 int-expr is expr

Constraint: int-expr must be type integer.

R716 numeric-expr is expr

Constraint: numeric-expr must be of type integer, real or complex.

An expression whose type is real, complex, or character has type parameters, and an
expression of derived type may have type parameters. The type parameters are determined
recursively from the form of the expression. The type parameters for an expression of type
real or complex are its precision and range parameters. The type parameter for an expres-
sion of type character is the length parameter.

7.1.4.1 Data Type, Type Parameters, and Shape of a Primary. The data type, type
parameters, and shape of a primary are determined according to whether the primary is a
constant, variable, function reference, or parenthesized expression. If a primary is a con-
stant, its type and type parameters are determined by the constant (4.3). If it is a derived-
type constructor, it is scalar, its type is determined by the constructor name, and its type
parameters are determined by the constructor type parameters. If it is an array constructor,
its type, type parameters, and shape are given in 4.5. If it is a variable or function refer-
ence, its type, type parameters, and shape are determined from corresponding attributes of
the variable (5.1.1, 5.1.2) or the function reference (12.5.2.2), respectively. Note that in the
case of a function reference, the function may be generic (13.9) or overloaded (12.5.4), in
which case its type, type parameters, and shape are determined by the types, type parame-
ters, and shapes of its actual arguments. If a primary is a parenthesized expression, its
type, type parameters, and shape are those of the expression.

7.1.4.2 Data Type, Type Parameters, and Shape of the Result of an Operation. The
type of an expression [x,] op x, where op is an intrinsic operator is specified by Table 7.1.
The data type of an expression [x,] op x, where op is a defined operator is specified by the
function subprogram defining the operation (7.3).

Version 103 1986 December Page 7-6

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

An expression whose type is real, complex, or character has type parameters. For an
expression op x, where op is a numeric intrinsic unary operator and x, is of type real or
complex, the type parameters of the expression are those of the operand. For an expres-
sion x4 op x, where op is a numeric intrinsic binary operator with one operand of type inte-
ger and the other of type real or complex, the type parameters of the expression are those
of the real or complex operand. In the case where both operands are any of type real or
complex with type parameters p,, ry and p,, r,, except when one is of type default real and
the other is of type double precision real, where the p’s are precision parameter values and
the r's are exponent range parameter values, the type parameters of the expression are
max (p,,p2) and max(r,r.), respectively. In the case where one is of type default real and
the other is of type double precision real, the type of the expression is double precision real.
For an expression x, // x, where // is the intrinsic operator for character concatenation, the
type parameter is the sum of the lengths of the operands.

The shape of an expression [x4] op x,, where op is an intrinsic operator, is the shape of x,
if op is unary or x, is scalar, and the shape of x, otherwise.

7.1.5 Conformability Rules for Intrinsic Operations. Two entities are in shape confor-
mance if both are arrays of the same effective shape, or both are scalars, or one is an array
and the other is a scalar.

For all intrinsic binary operations, the two operands must be in shape conformance. In case
one is a scalar and the other an array, the scalar is treated as if it were an array of the
same shape as the array operand with every element of the array equal to the value of the
scalar.

7.1.6 Kinds of Expressions. An expression is either a scalar expression or an array
expression.

The following is an example of a scalar expression:
Q+23 *R
where Q and R are scalars.
The following is an example of an array expression:
A (1:10) + B (2:11)
where A and B are arrays.
7.1.6.1 Constant Expression. A constant expression is an expression in which each
operator is an intrinsic operator, and each primary is one of the following:
(1) A constant,
(2) An array constructor where each element is a constant expression,
(3) A derived-type constructor where each component is a constant expression,
(4) An intrinsic function reference where each argument is a constant expression,

(5) An inquiry function reference where each argument is either a constant expres-
sion or a variable whose type parameters or bounds inquired about are not
assumed or allocated, or

(6) A constant expression enclosed in parentheses.

R717 constant-expr is expr
R718 char-constant-expr is char-expr
R719 int-constant-expr is int-expr

Version 103 1986 December Page 7-7

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

R720 logical-constant-expr is logical-expr

A numeric ccnstant expression is a constant expression whose type is integer, real, or
complex. An integer constant expression is a numeric constant expression whose type is
integer. A character constant expression is a constant expression whose type is character.
A logical constant expression is a constant expression whose type is logical.

The following are examples of constant expressions:

3

-3+4

SQRT (9.0)

IABI

'AB' // 'CD'

(‘AB' // 'CD") // 'EF'
SIZE (A)

DIGITS (X) + &

where A is an explicit-shaped array and X is of type default real.

7.1.6.2 Type-Parameter Expression. A nonprecision type-parameter expression is a
scalar integer expression in which no primary is a reference to a variable, a type parameter
named PRECISION or EXPONENT__RANGE, a nonintrinsic function, or the intrinsic functions
EFFECTIVE__PRECISION and EFFECTIVE__EXPONENT__RANGE.

A precision type-parameter expression is a scalar integer expression whose primaries are:

(1) Integer constants, a reference to the intrinsic inquiry function
EFFECTIVE__PRECISION with an argument that is a previously-defined compo-
nent of the derived type, and similarly limited expressions enclosed in parenthe-
ses; or

(2) The dummy parameter name PRECISION.

An exponeni-range type-parameter expression is a scalar integer expression whose prima-
ries are:

(1) Integer constants, a reference to the intrinsic inquiry function
EFFECTIVE_EXPONENT__RANGE with an argument that is a previously defined
component of the derived type, and similarly limited expressions enclosed in
parentheses; or

(20 The dummy parameter name EXPONENT__RANGE.
Examples of nonprecision type parameter expressions are:

10
P+Q
LEN (X

where P and Q are type parameters and X is a previously declared character component.

Examples of precision type parameter expressions are:

10
PRECISION
EFFECTIVE_PRECISION (Y)

where Y is a previously declared component having a precision parameter.

Examples of exponent range type parameter expressions are:
10

Version 103 1986 Deceinber Page 7-8

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

EXPONENT_RANGE
EFFECTIVE_EXPONENT_RANGE (Y)

where Y is a previously declared component having an exponent range parameter. It is a
requirement that if the precision type parameter expression is PRECISION for a component,
the exponent range type parameter expression for the component must be
EXPONENT_RANGE (4.4.1).

7.1.6.3 Specification Expression. A restricted expression is an expression in which each
primary is:
(1) A constant,
(2) A variable that is a dummy argument,
(3) A variable that is in @ common block,
(4) A variable that is made accessible by a USE statement,
(5) An array constructor where each element is a restricted expression,
(6) A derived-type constructor where each component is a restricted expression,
(7) An intrinsic function reference where each argument is a restricted expression, or
(8) A restricted expression enclosed in parentheses.
R721 specification-expr is scalar-int-expr
A specification expression is a restricted expression that is scalar and of type integer.
The following are examples of specification expressions:

DLBOUND (B, 1) + 5
M + LEN (C)
2 * EFFECTIVE_PRECISION (A)

where B, M, and C are dummy arguments and B is an assumed-shape array.

7.1.7 Evaluation of Operations. This section applies to both intrinsic and defined opera-
tions.

Any variable or function reference used as an operand in an expression must be defined at
the time the reference is executed. An integer operand must be defined with an integer
value rather than a statement label value. All of the characters in a character data object
reference must be defined.

When a reference to a whole array or an array section is made, all of the selected elements
must be defined. When a data object of a derived type is referenced, all of the components
must be defined.

Any numeric operation whose result is not mathematically defined is prohibited in the execu-
tion of an executable program. Examples are dividing by zero and raising a zero-valued pri-
mary to a zero-valued or negative-valued power. Raising a negative-valued primary of type
real to a real power is also prohibited.

The execution of a function reference must not alter the value of any other variable within
the statement in which the function reference appears. The execution of a function refer-
ence in a statement must not.define or redefine (14.8) the value of any variable in common
(6.5.2) or any variable made accessible by a USE statement (11.3.1) if the definition or
redefinition affects the value of any other reference in the statement. However, execution of
a function reference in the logical expression of an IF statement (8.1.2.4) or WHERE state-
ment (7.5.2.1) is permitted to define variables in the statement that is executed when the

Version 103 1986 December Page 7-9

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

16

20

25

30

35

40

45

value of the expression is true. For example, in the statements:

IF (F (X)) A=X
WHERE (G (X)) B = X

F or G may define X. If a function reference causes definition or undefinition of an actual
argument of the function, that argument or any associated entities must not appear else-
where in the same statement. For example, the statements

A(I) =F (D
Y=6 (X) +X

are prohibited if the reference to F defines or undefines | or the reference to G defines or
undefines X.

The type of an expression in which a function reference appears does not affect the evalua-
tion of the actual arguments of the function. The type of an expression in which a function
reference appears does not affect and is not affected by the evaluation of the actual argu-
ments of the function, except that the result of a functiorr may assume a type that depends
on the type of its arguments as specified in Sections 12 and 13.

Execution of an array element reference requires the evaluation of its subscripts. The type
of an expression in which a subscript appears does not affect, and is not affected by, the
evaluation of the subscript.

Execution of a substring reference requires the evaluation of its substring range. The type
of an expression in which a substring name appears does not affect, and is not affected by,
the evaluation of the substring expressions.

Execution of an array section reference requires the evaluation of its section subscripts. It is
not necessary for a processor to evaluate any subscripts of a zero-sized array. The type of
an expression in which an array section appears does not affect, and is not affected by, the
evaluation of the array section subscripts.

When an intrinsic binary operator operates on a pair of operands and at least one of the
operands is an array operand, the operation is performed element-by-element on corre-
sponding array elements of the operands. For example, the array expression

A+B

produces an array the same shape as A and B. The individual array elements of the result
have the values of the first element of A added to the first element of B, the second ele-
ment of A added to the second element of B, etc. The processor may perform the element-
by-element operations in any order.

When an intrinsic unary operator operates on a single array operand, the operation is per-
formed element-by-element, in any order, and the result is the same shape as the operand.

7.1.7.1 Evaluation of Operands. It is not necessary for a processor to evaluate all of the
operands of an expression if the value of the expression can be determined otherwise. This
principle is most often applicable to logical expressions and zero-sized arrays, but it applies
to all expressions. For example, in evaluating the expression

X .GT. Y .OR. L(2)

where X, Y, and Z are real and L is a function of type logical, the function reference L(Z)
need not be evaluated if X is greater than Y. Similarly, in the array expression
X+ W (D

where X is of size zero and W is a function, the function reference W(Z) need not be evalu-
ated. If a statement contains a function reference in a part of an expression that need not

Version 103 1686 December Page 7-10

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

be evaluated, all entities that would have become defined in the execution of that reference
become undefined at the completion of evaluation of the expression containing the function
reference. In the preceding examples, evaluation of these expressions causes Z to become
undefined if L or W defines its argument.

7.1.7.2 Integrity of Parentheses. The sections that follow state certain conditions under
which a processor may evaluate an expression different from the one specified by applying
the rules given in 7.1.1, 7.2, and 7.3. However, any expression contained in parentheses
must be treated as a data entity. For example, in evaluating the expression A + (B — C)
where A, B and C are of numeric types, the difference of B and C must be evaluated before
the addition operation is performed; the processor must not evaluate the mathematically
equivalent expression (A + B) — C.

7.1.7.3 Evaluation of Numeric Intrinsic Operations. The rules given in 7.2.1 specify the
interpretation of a numeric intrinsic operation. Once the interpretation has been established
in accordance with those rules, the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.

Two expressions of a numeric type are mathematically equivalent if, for all possible values of
their primaries, their mathematical values are equal. However, mathematically equivalent
expressions of type numeric may produce different computational results. For example, any
difference between the values of the expressions (1./3.)*3. and 1. is a computational
difference, not a mathematical difference.

The mathematical definition of integer division is given in 7.2.1.1. The difference between
the values of the expressions 5/2 and 5./2. is a mathematical difference, not a computa-
tional difference.

The following are examples of expressions with allowable alternative forms that may be used
by the processor in the evaluation of those expressions. A, B, and C represent arbitrary
real, double precision, or complex operands; | and J represent arbitrary integer operands;
and X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable Alternative Form

X+Y Y+X
XY Y*X
—X+Y Y-X
X+Y+2Z X+(Y+2)
X-Y+Z X-(Y-2)
X*xA/Z X*x(A/2)
X*Y—X*xZ X*x(Y-2)
A/B/C A/ (B*C)
A/5.0 0.2+%A

The following are examples of expressions with forbidden alternative forms that must not be
used by a processor in the evaluation of those expressions.

Expression Nonallowable Alternative Form

172 0.5*I

X*I/J X*(I1/J)
I/J/A I/(J*A)
(X*Y)—-(X*2) X*(Y-2)
X*(Y-Z) X*Y—-X*Z

In addition to the parentheses required to establish the desired interpretation, parentheses
may be included to restrict the alternative forms that may be used by the processor in the

Version 103 1986 December Page 7-11

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

actual evaluation of the expression. This is useful for controlling the magnitude and accu-
racy of intermediate values developed during the evaluation of an expression. For example,
in the expression

A+ B - 0O
the parenthesized expression (B—C) must be evaluated and then added to A.

Note that the inclusion of parentheses may change the mathematical value of an expression.
For example, the two expressions:

Ax1/1J
Ax (I /7 J)

may have different mathematical values if | and J are of type integer.

Each operand in a numeric intrinsic operation has a data type that may depend on the order
of evaluation used by the processor. For example, in the evaluation of the expression

Z+R+1

where Z, R, and | represent terms of complex, real, and integer data type, respectively, the
data type of the operand that is added to | may be either complex or real, depending on
which pair of operands (Z and R, R and |, or Z and I) is added first.

7.1.7.4 Evaluation of the Character Intrinsic Operation. The rules given in 7.2.2 specify
the interpretation of a character intrinsic operation. A processor needs to evaluate only as
much of the character intrinsic operation as is required by the context in which the expres-
sion appears. For example, the statements

CHARACTER (LEN = 2) €1, €2, C3, CF
€1 =C¢2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to
determine the value of C1.

7.1.7.5 Evaluaiion of Relatlonal Intrinsic Operations. The rules given in 7.2.3 specify the
interpretation of relational intrinsic operations. Once the interpretation of an expression has
been established in accordance with those rules, the processor may evaluate any other
expression that is relationally equivalent. For example, the processor may choose to evalu-
ate the expression

I .GT. J
where | and J are integer variables, as
J—I1I.LT.0

Two relational intrinsic operations are relationally equivalent if their logical values are equal
for all possible values of their primaries.

7.1.7.6 Evaluation of Logical Intrinsic Operations. The rules given in 7.2.4 specity the
interpretation of logical intrinsic operations. Once the interpretation. of an expression has
been established in accordance with those rules, the processor may evaluate any other
expression that is logically equivalent, provided that the integrity of parentheses is not vio-
lated. For example, for the variables L1, L2, and L3 of type logical, the processor may
choose to evaluate the expression

L1 .AND. L2 .AND. L3
as
L1 .AND. (L2 .AND. L3)

Version 103 1986 December Page 7-12

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

Two expressions of type logical are logically equivalent if their values are equal for all possi-
ble values of their primaries.

7.1.7.7 Evaluation of a Defined Operation. The rules given in 7.3 specify the interpreta-
tion of a defined operation. Once the interpretation of an expression has been established
in accordance with those rules, the processor may evaluate any other expression that is
equivalent, provided that the integrity of parentheses is not violated.

Two expressions of derived-type are equivalent if their values are equal for all possible
values of their primaries.

7.2 Interpretation of Intrinsic Operations. The intrinsic operations are those defined
in 7.1.2. These operations are divided into the following categories: numeric, character, rela-
tional, and logical. The interpretations defined in the following sections apply to both scalars
and arrays; for arrays, the interpretation for scalars is applied element-by-element.

The type, type parameters, shape, and interpretation of an expression that consists of an
operator operating on a single operand or a pair of operands are independent of the context
in which the expression appears. In particular, the type, type parameters, shape, and inter-
pretation of such an expression are independent of the type, type parameters, and shape of
any other larger expression in which it appears. For example, if X is of type real, J is of
type integer, and INT is the real-to-integer intrinsic conversion function, the expression INT
(X + J) is an integer expression and X + J is a real expression.

7.2.1 Numeric Intrinsic Operations. A numeric operation is used to express a numeric
computation. Evaluation of a numeric operation produces a numeric value. The permitted
data types and shapes for operands of the numeric intrinsic operations are specified in 7.1.2.
The permitted type parameters for operands of the numeric intrinsic operations are those
that yield type parameters (7.1.4) of an approximation method supported by the processor.

The numeric operators and their interpretation in an expression are given in Table 7.2,
where x denotes the operand to the left of the operator and x, denotes the operand to the
right of the operator.

Table 7.2. Interpretation of the Numeric Intrinsic Operators.

Use of
Operator Representing Operator Interpretation

* % Exponentiation x4 #%* x; Raise x; to the power x,
/ Division X4/ Xo Divide x4 by x5

* Multiplication Xy * xo Multiply x4 by x5

— Subtraction Xy — x5 Subtract x, from x,

- Negation — X3 Negate x,

+ Addition Xy + Xo Add x; and x,

+ Identity + X3 Same as x,

The interpretation of a division may depend on the data types of the operands (7.2.1.1).

If x; and x, are of type integer and x, has a negative value, the interpretation of x, ** x, is
the same as the interpretation of 1/(x; ** ABS(x,)), which is subject to the rules of integer
division (7.2.1.1). For exampie, 2%%(—3) has the value of 1/(2%*3), which is zero.

Version 103 1986 December Page 7-13

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

7.2.1.1 Integer Division. One operand of type integer may be divided by another operand
of type integer. Although the mathematical quotient of two integers is not necessarily an
integer, Table 7.1 specifies that an expression involving the division operator with two oper-
ands of type integer is interpreted as an expression of type integer. The result of such an
operation is the integer closest to the mathematical quotient and between zero and the
mathematical quotient inclusively. For example, the expression (—8)/3 has the value (—2).

7.2.1.2 Complex Exponentiation. In the case of a complex value raised to a complex
power, the value of the operation is the “principal value” determined by x4, ** x, = EXP(x,
* LOG(x,)), where EXP and LOG are functions described in 12.9.

7.2.2 Character Intrinsic Operation. The character intrinsic operator // is used to concat-
enate two operands of type character. Evaluation of the character intrinsic operation pro-
duces a result of type character. The permitted shapes for operands of the character intrin-
sic operation are specified in 7.1.2.

The interpretation of the character intrinsic operator // when used to form an expression is
given in Table 7.5, where x, denotes the operand. to the left of the operator and x, denotes
the operand to the right of the operator.

Table 7.5. Interpretation of the Character Intrinsic Operator //.

Use of
Operator Representing Operator Interpretation

// Concatenation x4 // x; Concatenate x, with x,

The result of a character intrinsic operation is a character string whose value is the value of
x4 concatenated on the right with the value of x, and whose length is the sum of the lengths
of x; and x,. Parentheses used to specify the order of evaluation have no effect on the
value of a character expression. For example, the value of ('AB’ // 'CDE’) // 'F’ is the
string '"ABCDEF’. Aliso, the value of ’AB’ // (CDE’ // 'F’) is the string 'ABCDEF’.

7.2.3 Relational Intrinsic Operations. A relational intrinsic operator is used to compare
values of two operands using the relational intrinsic operators .LT., .LE., .GT., .GE., .EQ.,
.NE., <, <=, >, >=, ==, and <>. The permitted data types and shapes for operands
of the relational intrinsic operators are specified in 7.1.2. Note, as shown in Table 7.1, that a
relational intrinsic operator must not be used to compare the value of an expression of a
numeric type with one of type character or logical. Also, two operands of type logical must
not be compared, and a complex operand can only be compared with another numeric oper-
and when the operator is .EQ. .NE.,, ==, or <>,

Evaluation of a relational intrinsic operation produces a result of type logical, with a value of
true or false.

The interpretation of the relational intrinsic operators is given in Table 7.6, where x, denotes
the operand to the left of the operator and x, denotes the operand to the right of the opera-
tor. The operators <, <=, >, >=, ==, and <> have the same interpretations as the
operators .LT., .LE., .GT., .GE., .EQ., and .NE., respectively.

Table 7.6. Interpretation of the Relational intrinsic Operators.

Use of
Operator Representing Operator Interpretation
.LT. Less Than Xy .LT. x5 x4 less than x,
< Less Than X1 < X x4 less than x,
.LE. Less Than Or Equal To x4 .LE. xo x4 less than or equal to x,

Versicon 103 1986 December Page 7-14

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

<= Less Than Or Equal To Xy <= X Xy less than or equal to x,
.GT. Greater Than xy .GT. xo x4 greater than x,

> Greater Than Xy > X5 x4 greater than x,
.GE. Greater Than Or Equal To x, .GE. x, x4 greater than or equal to x,
>= Greater Than Or Equal To x; >= x, x4 greater than or equal to x,
.EQ. Equal To x1 .EQ. xo x4 equal to x,
== Equal To X1 == Xp Xqequalto x,
.NE. Not Equal To x1 .NE. xo x4 not equal to x,
<> Not Equal To X, <> X2 X4q hot equal to x,

A numeric relational intrinsic operation is interpreted as having the logical value true if the
values of the operands satisfy the relation specified by the operator. A numeric relational
intrinsic operation is interpreted as having the logical value false if the values of the oper-
ands do not satisfy the relation specified by the operator.

If the two numeric operands are in shape conformance, the value of the relational operation
x4 rel-op x5

is the value of the expression
((x1)—(x2)) rel-op O

where O (zero) is of the same type, type parameters, and shape as the expression
((x4)—(x2)), and rel-op is the same relational operator in both expressions.

A character relational intrinsic operation is interpreted as having the logical value true if the
values of the operands satisfy the relation specified by the operator. A character relational
intrinsic operation is interpreted as having the logical value false if the values of the oper-
ands do not satisfy the relation specified by the operator.

For a character relational intrinsic operation, the operands are compared one character at a
time in order, beginning with the first character of each character operand. If the operands
are of unequal length, the shorter operand is treated as if it were extended on the right with
blanks to the length of the longer operand. If every character of x, is the same as the char-
acter in the corresponding position in x,, x; is equal to x,. Otherwise, at the first position
where the character operands differ, the character operand x, is considered to be less than
xz if the character value of x; at this position precedes the value of x, in the collating
sequence (3.1.5); x4 is greater than x; if the character value of x, at this position follows the
value of x; in the collating sequence. Note that the collating sequence depends partially on
the processor; however, the result of the use of the operators .EQ., .NE., ==, and <>
does not depend on the collating sequence.

7.2.4 Logical Intrinsic Operations. A logical operation is used to express a logical compu-
tation. Evaluation of a logical operation produces a result of type logical, with a value of true
or false. The permitted data types and shapes for operands of the logical intrinsic opera-
tions are specified in 7.1.2.

The logical operators and their interpretation when used to form an expression are given in
Table 7.7, where x, denotes the operand to the left of the operator and x, denotes the oper-
and to the right of the operator.

Table 7.7. Interpretation of the Logical Intrinsic Operators.

Use of
Operator Representing Operator Interpretation
.NOT. Logical Negation .NOT. x, Logical negation of x5
.AND. Logical Conjunction x1 .AND. x, Logical conjunction of x; and x»
.OR. Logical Inclusive Disjunction x4 .OR. x, Logical inclusive disjunction of x; and x,

Version 103 1986 December Page 7-15

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

.NEQV. Logical Non-equivalence x4 .NEQV. x, Logical non-equivalence of x4 and x;
.EQV. Logical Equivalence x41 .EQV. x, Logical equivalence of x, and x;
The values of the logical intrinsic operations are shown in Table 7.8.

Table 7.8. The Values of Operations Involving Logical Intrinsic Operators
Xq X2 .NOT. Xo X4 AND. Xp Xy .OR. Xo X4 .EQV. Xo X .NEQV. Xs

true true false true true true false
true false true false true false true
false true false faise true false true
false false true false false true false

7.3 Interpretation of Defiried Operations. The interpretation of a defined operation is
provided by the function subprogram that defines the operation.

7.3.1 Unary Defined Operation. A function subprogram defines the unary operation op x;
if:

(1) The function subprogram is specified with a FUNCTION statement (12.5.2.2) that
specifies one dummy argument d, and has a suffix that includes OPERATOR,

(2) The interface to the function subprogram is explicit,
(8) The type of x; is the same as the type of dummy argument d>,

(4) The type parameters, if any, of x, must match those of d,, for those type parame-
ters of d, not specified with an asterisk (), and

(6) d,is a scalar and x; is a scalar or array, or d; and x; are arrays of the same
effective shape.

7.3.2 Binary Defined Operation. A function subprogram defines the binary operation x,
op X, if:

(1) The function subprogram is specified with a FUNCTION statement (12.5.2.2) that
specifies two dummy arguments, d; and d,, and has a suffix that includes OPERA-
TOR,

(2) The interface to the function subprogram is explicit,

(3) The types of x, and x, are the same as those of the dummy arguments d, and
d,, respectively,

(4) The type parameters, if any, of x; and x, must match those of dy and d,, respec-
tively, for those type parameters of d, and d, not specified with an asterisk (*),
and

(5) d, and d, are scalar and x; and x, have the same effective shape, or d4 or d; (or
both) is an array and the effective shapes of x, and x, match those of d, and d,,
respectively.

7.4 Precadenca2 of Operators. There is a precedence among the intrinsic and exten-
sion operations implied by the general form in 7.1.1, ichy, determines the order in which
the operands are combined, unless the order is changed by the use of parentheses. This

precedence order is summarized in Table 7.9. Mpot

Version 103 1986 December - Page 7-16

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

Table 7.9. Categories of Operations and Relative Precedences.

Category
of Operation Operators Precedence
Extension defined-unary-op Highest
Numeric *¥
Numeric * or /
Numeric unary + or —
Numeric binary + or —
Character //

Relational .EQ., .NE., .LT.,, .LE., .GT., .GE.
==,<>, <, <=,>, >=

Logical .NOT.

Logical .AND.

Logical .OR.

Logical .EQV. or .NEQV. .
Extension defined-binary-op Lowest

The precedence of a defined operation is that of its operator, whether it is an overloaded
intrinsic operator or an extension operator.

For example, in the expression
—A xx 2

the exponentiation operator (**) has precedence over the negation operator (—); therefore,
the operands of the exponentiation operator are combined to form an expression that is
used as the operand of the negation operator. The interpretation of the above expression is
the same as the interpretation of the expression

— (A *% 2)

The general form of an expression (7.1.1) also establishes a precedence among operators in
the same syntactic class. This precedence determines the order in which the operands are
to be combined unless the order is changed by the use of parentheses. For example, in
interpreting a level-2-expr containing two or more binary operators + or —, each operation
(add-operand) is combined from left to right. Similarly, the same left to right interpretation for
a mult-operand in add-operand, as well as for other kinds of expressions, is a consequence
of the general form (7.1.1). However, for interpreting a mult-operand expression when two or
more exponential operators ** combine /evel-7-expr operands, each level-7-expr is combined
from right to left. For example, the expressions

'AB' // 'CD' // 'EF'
have the same interpretations as the expressions

(2.1 + 3.4) + 4.9

(2.1 « 3.4) » 4.9
2.1/73.48) /7 4.9

2 *x (3 *% 4)

('AB' // *CD') // 'EF'

~No(e4ha+~ﬁs a consequence of the general form (7.1.1), only the first add-operand of a level-

2-expr may be preceded by the identity (+) or negation (—) operator. -Nete-also-that these
formation rules do not permit expressions containing two consecutive numeric operators,

Version 103 1986 December Page 7-17

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

such as A ** —B or A + —B. However, expressions such as A #* (—B) and A + (—B)
are permitted.

As another example, in the expression
A .OR. B .AND. C

the general form (7.1.1) implies a higher precedence for the .AND. operator than the .OR.
operator; therefore, the interpretation of the above expression is the same as the interpreta-
tion of the expression

A .OR. (B .AND. C)

An expression may contain more than one kind of operator. For example, the logical
expression

L .OR. A+ B .GE. C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a
relational operator, and a logical operator. This expression would be interpreted the same
as the expression

L .OR. ((A + B) .GE. O

7.5 Assignment. Execution of an assignment causes a variable to become defined or
redefined.

An assignment is either an assignment statement, or a masked array assignment,

7.5.1 Assignment Statement. Any variable may be defined or redefined by execution of
an assignment statement.

7.5.1.1 General Form.

R722 assignment-stmt is variable = expr

where variable is defined in 2.4.4 and expr is defined in 7.1.1.7.

Examples of an assignment statement are:

A=3.5+X=*Y
I = INT (A

An assignment statement is either intrinsic or defined.

7.5.1.2 Intrinsic Assignment Statement. An intrinsic assignment statement is an
assignment statement where the effective shapes of variable and expr conform and where:

(1) The types of variable and expr are intrinsic, as specified in Table 7.10 for assign-
ment, or

(2) The types of variable and expr are of the same derived type.

A numeric Intrinsic assignment statement is an intrinsic assignment statement for which
variable and expr are of numeric type. A character intrinsic assignment statement is an
intrinsic assignment statement for which variable and expr are of type character. A logical
intrinsic assignment statement is an intrinsic assignment statement for which variable and
expr are of type logical. A derived-type intrinsic assignment statement is an intrinsic
assignment statement for which variable and expr are of the same derived type.

Version 103 1986 December " Page 7-18

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

An array intrinsic assignment statement is an intrinsic assignment statement for which vari-
able is an array.

Table 7.10. Type Conformance for the Assignment Statement variable = expr

Type of variable Type of expr
integer integer, real, complex
real integer, real, complex
complex integer, real, complex
character character
logical logical

derived type same derived type as variable

7.5.1.3 Defined Assignment Statement. A defined assignment statement is an assign-
ment statement that is not an intrinsic assignment statement, and is defined by a subroutine
whose interface is explicit.

7.5.1.4 Intrinsic Assignment Conformance Rules. For an intrinsic assignment statement,
variable and expr must conform in effective shape, and if expr is an array, variable must also
be an array. The types of variable and expr must conform with the rules of Table 7.10.

For a numeric intrinsic assignment statement, variable and expr may have different numeric
types or different type parameters, in which case the value of expr is converted to the type
and type parameters of variable according to the rules of Table 7.11.

Table 7.11. Numeric Conversion and Assignment Statement variable = expr

Type of variable Value Assigned

integer INT(expr)

real REAL(expr, MOLD = variable)

double precision DBLE(expr)

complex CMPLX(expr, MOLD = variable)
(The functions INT, REAL, DBLE and CMPLX are the generic functions defined in 13.9)

For a character intrinsic assignment statement, variable and expr may have different type
parameters (lengths) in which case the conversion of expr to the length of variable is:

(1) If the length of variable is less than that of expr, the value of expr is truncated
from the right until it is the same length as variable;

(2) If the length of variable is greater than that of expr, the value of expr is extended
to the right with blanks until it is the same length as variable.

7.5.1.5 Interpretation of Intrinsic Assignments. Execution of an intrinsic assignment
causes, in effect, the evaluation of the expression expr and all expressions within variable
(7.1.7), the possible conversion of expr to the type and type parameters of variable (Table
7.11), and the definition of variable with the resulting value. The execution of the assign-
ment must appear as if the evaluation of all operations in expr and, if present, all operations
in the subscripts or section subscripts of variable occurred before any portion of variable is
defined by the assignment. The evaluation of expressions within variable must neither affect
nor be affected by the evaluation of expr.

Both variable and expr may contain references to any portion of variable.

Version 103 1986 December Page 7-19

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

If expr in an assignment is a scalar and variable is an array, the expr is treated as if it were
an array of the same effective shape as variable with every element of the array equal to the
scalar value of expr.

When a variable in an intrinsic assignment is an array, the assignment is performed
element-by-element on corresponding array elements of variable and expr. For example,
where A and B are arrays of the same effective shape, the array intrinsic assignment

A=8B

assigns the corresponding elements of B to those of A; that is, the first element of B is
assigned to the first element of A, the second element of B is assigned to the second ele-
ment of A, etc. The processor may perform the element-by-element assignment in any
order.

When variable is a subobject, the assignment does not affect the definition status or value of
other parts of the object. For example, if variable is an array section, the assignment does
not affect the definition status or value of the elements of the parent array not specified by
the array section.

7.5.1.6 Interpretation of Defined Assignment Statements. The interpretation of a defined
assignment is provided by the subroutine subprogram that defines the operation.

A subroutine subprogram defines the defined assignment x; = x; if:

(1) The subroutine subprogram is specified with a SUBROUTINE statement of the
form (12.5.2.3):

SUBROUTINE subroutine-name (d,, d;) ASSIGNMENT
(2) The interface to the subroutine subprogram is explicit,

(38) The types of x4 and x, are the same as those of the dummy arguments d; and
d,, respectively,

(4) The type parameters, if any, of x, and x, must match those of d, and d,, respec-
tively, for those type parameters of d; and d, not specified with an asterisk (¥),
and

() d, and d; are scalar and x, and x, have the same effective shape, or d, or d, (or
both) is an array and the effective shapes of x, and x, match those of d, and d,
respectively.

7.5.2 Masked Array Assignment—WHERE. The masked array assignment is used to
mask the evaluation of expressions and assignment of values in array assignment state-
ments, according to the value of a logical array expression.

7.5.2.1 General Form of tiie Masked Array Assignment. A masked array assignment is
either a WHERE statement or WHERE construct.

R723 where-simt is WHERE (mask-expr) assignment-stmt

R724 where-construct is where-construct-stmt
[assignment-stmt ...
[elsewhere-stmt
[assignment-simt 1... |
end-where-stmt

R725 where-construct-stmt is WHERE (mask-expr)

R726 mask-expr is logical-expr

Version 103 1986 December Page 7-20

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

R727 elsewhere-stmt is ELSEWHERE
R728 end-where-stmt is END WHERE

Constraint: In each assignment-stmt, the mask-expr and the variable being defined must be
arrays of the same effective shape.

Examples of a masked array assignment are:
WHERE (TEMP > 100.0) TEMP = TEMP — REDUCE_TEMP

WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP — 5.0

END WHERE

7.5.2.2 Interpretation of Masked Array Assignments. The execution of a masked array
assignment causes the expression mask-expr to be evaluated. The array assignment state-
ments following the WHERE and ELSEWHERE keywords are executed in normal execution
sequence. An array may be defined in more than one array assignment statement in a
WHERE construct. A reference to an array may appear subsequent to its definition in the
same WHERE construct.

When an assignment-stmt is executed in a masked array assignment, the expr in the
WHERE statement or each expr in the array assignment statements, immediately following
the WHERE construct statement, is evaluated for all elements where mask-expr is true (or
for all elements where mask-expr is false in the array assignment statements following ELSE-
WHERE), and the result is assigned to the corresponding elements of variable. For each
false value of mask-expr (or true value for the array assignment statements after ELSE-
WHERE) the value of the corresponding element of variable in each array assignment state-
ment immediately following the WHERE construct statement is not affected, and it is as if
the expression expr were not evaluated.

If a transformational function reference occurs in expr, it is evaluated without any masked
control by the mask-expr; that is, all of its argument expressions are fully evaluated and the
function is fully evaluated. Elements corresponding to true values in mask-expr (false in the
expr after ELSEWHERE) are selected for use in evaluating each expr.

In a masked array assignment or a WHERE construct statement, only a WHERE statement
may be a branch target. Changes to entities in mask-expr do not affect the execution of
statements in the masked array assignment. Execution of an END WHERE has no effect.

Version 103 1986 December Page 7-21

10

15

20

25

30

35

8 EXECUTION CONTROL

Control constructs are used to control the execution sequence. These constructs include
executable constructs containing blocks and executable statements that may be used to
alter the execution sequence.

8.1 Executable Constructs Containing Blocks. The following are executable con-
structs that contain blocks and may be used to control the execution sequence:

(1) IF Construct

(2) CASE Construct

(3) DO Construct
A block is a sequence of executable constructs that is treated as an integral unit.
R801 block is [execution-part-construct]...

Executable constructs may be used to control which blocks of a program are executed or
how many times a block is executed. Blocks are always bounded by statements that are
particular to the construct in which they are embedded. Note that a block may be empty.

Any of these three constructs may be named with a name. If a construct is named, the
name must be the first lexical element of the first statement of the construct and the last lex-
ical element of the construct. In fixed form, the preceding name must be placed after col-
umn 6.

There is a simplified form of the IF construct (the IF statement) that contains a single action
statement.

An example of a construct containing a block is:

IF (A > 0.0) THEN
B = SQRT (A) ! THESE TWO STATEMENTS
C =106 (A) ! FORM A BLOCK.

END IF

8.1.1 Rules Governing Blocks.

8.1.1.1 Executable Constructs in Blocks. If a block contains an executable construct, the
executable construct must be entirely contained within the block.

8.1.1.2 Control Flow in Blocks. Transfer of control to the interior of a block from outside
the block is prohibited. Transfers within a block and transfers from the interior of a block to
outside the block may occur. For example, if a statement inside the block has a statement
label, a GO TO statement using that label may appear in the same block. Subroutine and
function references may appear in a block (12.4.2, 12.4.4).

8.1.1.3 Execution of a Block. Execution of a block begins with the execution of the first
executable construct in the block. Uniess there is a transfer of control out of the block, the
execution of the block is completed when the last executable construct in the sequence is
executed. The action that takes place at the terminal boundary depends on the particular
construct and on the block within that construct. It is usually a transfer of control.

Version 103 1986 December Page 8-1

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

45

8.1.2 IF Construct. The [IF construct selects for execution no more than one of its constit-
uent blocks. The IF statement controls the execution of a single statement.

8.1.2.1 Form of the IF Construct.

R802 if-construct is if-then-stmt
block
[else-if-stmt
block ...
[else-stmt
block]
end-if-stmt
R803 if-then-stmt is [if-construct-name :] IF (scalar-logical-expr) THEN
R804 else-if-stmt is ELSE IF (scalar-logical-expr) THEN
R805 else-stmt is ELSE
R806 end-if-stmt is END IF [if-construct-name |

Constraint: If an if-construct-name is present, the same name must be specified on both
the if-then-stmt and the corresponding end-if-stmt,

8.1.2.2 Execution of an iF Construct. At most one of the blocks contained within the IF
construct is executed. If there is an ELSE statement in the construct, exactly one of the
blocks contained within the construct wili be executed. The scalar mask expressions are
evaluated in the order of their appearance in the construct until a true value is found or an
ELSE statement or END IF statement is encountered. If a true value or an ELSE statement
is found, the block immediately following is executed and this completes the execution of the
construct. The expressions in any remaining ELSE IF statements of the IF construct are not
evaluated. If none of the evaluated expressions are true and there is no ELSE statement,
the execution of the construct is completed without the execution of any blocks within the
construct.

An ELSE IF statement or an ELSE statement must not be a branch target. It is permissible
to branch to an END IF statement from within the IF construct, and also from outside the construct.

8.1.2.3 Examples of I Constructs.

IF (CVAR .EQ. 'RESET') THEN
1=0; J=0; K=0
END IF

IF (PROP) THEN
WRITE (3, '("QED')")
STOP

ELSE
PROP = NEXTPROP

END IF

IF (A .GT. 0> THEN
B =C/A
IF (B .GT. 0) THEN
D=1.0
END IF
ELSE IF (C .GT. 0) THEN
B = A/C

Version 103 1986 December Page 8-2

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

D=-1.0

ELSE
B = ABS (MAX (A, C))
D=0

END IF

8.1.2.4 IF Statement. The IF statement controls a single action statement (R218).
R807 if-stmt is IF (scalar-logical-expr) action-stmt
Constraint: The action-stmt in the if-stmt must not be an if-stmt.

Execution of an IF statement causes evaluation of the scalar mask expression. If the value
of the expression is true, the action statement is executed. If the value is false, the action
statement is not executed and execution continues as though a CONTINUE statement (8.3)
were executed.

The execution of a function reference in the scalar mask expression is permitted to affect
entities in the action statement.

An example of an IF statement is:
IF (A > 0.00 A = LOG (A

8.1.3 CASE Construct. The CASE construct selects for execution exactly one of its con-
stituent blocks.

8.1.3.1 Form of the CASE Construct.

R808 case-construct is select-case-stmt
[case-stmt
block ...
end-select-stmt
R809 select-case-stmt is [select-construct-name : | SELECT CASE (case-expr)
R810 case-stmt Is CASE case-selector
R811 end-select-stmt is END SELECT [select-construct-name |

Constraint: If a select-construct-name is present, the same name must be specified on both
the select-case-stmt and the corresponding end-select-stmt.

R812 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R813 case-selector is (case-value-range-list)
or DEFAULT

Constraint: Only one DEFAULT case-selector may appear in any given case-construct.

R814 case-value-range is case-value
or [case-value] : [case-value]

R815 case-value is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr

Constraint: For a given CASE construct, each case-value must be of the same type as
case-expr. For character type, length differences are allowed.

Version 103 1986 December Page 8-3

EXECUTION CONTROL X3J3/S8

10

15

20

25

30

35

40

45

Constraint: A case-value-range using a colon (i.e., the second form) must not be used if
case-expr is of type logical.

8.1.3.2 Execution of a CASE Construct. The execution of the SELECT CASE statement
causes the case expression to be evaluated. The resulting value is called the case index
and must match exactly one of the selectors of one of the CASE statements of the con-
struct. For a case value range list, a match occurs if the case index matches any of the

case value ranges in the list. For a case index with a value of ¢, a match is determined as
follows:

(1) If the case value range contains a single value v without a colon, a match occurs
for data type logical if the expression ¢ .EQV. v is true. A match occurs for data
type integer or character if the expression ¢ .EQ. v is true.

(2) If the case value range is of the form low : high, a match occurs if the expression
fow .LE. ¢ .AND. c .LE. high is true.

(3) If the case value range is of the form low :, a match occurs if the expression low
.LE. c is true.

(4) If the case value range is of the form : high, a match occurs if the expression ¢
.LE. high is true.

(5) If the case value range is of the form :, a match always occurs. A case construct
containing such a case selector must not contain any other case selector except
possibly a DEFAULT selector.

(6) If no other selector matches, a DEFAULT selector must be present, and it
matches the case index.

The block following the CASE statement containing the matching selector is executed. This
completes execution of the construct.

One and only one of the blocks of a CASE construct is executed.

The case value ranges in different selectors must not overlap; that is, there must be no pos-
sible value of the case index that matches more than one selector. Case value ranges
within a single case selector may overlap.

A CASE statement must not be a branch target. It is permissible to branch to an END
SELECT statement only from within the CASE construct.

8.1.3.3 Examples of CASE Constructs. An integer signum function:

INTEGER FUNCTION SIGNUM (W)
SELECT CASE (N)
CASE (:-1)
SIGNUM = -1
CASE (D)
SIGNUM
CASE (12)
SIGNUM
END SELECT
END

0

1

A code fragment to check for balanced parentheses:
CHARACTER LINE (80)

LEVEL=0

nI=1, 8

Version 103 1986 December Page 8-4

EXECUTION CONTROL X3J3/S8

10

15

20

25

30

35

40

45

SELECT CASE (LINE(CI:I))
CASE ('(")
LEVEL = LEVEL + 1
CASE ()"
LEVEL = LEVEL - 1
IF (LEVEL .LT. 0) THEN
PRINT *, 'UNEXPECTED RIGHT PARENTHESIS'
EXIT
END IF
CASE DEFAULT
I IGNORE ALL OTHER CHARACTERS
END SELECT
END DO
IF (LEVEL .GT. 0) THEN
PRINT #, 'MISSING RIGHT PARENTHESIS'
END IF

The following three fragments are equivalent:

IF (SILLY .EQ. 1) THEN
CALL THIS

ELSE
CALL THAT

END IF

SELECT CASE (SILLY .EQ. 1)
CASE (.TRUE.)
CALL THIS
CASE (.FALSE.)
CALL THAT
END SELECT

SELECT CASE (SILLY)
CASE DEFAULT
CALL THAT
CASE (1)
CALL THIS
END SELECT

8.1.4 Iteration Control. The'DO construct is used to provide iteration control by specifying
the repeated execution of a sequence of executable constructs.

8.1.4.1 Form of the DO Construet.

R816 do-construct is do-simt

do-body

do-termination
R817 do-stmt is [do-construct-name : | DO [label | [[,] loop-control]
R818 loop-control is do-variable = scalar-numeric-expr, B

B scalar-numeric-expr |, scalar-numeric-expr |
or (scalar-int-expr TIMES)

R819 do-variable Is scalar-variable

Constraint: The do-variable must be a scalar integer or real named variable.

Version 103 1986 December Page 8-5

EXECUTION CONTROL X3J3/¢e8

10

15

20

25

30

35

40

Constraint: Each scalar-numeric-expr in loop-control must be of type integer or real.
R820 do-body is [execution-part-construct]...

R821 do-termination is end-do-stmt
or continue-stmt
or do-term-stmt
or do-construct

R822 do-term-stmt is action-stmt

Constraint: If the /abel is omitted in a do-stmt, the corresponding do-termination must be an
end-do-stmt.

Constraint: If a /abel appears in the do-stmt and the corresponding do-termination is not a
do-construct, the do-termination must be identified with that label.

Constraint: |If the do-termination is a continue-stmt or do-term-stmt, the corresponding do-stmt
must contain a label.

Constraint: A do-term-stmt must not be a continue-stmt, goto-stmt, return-stmt, stop-stmt, exit-stmt, cycle-stmt,
arithmetic-if-stmt, assigned-goto-stmt, computed-goto-stmt, nor an if-stmt that causes a transfer of con—
trol.

Constraint: If the do-termination is a do-constrict, both of the corresponding do-stmts must specify the same label.
Constraint: If a do-termination is a do-construct, the do-termination of that do-construct must not be an end-do-stmt.
R823 end-do-stmt is END DO [do-construct-name |

Constraint: If a do-construct-name is used on the do-stmt, the corresponding do-termination
must be an end-do-stmt that uses the same do-construct-name. If a do-
construct-name does not appear on the do-stmt, a do-construct-name must not
appear on the corresponding do-termination.

R824 exit-stmt is EXIT [do-construct-name]
R825 cycle-stmt is CYCLE [do-construct-name]

Constraint: An exit-stmt or a cycle-stmt must be within the range of one or more do-
constructs.

Constraint: An exit-stmt or cycle-stmt using a do-construct-name must be within the range
of the do-construct that has that name.

An EXIT statement or CYCLE statement is said to belong to a specific DO construct. If the
EXIT statement or CYCLE statement contains a construct name, it belongs to the DO con-
struct using that name. Otherwise, it belongs to the innermost DO construct in which it
appears.

8.1.4.2 Range of a DO Construct. The range of a DO construct consists of the do-body
and the continue-stmt, do-term-stmt, or terminating do-construct, if any. The range must satisfy the
rules for blocks (8.1.1). Note that if the do-termination is an END DO statement, the range is
a biock (8.1). If the do-termination is a continue-stmit, do-term-stmt, or do-construct, a terminal
boundary delimiting the range is assumed (8.1.1.3).

Within a scoping unit, all DO constructs whose DO statements use the same label are said to share the statement identi-
fied with that label. Note that the statement so identified must be a CONTINUE statement or do-term-stmt that serves as
the do termination of the innermost of these DO constructs.

It is permissible to branch to an END DO statement only from within the range of the DO
construct that it terminates. Note that transfers of control to statements within the range of a
DO construct from outside the range are prohibited.

Version 103 1986 December Page 8-6

EXECUTION CONTROL X3J3/S8

10

15

20

25

30

35

40

8.1.4.3 Active and Inactive DO Constructs. A DO construct is either active or inactive.
Initially inactive, a DO construct becomes active only when its DO statement is executed.

Once active; the DO construct becomes inactive only when the construct it specifies is termi-
nated (8.1.4.4.4).

When a DO construct becomes inactive, the do-variable, if any, retains its last defined value.

8.1.4.4 Execution of a DO Construct. A DO construct specifies a loop. A loop is a
sequence of executable constructs that is executed repeatedly. There are three phases in
the execution of a DO construct: initiation of the loop, execution of thé loop body, and termi-
nation of the loop.

8.1.4.4.1 Loop Initiation. When the DO statement is executed, the DO construct becomes
active. If there is loop-control of the form do-variable = scalar-numeric-expr,, scalar-
numeric-expr, [, scalar-numeric-expr,], the following steps are performed in sequence:

(1) The initial parameter m,, the terminal parameter m,, and the incrementation
parameter m, are established by evaluating scalar-numeric-expr,, scalar-numeric-
expr,, and scalar-numeric-expr,, respectively, including, if necessary, conversion to
the type of the do-variable according to the rules for numeric conversion (Tabie
7.11). It scalar-numeric-expr, does not appear, m, has a value of one. m, must
not have a value of zero.

(2) The DO variable becomes defined with the value of the initial parameter m,.
(38) The iteration count is established and is the value of the expression
MAX (INT ((m, — m, + my) / m,), 0)
Note that the iteration count is zero whenever:

m, > m, and m, > 0, or
m, < m, and m, < 0.

If loop-control takes the form (scalar-int-expr TIMES), the scalar-int-expr is evaluated. If the
resulting value is nonnegative, it becomes the iteration count; otherwise, the iteration count
is zero.

If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive
iteration count, impossible to decrement to zero, were established.

At the completion of the execution of the DO statement, the execution cycle begins.

8.1.4.4.2 The Execution Cycle. The execution cycle of a DO construct consists of the
following steps performed in sequence:

(1) The iteration count, if any, is tested. [f the iteration count is zero, the do-construct
becomes inactive. If, as a result, all of the do-constructs sharing the do-term-stmt or continue-stmt are
inactive, normal execution continues with execution of the next executable construct following the do-term-
stmt or continue-stmt. However, if some of the DO constructs sharing the do-term-stmt or continue-stmt are
active, execution continues with step (3) of the execution cycle of the active DO construct whose DO state-
ment was most recently executed.

(2) If the iteration count is nonzero, the range of the DO construct is executed.

(8) The iteration count, if any, is decremented by one. The do-variable, if any, is
incremented by the value of the incrementation parameter mj.

(4) This cycle is executed repeatedly from step (1) until the loop is terminated.

Version 103 1986 December Page 8-7

EXECUTION CONTROL X3J3/s8

10

15

20

25

30

35

40

Except for the incrementation of the DO variable that occurs in step (3), the DO variable
must neither be redefined nor become undefined while the DO construct is active. If the
do-termination is included within the range of the DO (8.1.4.2), execution of the do-
termination occurs as a result of the normal execution sequence or as a result of a transfer
of control from within the range of the DO construct. Unless execution of the do-term-stmt, if any, results
in a transfer of control, execution continues with step (3) of the execution cycle.

8.1.4.4.3 Cycle Interruption. Execution of a CYCLE statement that belongs to a DO con-
struct causes immediate execution of step (3) of the current execution cycle of that DO con-
struct. A transfer of control to an END DO statement has the same effect as a CYCLE state-
ment that belongs to the DO construct it terminates.

8.1.4.4.4 Loon Terraination. The execution of the loop is complete when one of the fol-
lowing conditions occurs:

(1) The iteration count, tested during step (1) of the execution cycle, is determined to
be zero.

(2) An EXIT statement that belongs to the DO construct is executed.

(3) An EXIT statement or a CYCLE statement that is contained in the DO construct
but belongs to another DO construct containing this one is executed.

(4) A RETURN statement within the range is executed.

(5) Control is transferred to a statement that is neither the do-termination nor within
the range of the DO construct.

(6) A STOP statement anywhere in the program is executed, or execution is termi-
nated for any other reason.

8.1.4.5 Examples of DO Constructs.
Example 1:

DO
IF (X .GT. Y) THEN
Z=X
EXIT
END IF
CALL NEWX (X)
END DO

The above program fragment contains a DO construct that does not have an iteration count.
The loop will continue to execute until X becomes greater than Y, at which point the EXIT
statement causes execution control to be transferred to the statement immediately following
the END DO statement.

Example 2:

SUM =0
READ *, N
DO (N TIMES)
READ *, P, Q
CALL CALCULATE (P, Q, R)
SUM = SUM + R
IF (SUM .GT. SMAX) EXIT
END DO

Version 103 1936 December Page 8-8

EXECUTION CONTROL X3J3/S8

10

15

20

25

30

35

40

45

The loop is executed N times unless SUM becomes greater than SMAX.
If N is set to 0 by the READ statement, the loop is not executed.

Example 3:
N =0
0I=1,10
J=1
DOK=1,5
L=K
N=N+1
END DO
END DO
After execution of the above program fragment, | = 11,J = 10, K = 6, L = 5, and N =
50.
Example 4:
N =
poI1=1, 10
J=1
DO K=35, 1
L=K
N=N+1
END DO
END DO
After execution of the above program fragment, I=11, J=10, K=5, N=0. L is not defined.
Example b:
=0
M001=1, 10
J =1
00100 K=1, 5
L=K
100 N=N=+1
After execution of the above statements, | = 11,J = 10, K = 6, L = 5, and N = 50.

Example 6:
=0
DO 2001 =1,10
J =1

DO 200

200 K.= 5, 1
L=K
N=N

200 +1

After execution of the above statements | = 11,J = 10, K = 5, N

0. L is not defined.

8.2 Branching. Branching is used to alter the normal execution sequence. A branch
causes a transfer of control from one statement in a scoping unit to a labeled branch target
statement in the same scoping unit. A branch target statement is an action-stmt, an end-
program-stmt, an end-function-stmt, an end-subroutine-stmt, an if-then-stmt, an end-if-stmt, a
select-stmt, an end-select-stmt, a do-stmt, a do-termination, or a where-construct-stmt.

It is permissible to branch to an END SELECT statement only from within its CASE con-
struct.

Version 103 1986 December Page 8-9

EXECUTION CONTROL X3J3/s8

10

15

20

25

30

35

40

It is permissible to branch to an END IF statement only from within its IF construct.

It is permissible to branch to a DO termination only from within its DO construct.

8.2.1 Statement Labels. Statement labels provide a means of referring to individual
statements. Any statement may be identified with a label, but only branch target statements,
FORMAT statements, and DO terminations may be referred to by the use of statement
labels (3.2.5).

8.2.2 GO TG Staterent.
R826 goto-stmt is GO TO label

Constraint: /abel must be the statement label of a branch-target that appears in the same
scoping unit as the goto-stmt.

Execution of a GO TO statement causes a transfer of control so that the branch target
identified by the label is executed next.

8.2.3 Computed GO TO Statement.
R827 computed-goto-stmt is GO TO (labelist) [, | scalar-int-expr

Constraint: Each /abel in label-list must be the statement label of a branch target that
appears in the same scoping unit as the computed-goto-stmt.

The same statement label may appear more than once in a label list.

Execution of a computed GO TO statement causes evaluation of the scalar integer expres-
sion. If this value is i such that 1 < i < n where n is the number of labels in label-list, a
transfer of control occurs so that the next statement executed is the one identified by the ith
label in the list of labels. If i is less than 1 or greater than n, the execution sequence con-
tinues as though a CONTINUE statement were executed.

8.2.4 ASSIGN and Assigned GO TO Statement.

R828 assign-stmt is ASSIGN fabel TO scalar-int-variable
Constraint: label must be the statement label of a branch target or a format-stmt.

R829 assigned-goto-stmt is GO TO scalar-int-variable { [. | (labelfist)]

Constraint: Each /abel in labellist must be the statement label of a branch target that appears in the same scoping
unit as the assigned-goto-stmit.

Execution of an ASSIGN statement causes a statement label to be assigned to an integer variable. The statement labe!
must be the label of a statement that appears in the same scoping unit as the ASSIGN statement. A label may appear
more than once in the label list.

Execution of an ASSIGN statement is the only way that a variable may be defined with a statement label value.

When an assigned GO TO statement is executed, its integer variable must be defined with the label of a branch target.
When an input/output statement containing the integer variable as a format specifier (9.4.1.1) is executed, the integer
variable must be defined with the label of a FORMAT statement. While defined with a statement label value, the integer
variable must not be referenced in any other context.

An integer variable defined with a statement label value may be redefined with a statement label value or an integer
value.

At the time of execution of an assigned GO TO statement, the integer variable must be defined with the value of a state—
ment label of a branch target that appears in the same scoping unit. Note that the variable may be defined with a state~
ment label value only by an ASSIGN statement in the same scoping unit as the assigned GO TO statement.

Version 103 1986 December Page 8-10

EXECUTION CONTROL X3J3/S8

The execution of the assigned GO TO statement causes a transfer of control so that the branch target identified by the
statement label currently assigned to the integer variable is executed next.

If the parenthesized list is present, the statement label assigned to the integer variable must be one of the statement
labels in the list.

5 8.2.5 Arithmetic IF Statement.
R830 arithmetic-if-stmt is IF (scalar-numeric-expr) label, label, label

Constraint: Each label must be the label of a branch target that appears in the same scoping unit as the
arithmetic-if-stmt.

Constraint: The scalar-numeric-expr must not be of type complex.
10 The same label may appear more than once in cne arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of the numeric expression followed by a transfer of control.
The branch target identified by the first label, the second label, or the third label is executed next as the value of the
numeric expression is less than zero, equal to zero, or greater than zero, respectively.

8.3 CONTINUE Statement.
15 Execution of a CONTINUE statement has no effect.
R831 continue-stmt is CONTINUE

CONTINUE statements are usually identified by labels that also appear in control statements,
such as the DO statement.

8.4 STOP Statement.
20 R832 stop-stmt is STOP [access-cods]

R833 access-code is scalar-char-constant
or digit | digit [digit [digit [digit 1111

Execution of a STOP statement causes termination of execution of the executable program.
At the time of termination, the access code if any, is accessible. Leading zero digits are
25 significant.

8.5 PAUSE Statement.
R834 pause-stmt is PAUSE [access-code |

Execution of a PAUSE statement causes a suspension of execution of the executable program. Execution must be
resumable. At the time of suspensign of execution, the access code is accessible. Resumption of execution is not under

30 control of the program. If execution is resumed, the execution sequence continues as though a CONTINUE statement
were executed. Leading zero digits in the access code are significant.

Version 103 1986 December Page 8-11

10

15

20

25

30

35

40

9 INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from external media to internal
storage or from an internal file to internal storage. This process is called reading. Output
statements provide the means of transferring data from internal storage to external media or
from internal storage to an internal file. This process is called writing. Some input/output
statements specify that editing of the data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements to
manipulate the external medium, or to describe or inquire about the properties of the con-
nection to the external medium.

The input/output statements are the OPEN, CLOSE, READ, WRITE, PRINT, BACKSPACE,
ENDFILE, REWIND, and INQUIRE statements.

The READ statement is a data transfer input statement. The WRITE statement and the
PRINT statement are data transfer output statements. The OPEN statement and the
CLOSE statement are file connection statements. The INQUIRE statement is a file inquiry
statement. The BACKSPACE, ENDFILE, and REWIND statements are file positioning
statements.

9.1 Records. A record is a sequence of values or a sequence of characters. For exam-
ple, a line on a terminal is usually considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are three kinds of records:

(1) Formatted
(2) Unformatted
(3) Endfile

9.1.1 Formatted Record. A formatted record consists of a sequence of characters that
are capable of representation.in the processor. The length of a formatted record is mea-
sured in characters and depends primarily on the number of characters put into the record
when it is written. However, it may depend on the processor and the external medium. The
length may be zero. Formatted records may be read or written only by formatted
input/output statements.

Formatted records may be prepared by means other than Fortran; for example, by some
manual input device.

9.1.2 Unformatted Record. An unformatted record consists of a sequence of values in a
processor-dependent form and may contain data of any type or may contain no data. The
length of an unformatted record is measured in processor-dependent units and depends on
the input/output list (9.4.2) used when it is written, as well as on the processor and the
external medium. The length may be zero. Unformatted records may be read or written
only by unformatted input/output statements.

9.1.3 Endfile Record. An endfile record is written explicitly by the ENDFILE statement.
The file must be connected for sequential access. An endfile record is written implicitly to a
file connected for sequential access when the last operation on the file is an output state-
ment other than the ENDFILE statement, and:

(1) A REWIND or BACKSPACE statement references the unit, or

(2) The unit (file) is closed, either explicitly by a CLOSE statement or implicitly by a
program termination not caused by an error condition.

Version 103 1986 December Page 9-1

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

An endfile record may occur only as the last record of a file. An endfile record does not
have a length property.

9.2 Files. A file is a sequence of records.
There are two kinds of files:

(1) External

(2) Internal

9.2.1 External Files. An exiernal file is any file that exists in a medium external to the
executable program.

The records of a file are either all formatted or all unformatted, except that the last record of
a file may be an endfile record. At any given time, there is a processor-determined set of
allowed access methods, a processor-determined set of allowed forms, and a processor-
determined set of allowed record lengths for a file.

A file may have a name; a file that has a name is called a named file. The name of a
named file is a character string. The set of allowable names for a file is processor depend-
ent.

An external file that is connected to a unit has a position property (9.2.1.3).

9.2.1.1 File Existence. At any given time, there is a processor-determined set of external
files that are said to exist for an executable program. A file may be known to the processor,
yet not exist for an executable program at a particular time. For example, there may be
security reasons that prevent a file from existing for an executable program. A file may exist
and contain no records; an example is a newly created file not yet written.

To create a file means to cause a file to exist that did not previously exist. To delete a file
means to terminate the existence of the file.

All input/output statements may refer to files that exist. An INQUIRE, OPEN, CLOSE,
WRITE, PRINT, REWIND, or ENDFILE statement may also refer to a file that does not exist.

9.2.1.2 File Access. There are two methods of accessing the records of an external file,
sequential and direct. Some files may have more than one allowed access method; other
files may be restricted to one access method. For example, a processor may allow only
sequential access to a file on magnetic tape. Thus, the set of allowed access methods
depends on the file and the processor.

The method of accessing the file is determined when the file is connected to a unit (9.3.2).

9.2.1.2.1 Sequential Access. When connected for sequential access, an external file has
the following properties:

(1) The order of the records is the order in which they were written if the direct
access method is not a member of the set of aliowed access methods for the file.
It the direct access method is also a member of the set of allowed access meth-
ods for the file, the order of the records is the same as that specified for direct
access. In this case, the first record accessed by sequential access is the record
whose record number is 1 for direct access. The second record accessed by
sequential access is the record whose record number is 2 for direct access, etc.
A record that has not been written since the file was created must not be read.

(2) The records of the file are either all formatted or all unformatted, except that the
last record of the file may be an endfile record. Unless the previous operation on

Version 103 1986 December Page 9-2

INPUT/OUTPUT STATEMENTS X3J3/S8

5

10

15

20

25

30

35

40

the file was an output statement, the last record, if any, of the file must be an
endfile record.

(3) The records of the file must not be read or written by direct access input/output
statements.

9.2.1.2.2 Direct Access. When connected for direct access, an external file has the fol-
lowing properties:

(1) Each record of the file is uniquely identified by a positive integer called the record
number. The record number of a record is specified when the record is written.
Once established, the record number of a record can never be changed. Note
that a record may not be deleted; however, a record may be rewritten. The order
of the records is the order of their record numbers.

() The records of the file are either all formatted or all unformatted. If the sequential
access method is also a member of the set of allowed access methods for the file,
its endfile record, if any, is not considered to be part of the file while it is con-
nected for direct access. If the sequential access method is not a member of the
set of allowed access methods for the file, the file must not contain an endfile
record.

(38) Reading and writing records is accomplished only by direct access input/output
statements.

(4) All records of the file have the same length.

(5) Records need not be read or written in the order of their record numbers. Any
record may be written into the file while it is connected to a unit. For example, it
is permissible to write record 3, even though records 1 and 2 have not been writ-
ten. Any record may be read from the file while it is connected to a unit, provided
that the record has been written since the file was created.

(6) The records of the file must not be read or written using list-directed (10.8) or
namelist formatting (10.9).

9.2.1.3 File Position. Execution of certain input/output statements affects the position of a
file. Certain circumstances can cause the position of a file to become indeterminate.

The initial point of a file is the position just before the first record. The terminal point is
the position just after the last record.

If a file is positioned within a record, that record is the current record; otherwise, there is no
current record.

Let n be the number of records in the file. 1f 1 < /i < n and a file is positioned within the
ith record or between the (i — 1)th record and the ith record, the (i — 1)th record is the pre-
ceding record. If n = 1 and the file is positioned at its terminal point, the preceding record
is the nth and last record. If n = 0 or if a file is positioned at its initial point or within the
first record, there is no preceding record.

If1 <7 < nand a file is positioned within the ith record or between the ith and (i + 1)th
record, the (/ + 1)th record is the next record. If n = 1 and the file is positioned at its ini-
tial point, the first record is the next record. If n = 0 or if a file is positioned at its terminal
point or within the nth (last) record, there is no next record.

Version 103 1986 December Page 9-3

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.2.1.3.1 File Position Prior to Data Transfer. The positioning of the file prior to data
transfer depends on the method of access: sequential or direct.

For sequential access on input, the file is positioned at the beginning of the next record.
This record becomes the current record. On output, a new record is created and becomes
the last record of the file.

For direct access, the file is positioned at the beginning of the record specified by the record
specifier. This record becomes the current record.

If the file contains an endfile record, the file must not be positioned after the endfile record
prior to data transfer.

9.2.1.3.2 File Position After Data Transfer. If an end-of-file condition exists as a result of
reading an endfile record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the file is positioned after the last record
read or written and that record becomes the preceding record. A record written on a file
connected for sequential access becomes the last record of the file.

If the file is positioned after the endfile record, execution of a data transfer input/output
statement is prohibited. However, a REWIND or BACKSPACE statement may be used to
reposition the file. :

If an error condition exists, the position of the file is indeterminate.

9.2.2 Internal Files. Internal files provide a means of transferring and converting data from
internal storage to internal storage.

9.2.2.1 Internal File Properties. An internal file has the following properties:
(1) The file is a character variable.
(2) A record of an internal file is a scalar character variable.

(3) If the file is a scalar character variable, it consists of a single record whose length
is the same as the length of the scalar character variable. If the file is a character
array or array section, it is treated as a sequence of character array elements.
Each array element, if any, is a record of the file. The ordering of the records of
the file is the same as the ordering of the array elements in the array (6.2.4.2) or
the array section (6.2.4.3). Every record of the file has the same length, which is
the length of an array element in the array.

(4) A record of the internal file becomes defined by writing the record. If the number
of characters written in a record is less than the length of the record, the remain-
ing portion of the record is filled with blanks. If the number of characters to be
written is greater than the length of the record, the effect is as though characters
equal to the length are written and remaining characters truncated.

(6) A record may be read only if the record is defined.

(6) A record of an internal file may become defined (or undefined) by means other
than an output statement. For example, the character variable may become
defined by a character assignment statement.

(7) An internal file is always positioned at the beginning of the first record prior to
data transfer.

Version 103 1986 December Page 9-4

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.2.2.2 Internal File Restrictions. An internal file has the following restrictions:

(1) Reading and writing records must be accomplished only by sequential access for-
matted input/output statements that do not specify namelist formatting.

(2) An internal file must not be specified in a file connection statement, a file position-
ing statement, or a file inquiry statement.

9.3 File Connection. A unit, specified by an io-unit, provides a means for referring to a
file.

R901 Jjo-unit is external-file-unit
or *
or internal-file-unit
R902 external-file-unit is scalar-int-expr
R903 internal-file-unit is char-variable

A scalar integer expression that identifies an external file unit must be zero or positive.

The io-unit in a file positioning statement, a file connection statement, or a file inquiry state-
ment must not be an asterisk or. an internal-file-unit.

The external unit identified by the value of scalar-int-expr is the same external unit in all pro-
gram units of the executable program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N=26
REWIND N

The value 6 used in both program units identifies the same external unit.

An asterisk identifies a particular processor-dependent external unit that is preconnected for
formatted sequential access. This is normally the unit preconnected for the PRINT state-
ment or the unit preconnected for the READ format statement.

9.3.1 Unit Existence. At any given time, there is a processor-determined set of units that
are said to exist for an executable program.

All input/output statements may refer to units that exist. The INQUIRE statement and the
CLOSE statement also may refer to units that do not exist.

9.3.2 Connection of a File to a Unit. A unit has a property of being connected or not
connected. If connected, it refers to a file. A unit may become connected by preconnection
or by the execution of an OPEN statement. The property of connection is symmetric; if a
unit is connected to a file, the file is connected to the unit.

All input/output statements except an OPEN, a CLOSE, or an INQUIRE statement must refer
to a unit that is connected to a file and thereby make use of or affect that file.

A file may be connected and not exist. An example is a preconnected new file.

A unit must not be connected to more than one file at the same time, and a file must not be
connected to more than one unit at the same time. However, means are provided to
change the status of a unit and to connect a unit to a different file.

Version 103 1986 December Page 9-5

INPUT/OUTPUT STATEMENTS X3J3/S8

After a unit has been disconnected by the execution of a CLOSE statement, it may be con-
nected again within the same executable program to the same file or to a different file.
After a file has been disconnected by the execution of a CLOSE statement, it may be con-
nected again within the same executable program to the same unit or to a different unit.

5 Note, however, that the only means of referencing a file that has been disconnected is by
the appearance of its name in an OPEN or INQUIRE statement. There may be no means of
reconnecting an unnamed file once it is disconnected.

9.3.3 Preconnection. Preconnection means that the unit is connected to a file at the
beginning of execution of the executable program and therefore it may be specified in
10 input/output statements without the prior execution of an OPEN statement.

6.3.4 The OPEN Siatement. The OPEN statement may be used to connect an existing
file to a unit, create a file that is preconnected, create a file and connect it to a unit, or
change certain specifiers of a connection between a file and a unit.

An external unit may be connected by an OPEN statement in any program unit of an execut-
15 able program and, once connected, a reference to it may appear in any program unit of the
executable program.

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is
permitted. If the FILE= specifier is not included in such an OPEN statement, the file
remains connected to the unit.

20 If the file to be connected to the unit does not exist but is the same as the file to which the

unit is preconnected, the properties specified by an OPEN statement become a part of the
connection.

If the file to be connected to the unit is not the same as the file to which the unit is con-
nected, the effect is as if a CLOSE statement without a STATUS = specifier had been exe-
25 cuted for the unit immediately prior to the execution of an OPEN statement.

If the file to be connected to the unit is already connected to the unit, only the BLANK =,
DELIM=, PAD=, ERR=, and IOSTAT = specifiers may have a value different from the one
currently in effect. Execution of such an OPEN statement causes any new value of the
BLANK=, DELIM=, or PAD = specifiers to be in effect, but does not cause any change in

30 any of the unspecified specifiers and the position of the file is unaffected. The ERR= and
IOSTAT = specifiers from any previously executed OPEN statement have no effect on any
currently executed OPEN statement.

If a file is already connected to a unit, execution of an OPEN statement on that file and a
different unit is not permitted.

35 R904 open-simt is OPEN (connect-spec-list)

R905 connect-spec is { UNIT =] external-file-unit
or IOSTAT = scalar-int-variable
or ERR = Jabel
or FILE = file-name-expr

40 or STATUS = scalar-char-expr
or ACCESS = scalar-char-expr
or FORM = scalar-char-expr
or RECL = scalar-int-expr
or BLANK = scalar-char-expr

45 or POSITION = scalar-char-expr
or ACTION = scalar-char-expr
or DELIM = scalar-char-expr

Version 103 1986 December Page 9-6

INPUT/OUTPUT STATEMENTS X3J3/s8

10

15

20

25

30

35

40

45

or PAD = scalar-char-expr
R906 file-name-expr is scalar-char-expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the connect-spec-list.

Constraint: Each specifier must not appear more than once in a given open-stmt; an
external-file-unit must be specified.

Constraint. If the STATUS= specifier has the value OLD or NEW, the FILE= specifier
must be present.

Constraint: If the STATUS = specifier is SCRATCH, the FILE = specifier must be absent.

A specifier that requires a scalar-char-expr may have a limited list of character values.
These values are listed for each such specifier. Any trailing blanks are ignored. If a proc-
essor is capable of representing letters in both upper and lower case, the value specified is
without regard to case. Some specifiers have a default value if the specifier is omitted.

The IOSTAT = specifier and ERR= specifier are described in Sections 9.4.1.5 and 9.4.1.6,
respectively.

An example of an OPEN statement is:
OPEN (10, FILE = 'employee.names', ACTION = 'READ', PAD = 'YES'")

9.3.4.1 FILE= Specifier in the OPEN Statement. The value of the FILE = specifier is the
name of the file to be connected to the specified unit. The file-name-expr must be a name
that is allowed by the processor. If this specifier is omitted and the unit is not connected to
a file, it may become connected to a processor-determined file. If a processor is capable of
representing letters in both upper and lower case, the interpretation of case is processor
dependent.

9.3.4.2 STATUS= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to OLD, NEW, SCRATCH, or UNKNOWN. If OLD is specified, the file must exist. If NEW is
specified, the file must not exist.

Successful execution of an OPEN statement with NEW specified creates the file and
changes the status to OLD. [f SCRATCH is specified with an unnamed file, the file is con-
nected to the specified unit for use by the executable program but is deleted at the execu-
tion of a CLOSE statement referring to the same unit or at the termination of the executable
program. SCRATCH must not be specified with a named file. If UNKNOWN is specified,
the status is processor dependent. If this specifier is omitted, the default value is
UNKNOWN.

9.3.4.3 ACCESS = Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to SEQUENTIAL or DIRECT. The ACCESS = specifier specifies the access method for the
connection of the file as being sequential or direct. If this specifier is omitted, the default
value is SEQUENTIAL. For an existing file, the specified access method must be included
in the set of allowed access methods for the file. For a new file, the processor creates the
file with a set of allowed access methods that includes the specified method.

9.3.4.4 FORM= Specifier in the OPEN Statement. The scalar-char-expr must evaluate to
FORMATTED or UNFORMATTED. The FORM= specifier determines whether the file is
being connected for formatted or unformatted input/output. If the FORM = specifier is omit-
ted, the default value is UNFORMATTED if the file is being connected for direct access, and
the default value is FORMATTED if the if the file is being connected for sequential access.
For an existing-file, the specified form must be included in the set of aliowed forms for the

Version 103 1986 December Page 9-7

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

45

file. For a new file, the processor creates the file with a set of allowed forms that includes
the specified form.

9.3.4.5 RECL= Specifier in the OPEN Statement. The value of the RECL= specifier
must be positive. It specifies the length of each record in a file being connected for direct
access, or specifies the maximal length of a record in a file being connected for sequential
access. If the file is being connected for formatted input/output, the length is the number of
characters. If the file is being connected for unformatted input/output, the length is mea-
sured in processor-dependent units. For an existing file, the value of the RECL= specifier
must be included in the set of allowed record lengths for the file. For a new file, the proc-
essor creates the file with a set of allowed record lengths that includes the specified value.

9.3.4.6 BLANK= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to NULL or ZERO. The BLANK= specifier is permitted only for a file being connected for
formatted input/output. f NULL is specified, all blank characters in numeric formatted input
fields on the specified unit are ignored, except that a field of all blanks has a value of zero.
If ZERO is specified, all blanks other than leading blanks are treated as zeros. If the
BLANK = specifier is omitted, the default value is NULL.

9.3.4.7 POSITION= Specifier in the OPEN Staiement. The scalar-char-expr must evalu-
ate to ASIS, REWIND, or APPEND. The connection must be for sequential access. A file
that did not exist previously (a NEW file, either specified explicitly or by default) is positioned
at its initial point. REWIND positions an existing file at its initial point. APPEND positions an
existing file at its terminal point such that the endfile record is the next record, if it has one.
ASIS leaves the position unchanged if the file exists and already is connected. ASIS leaves
the position unspecified if the file exists but is not connected. If this specifier is omitted, the
default value is ASIS.

9.3.4.8 ACTION= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to READ, WRITE, or READ/WRITE. READ specifies that the WRITE, PRINT, and ENDFILE
statements must not refer to this connection. WRITE specifies that READ statements must
not refer to this connection, READ/WRITE permits any 1/O statements to refer to this con-
nection. If this specifier is omitted, the default vaiue is READ/WRITE.

9.3.4.9 DELIM= Specifier in the OPEN Statement. The scalar-char-expr must evailuate to
APOSTROPHE, QUOTE, or NONE. If APOSTROPHE is specified, the apostrophe will be
used to delimit character constants written with list-directed or namelist formatting and all
internal apostrophes will be doubled. If QUOTE is specified, the quotation mark will be used
to delimit character constants written with list-directed or namelist formatting and ali internal
quotation marks will be doubled. If the value of this specifier is NONE, a character constant
when written will not be delimited by apostrophes or quotation marks, nor will any internal
apostrophes or quotation marks be doubled. If this specifier is omitted, the default value is
NONE. This specifier is permitted only for a file being connected for formatted input/output.
This specifier is ignored during input of a formatted record.

9.3.4.10 PAD= Specifier in the OPEN Statement. The scalar-char-expr must evaluate to
YES or NO. If YES is specified, a formatted input record is logically padded with blanks
when an input list is specified and the format specification requires more data from a record
than the record contains. If NO is specified, the input list and the format specification must
not require more characters from a record than the record contains. If this specifier is omit-
ted, the default value is YES.

Version 103 1986 December Page 9-8

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.3.5 The CLOSE Statement. The CLOSE statement is used to terminate the connection
of a particular file to a unit.

R907 close-stmt is CLOSE (close-spec-ist)

R908 close-spec is [UNIT =] external-file-unit
or IOSTAT = scalar-int-variable
or ERR= /abel
or STATUS = scalar-char-expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the close-spec-list.

Constraint: A given specifier must not appear more than once in a given close-simt; the
unit specifier must appear.

The IOSTAT = specifier and ERR= specifier are described in Sections 9.4.1.5 and 9.4.1.6,
respectively.

A specifier that requires a scalar-char-expr may have a limited list of character values.
These values are listed for each such specifier. Any trailing blanks are ignored. If a proc-
essor is capable of representing letters in both upper and lower case, the value specified is
without regard to case. Some specifiers have a default value if the specifier is omitted.

An example of a CLOSE statement is:
CLOSE (10, STATUS = 'KEEP')

9.3.5.1 STATUS = Specifier in the CLOSE Statement. The scalar-char-expr must evalu-
ate to KEEP or DELETE. The STATUS = specifier determines the disposition of the file that
is connected to the specified unit. KEEP must not be specified for a file whose status prior
to execution of a CLOSE statement is SCRATCH. If KEEP is specified for a file that exists,
the file continues to exist after the execution of a CLOSE statement. If KEEP is specified
for a file that does not exist, the file will not exist after the execution of a CLOSE statement.
If DELETE is specified, the file will not exist after the execution of a CLOSE statement. |f
this specifier is omitted, the default value is KEEP, unless the file status prior to execution of
the CLOSE statement is SCRATCH, in which case the default value is DELETE.

Execution of a CLOSE statement that refers to a unit may occur in any program unit of an
executable program and need not occur in the same program unit as the execution of an
OPEN statement referring to that unit.

Execution of a CLOSE statement specifying a unit that does not exist or has no file con-
nected to it is permitted and affects no file.

After a unit has been disconnected by execution of a CLOSE statement, it may be con-
nected again within the same executable program, either to the same file or to a different
file. After a file has been disconnected by execution of a CLOSE statement, it may be con-
nected again within the same executable program, either to the same unit or to a different
unit, provided that the file still exists.

At termination of execution of an executable program for reasons other than an error condi-
tion, all units that are connected are closed. Each unit is closed with status KEEP unless
the file status prior to termination of execution was SCRATCH, in which case the unit is
closed with status DELETE. Note that the effect is as though a CLOSE statement without a
STATUS = specifier were executed on each connected unit.

Version 103 1986 December Page 9-9

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

9.4 Data Transfer Statements. The READ statement is the data transfer input state-
ment. The WRITE statement and PRINT statement are the data transfer output statements.

Termination of an input/output data transfer statement occurs when any of the following con-
ditions are met: :

(1) All elements of the input-item-list or output-item-list have been read or written, with
or without editing, to or from the specified file.

(2) An error condition is encountered.
(3) An end-of-file condition is encountered.

(4) An end-of-record mark (/) is encountered in the record being read during list-
directed or namelist input.

R909 read-stmt is READ (io-control-spec-list) | input-item-list |
or READ format [, input-item-list]

R910 write-stmt is WRITE (io-control-spec-list) [output-item-list]

R911 print-stmt is PRINT format [, output-item-list]

Examples of data transfer statements are:

READ (6, *, PROMPT = ' SIZE:') SIZE
READ 10, A, B
WRITE (6, 10) A, S, J
PRINT 10, A, S, J
10 FORMAT (2E16.3, I5)

9.4.1 Control information List. The jo-control-spec-list is a control information list that
includes:

(1) A reference to the source or destination of the data to be transferred
(2 Optional specification of editing processes
(3) Optional specification to identify a record
(4) Optional specification of an input prompt string
(5) Optional specification of exception handling
(6) Optional return of counts of values transmitted and values skipped
(7) Optional return of status
The control information list governs the data transfer.

R912 io-control-spec is [UNIT = } jo-unit
or [FMT =] format
or [NML =] namelist-group-name
or REC = scalar-int-expr
or PROMPT = scalar-char-expr
or IOSTAT = scalar-int-variable
or ERR= fabel
or END = label
or NULLS = scalar-int-variable
or VALUES = scalar-int-variable

Constraint: An jo-control-spec-list must contain exactly one io-unit and may contain at most
one of each of the other specifiers.

Version 103 1986 December Page 9-10

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

Constraint: An END=, a NULLS=, or a PROMPT = specifier must not appear in a write-
stmt or print-stmt,

Constraint: A namelist-group-name must not be present if an input-item-list or an output-
item-list is present in the data transfer statement.

Constraint: An Jjo-control-spec-fist must not contain both a format and a namelist-group-
name.

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the control information list.

Constraint: If the optional characters FMT = are omitted from the format specifier, the for-
mat specifier must be the second item in the control information list and the first
item must be the unit specifier without the optional characters UNIT =.

Constraint: If the optional characters NML= are omitted from the namelist specifier, the
namelist specifier must be the second item in the control information list and
the first item must be the unit specifier without the optional characters UNIT=.

Constraint: If the unit specifier specifies an internal file, the io-control-spec-list must not con-
tain a REC = specifier.

if the data transfer statement contains a format or namelist-group-name, the statement is a
formatted input/output statement; otherwise, it is an unformatted input/output statement.

In a data transfer statement, the variables specified in IOSTAT=, NULLS=, or VALUES =
specifiers, if any, must not be associated with one another, nor with any entity in the data
transfer input/output list (9.4.2) or namelist-group-object-list, nor with a do-variable of an io-
implied-do in the data transfer input/output list.

In a data transfer statement, if a variable specified in an IOSTAT=, NULLS =, or VALUES =
specifier is an array element reference, its subscript values must not be affected by the data
transfer, the io-implied-do processing, or the definition or evaluation of any other specifier in
the io-control-spec-ist.

An example of a READ statement is:
READ (IOSTAT = I0S, UNIT = 6, FMT = "(10F8.2)"', VALUES = NVALS) A, B
where CHAR__FMT is a character variable.

9.4.1.1 Format Specifier.

R913 format is char-expr
or label
or *
or scalar-int-variable

The label must be the statement label of a FORMAT statement.

The scalar-int-variable must have been assigned (8.2.4) the statement label of a FORMAT statement that appears in the
same scoping unit as the format.

The char-expr must evaluate to a character object that is a valid format item list (10.2). Note
that char-expr includes a character constant.

it char-expr is an array name, it is treated as if all of the elements, if any, of the array were
specified in subscript order value and were concatenated.

If format is *, the statement is a list-directed input/output statement and a REC= specifier
must not be present.

Version 103 1986 December Page 9-11

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

An example of an expression for a format is:

READ (6, FMT = ''(" // CHAR_FMT // '))

where. CHIR_FMT 1s a. charocler variabl.

9.4.1.2 Namelist Specifier. The NML= specifier supplies the namelist-group-name(5.4).
This name identifies a specific collection (5.4) of data objects on which transfer is to be per-
formed.

If a namelist-group-name is present, the statement is a namelist input/output statement,
and a REC = specifier must not be present.

9.4.1.3 Record Number. The REC = specifier specifies the number of the record that is to
be read or written in a file connected for direct access. If the control information list con-
tains a REC= specifier, the statement is a direct access input/output statement and an
END= specifier must not be present; otherwise, it is a sequential access input/output
statement.

¢.4.1.4 Prompt Specifier. For a formatted external READ statement, the scalar character
expression specified in the PROMPT = specifier is written to the unit without line spacing fol-
lowing it. The input statement is then executed. If the connection is to a device that does
not permit both input and output, the PROMPT = specifier is ignored. The PROMPT =
specifier is not permitted in a WRITE or PRINT statement.

9.4.1.5 Input/Output Status. Execution of an input/output statement containing the
IOSTAT = specifier causes the variable in the IOSTAT = specifier to become defined:

(1) With a zero value if neither an error condition nor an end-of-file condition is
encountered by the processor,

(2) With a processor-dependent positive integer value if an error condition is encoun-
tered, or

(8) With a processor-dependent negative integer value if an end-of-file condition is
encountered and no error condition is encountered. Note that this condition may
occur only during a sequential input statement.

Consider the example:

READ (FMT = '"(E8.3)'", UNIT=3, IOSTAT = 10SS) X
IF (1I0SS < 0) THEN

| PERFORM END-OF-FILE PROCESSING ON THE FILE
I CONNECTED TO UNIT 3.

CALL END_PROCESSING

ELSE IF (I0SS > 0) THEN
| PERFORM ERROR PROCESSING
CALL ERROR_PROCESSING

END IF

Version 103 1986 December Page 9-12

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.4.1.6 Error Branch. If an input/output statement contains an ERR= specifier and the
processor encounters an error condition during execution of the statement:

(1) Execution of the input/output statement terminates,

(2) The position of the file specified in the input/output statement becomes indetermi-
nate,

(38) If the input/output statement also contains an iostat-variable, the iostat-variable
becomes defined with a processor-dependent positive integer value, and

(4) Execution continues with the statement specified in the ERR= specifier. The
labeled statement must be in the same scoping unit as the input/output state-
ment.

9.4.1.7 End of File Branch. If an input statement contains an END= specifier and the
processor encounters an end-of-file condition and encounters no error condition during exe-
cution of the statement:

(1) Execution of the READ statement terminates,

(2) If the input statement also contains an IOSTAT= specifier, the Jjostat-variable
becomes defined with a processor-dependent negative integer value, and

(3) Execution continues with the statement specified in the END= specifier. The
labeled statement must be in the same scoping unit as the input/output state-
ment.

In a WRITE statement, the control information list must not contain an END = specifier.

9.4.1.8 Nulls Count. A null value is a value that has no effect on the definition status of
the corresponding input list item. If the input list item is defined, it retains its previous value;
if it is undefined, it remains undefined. A null value must not be used as either the real or
imaginary part of a complex constant, but a single null value may represent an entire com-
plex constant.

When an input statement terminates, the variable specified in the NULLS = specifier is
defined to be the count of the null values read by the input statement. The value of the
variable can be nonzero only for list-directed or namelist input.

9.4.1.9 Values Count. When an input/output statement terminates, the variable specified
in the VALUES = specifier is defined to be the count of the number of values successfully
read or written, with or without editing, by the input/output statement.

Any null values are included in the count of values.

9.4.2 Data Transfer Input/Output List. An input/output list specifies the entities whose
values are transferred by a data transfer input/output statement.

R914 input-item is variable
or io-implied-do
R915 output-item is expr
or io-implied-do
R916 io-implied-do is (io-implied-do-object-list , io-implied-do-control)
R917 io-implied-do-object is input-item

or oulput-item

R918 io-implied-do-control is do-variable = scalar-numeric-expr , &

Version 103 1986 December Page 9-13

INPUT/OUTPUT STATEMENTS X3J3/88

10

15

20

25

30

35

40

B scalar-numeric-expr | , scalar-numeric-expr |
Constraint: The do-variable must be scalar of type integer, real, or double precision.

Constraint: In an input-item-list, an io-implied-do-object must be an input-item. In an output-
item-list, an io-implied-do-object must be an output-item.

Constraint: An input-item must not appear as, nor be associated with, the do-variable of any
io-implied-do that contains the input-item.

Constraint: The do-variable of an jo-implied-do that is contained within another io-implied-do
must not appear as, nor be associated with, the do-variable of the containing
io-implied-do.

If an array name or array section designator appears as an input/output list item, it is treated
as if the elements, if any, were specified in the subscript order value of the array (6.2.4.2).
The appearance of a ranged array as a whole array is interpreted as a reference to the
elements in its effective range. The name or designator of an assumed-size dummy array
must not appear as an input/output list item.

The name of a derived-type object must not appear as an input/output list item if any com-
ponent ultimately contained within the object is not accessible withing the scoping unit con-
taining the input/output statement.

If the name of a derived-type object appears as an input/output list item in a formatted
input/output statement, it is treated as if all of the components of the object were specified
in the same order as in the definition of the derived type. The values count associated with
the derived-type object is that of the objects of intrinsic data type that result from this treat-
ment.

If the name or designator of a derived-type object appears as an input/output list item in an
unformatted input/output statement, it is treated as a single value in a processor-dependent
form. Note that, in this case, the appearance of a derived-type object as an input/output list
item is not equivalent to the list of its components.

The values count associated with a scalar object appearing as an input/output list item of an
intrinsic type is always one. For example, if X and Z are scalar variables of type real and
complex, respectively, the values count associated to the list X, Z is two, even though three
external values my be read or written.

For an implied do, the loop initialization and execution is the same as for a DO construct
(8.1.4.4).

Note that a constant, an expression involving operators or function references, or an expres-
sion enclosed in parentheses may appear as an output list item but must not appear as an
input list item.

An io-implied-do must not appear in the input/output list of a namelist formatted data transfer
input/output statement.

An example of an output list with an implied DO is:

WRITE (LP, FMT = "(10F8.2)') (LOG (A (I)), I =1, N+ 9, K), G

9.4.2.1 Error and End-of-File Conditions. The set of input/output error conditions is proc-
essor dependent.

An end-oi-file coindition exists if either of the following events occurs:

(1) An endfile record is encountered during the reading of a file connected for
sequential access. In this case, the file is positioned after the endfile record.

Version 103 1986 December Page 9-14

INPUT/OUTPUT STATEMENTS %x3J3/S8

10

15

20

25

30

35

40

(2) An attempt is made to read a record beyond the end of an internal file.

Note that an end-of-file condition can occur at the beginning of an input statement or within
a formatted input statement when more than one record is required by the interaction of the
input/output list and the format.

If an error condition occurs during execution of an input/output statement, execution of the
input/output statement terminates and the position of the file becomes indeterminate.

If an error condition or an end-of-file condition occurs during execution of an input/output
statement, execution of the input/output statement terminates. The VALUES = specifier, if
any, is defined with the count of values successfully read or written. On input, any remain-
ing list items list are undefined. For any specific error condition, the number of values
defined is processor dependent. Note that for list-directed and namelist input, some
elements of the input list may not have had their definition status changed due to null
values.

When the VALUES= specifier is present, the definition status of any DO variable in the
input/output list is determined as follows: Let n be the value of the variable specified in the
VALUES = specifier. If the last successful transfer of a value took place while one or more
io-implied-dos were active, the DO variables are defined with the values they had at the time
the error or end-of-file condition was detected. Any DO variable defined prior to the detec-
tion of the error or end-of-file condition in the matching process remains defined. Any
remaining do-variable in the input/output list is undefined.

If an error condition occurs during execution of an input/output statement that contains nei-
ther an IOSTAT = nor an ERR = specifier, or if an end-of-file condition occurs during execu-
tion of a READ statement that contains neither an IOSTAT= specifier nor an END=
specifier, execution of the executable program is terminated.

9.4.3 Execution of a Data Transfer Input/Output Statement. The effect of executing a
data transfer input/output statement must be as if the following operations were performed
in the order specified:

(1) Determine the direction of data transfer
(2) Identify the unit
(3) Establish the format if one is specified

A Daaitinn tho fila nrinr tn data trancfar QAN 1 2 1)
T COCIUTH WIS ThT PHior 1O QAR WaANSIeT \v.s .Sy

(5) Transfer the value of the PROMPT = specifier, if any, to the input unit if appropri-
ate

(6) Transfer data between the file and the entities specified by the input/output list (if
any)

(7) Position the file after data transfer (9.2.1.3.2)

(8) Cause the variables specified in the I0STAT=, VALUES=, and NULLS=
specifiers, if specified, to become defined.

9.4.3.1 Direction of Data- Transfer. Execution of a READ statement causes values to be
transferred from a file to the entities specified by the input list, if one is specified. Execution
of a WRITE or PRINT statement causes values to be transferred to a file from the entities
specified by the output list and format specification, if any. Execution of a WRITE or PRINT
statement for a file that does not exist creates the file unless an error condition occurs.

Version 103 1986 December Page 9-15

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

9.4.3.2 Identifying a Unit. A data transfer input/output statement that contains an
input/output control list includes a file unit specifier that identifies an external unit or an
internal file. A READ statement that does not contain an input/output control list specifies a
particular processor-determined unit, which is the same as the unit identified by * in a READ
statement that contains an input/output control list. The PRINT statement specifies some
other processor-determined unit, which is the same as the unit identified by * in a WRITE
statement. Thus, each data transfer input/output statement identifies an external unit or an
internal file.

The unit identified by a data transfer input/output statement must be connected to a file
when execution of the statement begins. Note that the file may be preconnected.

9.4.3.3 Establiching a Format. If the input/output control list contains * as a format, list-
directed formatting is established. f namelist-group-name is present, namelist formatting is
established. Otherwise, the format specification identified by the format specifier is estab-
lished. If the format is an array, the effect is as if all elements of the array were concate-
nated in subscript order value.

On output, if an internal file has been specified, a format specification that is in the file or is
associated with the file must not be specified.

9.4.3.4 Daia Transfer. Data are transferred between records and entities specified by the
input/output list. The list items are processed in the order of the input/output list for all data
transfer input/output statements except namelist formatted data transfer input statements.
The list items for a namelist formatted data transfer input statement are processed in the
order of the entities specified within the input records.

All values needed to determine which entities are specified by an input/output list item are
determined at the beginning of the processing of that item.

All values are transmitted to or from the entities specified by a list item prior to the process-
ing of any succeeding list item for all data transfer input/output statements except namelist
formatted data transfer input statements. In the example,

READ (N> N, X (N)
the old value of N identifies the unit, but the new value of N is the subscript of X.

All values following the name = part of the namelist entity (10.9) within the input records are
transmitted to the matching entity specified in the namelist-group-object-list prior to process-
ing any succeeding entity within the input record for namelist formatted data transfer input
statements. If an entity is specified more than once within the input record during a
namelist formatted data transfer input statement, the last occurrence of the entity specifies
the value or values to be used for that entity.

An input list item, or an entity associated with it, must hot contain any portion of the estab-
lished format specification.

If an internal file has been specified, an input/output list item must not be in the file or asso-
ciated with the file. Note that the file is a character object.

A DO variable becomes defined at the beginning of processing of the items that constitute
the range of an jo-implied-do.

On output, every entity whose value is to be transferred must be defined.

On input, an attempt to read a record of a file connected for direct access that has not pre-
viously been written causes all entities specified by the input list to become undefined
unless one or more formatted records have been read by this READ statement and
VALUES = has been specified.

Version 103 1986 December Page 9-16

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.4.3.4.1 Unformatted Data Transfer. During unformatted data transfer, data are transfer-
red without editing between the current record and the entities specified by the input/output
list. Exactly one record is read or written.

On input, the file must be positioned so that the record read is an unformatted record or an
endfile record.

On input, the number of values required by the input list must be less than or equal to the
number of values in the record.

On input, the type of each value in the record must agree with the type of the corresponding
entity in the input list, except that one complex value may correspond to two real list entities
or two real values may correspond to one complex list entity. If an entity in the input list is
of type character, the length of the character entity must agree with the length of the char-
acter value.

On output to a file connected for direct access, the output list must not specify more values
than can fit into the record.

On output, if the file is connected for direct access and the values specified by the output
list do not fill the record, the remainder of the record is undefined.

If the file is connected for formatted input/output, unformatted data transfer is prohibited.
The unit specified must be an external unit.

9.4.3.4.2 Formatted Data Transfer. During formatted data transfer, data are transferred
with editing between the entities specified by the input/output list and the file. Format con-
trol is initiated and editing is performed as described in Section 10. The current record and
possibly additional records are read or written.

Objects of intrinsic or derived types may be transferred through a formatted data transfer
statement.

On input, the file must be positioned so that the record read is a formatted record or an
endfile record.

If the file is connected for unformatted input/output, formatted data transfer is prohibited.

On input, the input list and format specification must not require more characters from a
record than the record contains. However, blank padding to satisfy this condition may be
specified by a PAD = specifier in an OPEN statement.

If the file is connected for direct access, the record number is increased by one as each
succeeding record is read or written.

On output, if the file is connected for direct access or is an internal file and the characters
specified by the output list and format do not fill a record, blank characters are added to fill
the record.

On output, the output list and format specification must not specify more characters for a
record than have been specified by a RECL = specifier in the OPEN statement.

9.4.3.5 List-Directed Formatting. [f list-directed formatting has been established, editing
is performed as described in Section 10.8.

9.4.3.6 Namelist Formatting. The characters in one or more namelist records constitute a
sequence of names, values, and value separators.

If namelist formatting has been established, editing is performed as described in Section
10.9.

Version 103 1986 December Page 9-17

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.4.4 Printing of Formatted Records. The transfer of information in a formatted record to
certain devices determined by the processor is called printing. If a formatted record is
printed, the first character of the record is not printed. The remaining characters of the
record, if any, are printed in one line beginning at the left margin.

The first character of such a record determines vertical spacing as follows:

Character Vertical Spacing Before Printing

Blank One Line

0 Two Lines

1 To First Line of Next Page
+ No Advance

If there are no characters in the record, the vertical spacing is one line and no characters
other than blank are printed in that line.

The PRINT statement does not imply that printing will occur, and the WRITE statement does
not imply that printing will not occur.

9.5 File Positioning Statemerts.

R919 backspace-stmt is BACKSPACE external-file-unit

or BACKSPACE (position-spec-list)
R920 endfile-stmt is ENDFILE external-file-unit

or ENDFILE (position-spec-list)
R921 rewind-stmt is REWIND external-file-unit

or REWIND (position-spec-list)

Constraint: BACKSPACE, ENDFILE, and REWIND apply only to external files connected for
sequential access.

R922 position-spec is [UNIT =] external-file-unit
or IOSTAT = scalar-int-variable
or ERR = /abel

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the position-spec-list.

Constraint: A position-spec-list must contain exactly one external-file-unit and may contain at
most one of each of the other specifiers.

9.5.1 BACKSPACE Staiement. Execution of a BACKSPACE statement causes the file
connected to the specified unit to be positioned before the preceding record. If there is no
preceding record, the position of the file is not changed. Note that if the preceding record is
an endfile record, the file becomes positioned before the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records written using list-directed or namelist formatting is prohibited.

9.5.2 ENDFILE Statement. Execution of an ENDFILE statement writes an endfile record
as the next record of the file. The file is then positioned after the endfile record. If the file
may also be connected for direct access, only those records before the endfile record are
considered to have been written. Thus, only those records may be read during subsequent
direct access connections to the file.

Version 103 1986 December Page 9-18

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be
used to reposition the file prior to execution of any data transfer input/output statement.

Execution of an ENDFILE statement for a file that is connected but does not exist creates
the file.

9.5.3 REWIND Statement. Execution of a REWIND statement causes the specified file to
be positioned at its initial point. Note that if the file is already positioned at its initial point,
execution of this statement has no effect on the position of the file.

Execution of a REWIND statement for a file that is connected but does not exist is permitted
but has no effect.

Examples of file positioning statements are:

REWIND 10
BACKSPACE (10, ERR = 200

9.6 File Inquiry. The INQUIRE statement may be used to inquire about properties of a
particular named file or of the connection to a particular unit. There are two forms of the
INQUIRE statement: inquire by file, which uses the FILE= specifier, and inquire by unit,
which uses the UNIT = specifier. All specifier vaiue assignments are performed according to
the rules for assignment statements.

An INQUIRE statement may be executed before, while, or after a file is connected to a unit.
All values assigned by an INQUIRE statement are those that are current at the time the
statement is executed.

R923 inquire-stmt is INQUIRE (inquire-spec-list) [output-item-list]
Examples of INQUIRE statements are:

INQUIRE (FILE = 'employees', IOLENGTH = IOL) A (1:N)

INQUIRE (UNIT = JOAN, OPENED = LOG_01, NAMED = LOG 02, &
FORM = CHAR_VAR, IOSTAT = IOS)

9.6.1 Inquiry Specifiers. Unless constrained, the following inquiry specifiers may be used
in either form of the INQUIRE statement:

R924 inquire-spec is FILE = file-name-expr
or UNIT = external-file-unit
or IOSTAT = scalar-int-variable
or ERR = /abel
or EXIST = scalar-logical-variable
or OPENED = scalar-logical-variable
or NUMBER = scalar-int-variable
or NAMED = scalar-logical-variable
or NAME = scalar-char-variable
or ACCESS = scalar-char-variable
or SEQUENTIAL = scalar-char-variable
or DIRECT = scalar-char-variable
or FORM = scalar-char-variable
or FORMATTED = scalar-char-variable
or UNFORMATTED = scalar-char-variable
or RECL = scalar-int-variable
or NEXTREC = scalar-int-variable

Version 103 1986 December Page 9-19

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

or BLANK = scalar-char-variable
or POSITION = scalar-char-variable
or ACTION = scalar-char-variable
or DELIM = scalar-char-variable

or PAD = scalar-char-variable

or IOLENGTH = scalar-int-variable

Constraint: In the inquire by unit form of the INQUIRE statement, if the optional characters
UNIT= are omitted from the unit specifier, the unit specifier must be the first
item in the inquire-spec-list.

Constraint: The IOLENGTH= specifier and the output-itam-list must both appear if either
appears.

When a returned value of a specifier other than the NAME = specifier is of type character
and the processor is capable of representing letters in both upper and lower case, the value
returned is in upper case.

If an error condition occurs during execution of an INQUIRE statement, aill of the inquiry
specifier variables become undefined, except for the vériable in the IOSTAT = specifier (if
any).

9.6.1.1 FILE= Specifier in the INQUIRE Statement. The value of file-name-expr in the
FILE= specifier specifies the name of the file being inquired about. The named file need
not exist or be connected to a unit. The value of scalar-char-expr must be of a form accept-
able to the processor as a file name. If a processor is capable of representing letters in
both upper and lower case, the interpretation of case is processor dependent.

9.6.1.2 EXIST= Specifier in the INQUIRE Statement. Execution of an INQUIRE by file
statement causes the scalar-logical-variable in the EXIST= specifier to be assigned the
value true if there exists a file with the specified name; otherwise, false is assigned. Execu-
tion of an INQUIRE by unit statement causes true to be assigned if the specified unit exists;
otherwise, false is assigned.

9.6.1.3 GPENED = Specifier in the INQUIRE Statement. Execution of an INQUIRE by file
statement causes the scalar-logical-variable in the OPENED = specifier to be assigned the
value true if the file specified is connected to a unit; otherwise, false is assigned. Execution
of an INQUIRE by unit statement causes scalar-logical-variable to be assigned the value true
if the specified unit is connected to a file; otherwise, false is assigned.

9.6.1.4 NUMBER= Specifier in the INQUIRE Statement. The scalar-int-variable in the
NUMBER = specifier is assigned the value of the external unit identifier of the unit that is
currently connected to the file. If there is no unit connected to the file, the value —1 is
assigned.

9.6.1.5 NAMED= Specifier in the INQUIRE Statement. The scalar-logical-variable in the
NAMED = specifier is assigned the vaiue true if the file has a name; otherwise, it is
assigned the value false.

9.5.1.6 NAME= Specifier in the INQUIRE Statement. The scalar-char-variable in the
NAME = specifier is assigned the value of the name of the file if the file has a name: other-
wise, it becomes undefined. Note that if this specifier appears in an INQUIRE by file state-
ment, its value is not necessarily the same as the name given in the FILE= specifier. For
example, the processor may return a file name qualified by a user identification. However,
the value returned must be suitable for use as the value of file-name-expr in the FILE=
specifier in an OPEN statement. If a processor is capable of representing letters in both

Version 103 1986 December Page 9-20

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

upper and lower case, the interpretation of case is processor dependent.

9.6.1.7 ACCESS = Specifier in the INQUIRE Statement. The scalar-char-variable in the
ACCESS = specifier is assigned the value SEQUENTIAL if the file is connected for sequen-
tial access, and DIRECT if the file is connected for direct access. If there is no connection,
it is assigned the value UNDEFINED.

9.6.1.8 SEQUENTIAL = Specifier in the INQUIRE Statement. The scalar-char-variable in
the SEQUENTIAL= specifier is assigned the value YES if SEQUENTIAL is included in the
set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set of
allowed access methods for the file, and UNKNOWN if the processor is unable to determine
whether or not SEQUENTIAL is included in the set of allowed access methods for the file.

9.6.1.9 DIRECT = Specifier in the INQUIRE Statement. The scalar-char-variable in the
DIRECT = specifier is assigned the value YES if DIRECT is included in the set of allowed
access methods for the file, NO if DIRECT is not included in the set of allowed access meth-
ods for the file, and UNKNOWN if the processor is unable to determine whether or not
DIRECT is included in the set of allowed access methods for the file.

9.6.1.10 FORM= Specifier in the INQUIRE Statement. The scalar-char-variable in the
FORM = specifier is assigned the value FORMATTED if the file is connected for formatted
input/output, and is assigned the value UNFORMATTED if the file is connected for unformat-
ted input/output. If there is no connection, it is assigned the value UNDEFINED.

9.6.1.11 FORMATTED = Specifier in the INQUIRE Statement. The scalar-char-variable in
the FORMATTED = specifier is assigned the value YES if FORMATTED is inciuded in the
set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed
forms for the file, and UNKNOWN if the processor is unable to determine whether or not
FORMATTED is included in the set of allowed forms for the file.

9.6.1.12 UNFORMATTED = Specifier in the INQUIRE Statement. The scalar-char-variable
in the UNFORMATTED = specifier is assigned the value YES if UNFORMATTED is included
in the set of allowed forms for the file, NO if UNFORMATTED is not included in the set of
allowed forms for the file, and UNKNOWN if the processor is unable to determine whether or
not UNFORMATTED is included in the set of allowed forms for the file.

9.6.1.13 RECL= Specifier in the INQUIRE Statement. The scalar-int-variable in the
RECL = specifier is assigned the value of the maximal record length of the file. If the file is
connected for formatted input/output, the length is the number of characters. If the file is
connected for unformatted input/output, the length is measured in processor-defined units.
If the file does not exist, scalar-int-variable becomes undefined.

9.6.1.14 NEXTREC= Specifier in the INQUIRE Statement. The scalar-int-variable in the
NEXTREC = specifier is assigned the value n + 1, where n is the record number of the last
record read or written on the file connected for direct access. If the file is connected but no
records have been read or written since the connection, scalar-int-variable is assigned the
value 1. If the file is not connected for direct access or if the position of the file is indetermi-
nate because of a previous error condition, scalar-int-variable becomes undefined.

9.6.1.15 BLANK= Specifier in the INQUIRE Statement. The scalar-char-variable in the
BLANK = specifier is assigned the value NULL if null biank control is in effect for the file
connected for formatted input/output, and is assigned the value ZERO if zero blank control
is in effect for the file connected for formatted input/output. If there is no connection, or if
the connection is not for formatted input/output, scalar-char-variable is assigned the value

Version 103 1986 December Page 9-21

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

UNDEFINED.

9.6.1.16 POSITION= Specifier in the INQUIRE Statement. The scalar-char-variable in the
POSITION = specifier is assigned the value REWIND if the file is connected by an OPEN
statement for positioning at its initial point, APPEND if the file is connected for positioning at
its terminal point, and ASIS if the file is connected without changing its position. If there is
no connection, scalar-char-variable is assigned the value UNDEFINED. If the file has been
repositioned since the connection, scalar-char-variable is assigned the value UNDEFINED.

9.6.1.17 ACTION= Specifier in the INQUIRE Statemeni. The scalar-char-variable in the
ACTION= specifier is assigned the value READ if the file is connected for input only,
WRITE if the file is connected for output only, and READ/WRITE if it is connected for both
input and output. If there is no connection, scalar-char-variable is assigned the value UNDE-
FINED.

9.6.1.18 DELIWi= Specifier in the IMQUIRE Statement. The scalar-char-variable in the
DELIM = specifier is assigned the value APOSTROPHE if the apostrophe is to be used to
delimit character data written by list-directed or namelist formatting. I the quotation mark is
used to delimit these data, the value QUOTE is assigned. If neither the apostrophe nor the
quote is used to delimit the character data, the value NONE is assigned. If there is no con-
nection or if the connection is not for formatted input/output, scalar-char-variable is assigned
the value UNDEFINED.

9.5.1.19 PALDC= Specifier in the INQUIRE Statement. The scalar-char-variable in the
PAD = specifier is assigned the value YES if the connection of the file to the unit included
the PAD = specifier and its value was YES. Otherwise, scalar-char-variable is assigned the
value NO.

9.6.1.20 IOLENGTH= Specifier in the INQUIRE Statement. The scalar-int-variable in the
IOLENGTH = specifier is assigned the processor-dependent value that results from the use
of the input/output list in an unformatted output statement. Any DO variables have the
scope of the implied-DO list, as in the DATA statement. It must be suitable as a RECL =
specifier in an OPEN statement that connects a file for unformatted direct access when
there are input/output statements with the same input/output list.

9.5.1.21 Restrictions on Inquiry Specifiers. A variable that may become defined or
undefined as a result of its use in a specifier in an INQUIRE statement, or any associated
entity, must not appear in another specifier in the same INQUIRE statement.

The inquire-spec-ist in an INQUIRE by file statement must contain exactly one FILE=
specifier and must not contain a UNIT = specifier.

The inquire-spec-list in an INQUIRE by unit statement must contain exactly one UNIT=
specifier and must not contain a FILE= specifier. The unit specified need not exist or be
connected to a file. If it is connected to a file, the inquiry is being made about the connec-
tion and about the file connected.

9.7 BRestrictions on Function References and List ltems. A function reference
must not appear in an expression anywhere in an input/output statement if such a reference
causes another input/output statement to be executed. Note that restrictions in the evalua-
tion of expressions (7.1.7) prohibit certain side effects.

Version 103 1986 December Page 9-22

INPUT/OUTPUT STATEMENTS X3J3/S8

9.8 Restriction on Input/Output Statements. If a unit, or a file connected to a unit,
does not have all of the properties required for the execution of certain input/output state-

ments, those statements must not refer to the unit.

Version 103 1986 December Page 9-23

10

15

20

25

30

35

40

10 INPUT/OUTPUT EDITING

A format used in conjunction with an input/output statement provides information that directs
the editing between the internal representation of data and the character strings of a record
or a sequence of records in a file.

A format specifier (9.4.1.1) in an input/output statement may refer to a FORMAT statement
or to a character expression that contains a format specification. A format specification pro-
vides explicit editing information. The format specifier also may be an asterisk (*) which
indicates list-directed formatting (10.8), or a namelist-group-name which indicates namelist
formatting (10.9).

10.1 Explicit Format Specification Methods. Explicit format specification may be
given:

(1) In a FORMAT statement, or

(2) As the value of a character expression

10.1.1 FORMAT Statement.

R1001 format-stmt is FORMAT format-specification
R1002 format-specification is ([format-item-list])
Constraint: The format-stmt must be labeled.

Constraint: The comma used to separate format-ifems in a format-item-list may be omitted
as follows:

(1) Between a P edit descriptor and an immediately following F, E, EN, D, or G edit
descriptor (10.6.5)

(2) Before or after a slash edit descriptor when the optional repeat specification is not
present (10.6.2)

(3) Before or after a colon edit descriptor (10.6.3)

Note that, for source form purposes, the format specification is considered to be a form of
character context (3.3).

Examples of FORMAT statements are:

5 FORMAT (1PE12.4, I10)
9 FORMAT (112, /, ' Dates: ', 2 (2I3, I5))

10.1.2 Character Format Specification. A character expression used as a format specifier
in a formatted input/output statement must evaluate to a character string whose value consti-
tutes a valid format specification. Note that the format specification begins with a left paren-
thesis and ends with a right parenthesis.

All character positions up to and including the final right parenthesis of the format
specification must be defined at the time the input/output statement is executed, and must
not become redefined or undefined during the execution of the statement. Character posi-
tions, if any, following the right parenthesis that ends the format specification need not be
defined and may contain any character data with no effect on the format specification.

If the format specifier identifies a character array entity, the length of the format specification
may exceed the length of the first element of the array. A character array format
specification is considered to be a concatenation of all the array elements of the array in the

Version 103 1986 December Page 10-1

INPUT/QUTPUT EDITING

10

15

20

25

30

35

40

X3J3/58

order given by the subscript order value (6.2.4.2). However, if a format specifier refers to a
character array element, the format specification must be contained entirely within that array

element.

10.2 Form oi a Format Iltem L.ist.

R1003 format-item

R1004 r

Constraint: r must be positive. It is called a repeat specification.

is [r] data-edit-desc
or control-edit-desc

or char-string-edit-desc
or [r] (format-item-list)

is int-literal-constant

Blank characters may precede the initial left parenthesis of the format specification. Addi-
tional blank characters may appear at any point within the format specification, with no effect
on the format specification, except within a character string edit descriptor (10.7.1 and

10.7.2).

10.2.1 Edil Descriptors. An edit descriptor is used to specify the form of a record and to
direct the editing between the characters in a record and internal representations of data.
The internal representation of a datum corresponds to the internal representation of a con-

stant of the corresponding type.

An edit descriptor is either a data edit descriptor, a control edit descriptor, or a character

string edit descriptor.
R1005 data-edit-desc

R1006 w
R1007 m
R1008 d
R1009 e

Constraint: w and e must be positive and d and m must be zero or positive.

Constraint: The value of m, d, and e may be restricted further by the value of w.

is Ilw[.m]
orFw.d
orEw.d[Ee]
orENw.d[Ee]
orGw.d[Ee]
or Lw

or A[w]
orDw.d

is int-literal-constant
is int-literal-constant
is int-literal-constant

is int-literal-constant

I, F, E, EN, G, A, and D indicate the manner of editing.

R1010 control-edit-desc

R1011 k
R1012 position-edit-desc

Version 103

is position-edit-desc
or[r]/

or:

or sign-edit-desc

or kP

or blank-interp-edit-desc

is signed-int-literal-constant

is Tn

1986 December

Page 10-2

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

or TL n
or TR n
ornX

R1013 n is int-literal-constant
Constraint: n must be positive.

R1014 sign-edit-desc is S
or SP
or SS

R1015 blank-interp-edit-desc is BN
or BZ

In kP, k is called the scale factor.
T, TL, TR, X, slash, colon, S, SP, SS, P, BN, and BZ indicate the manner of editing.

R1016 char-string-edit-desc is char-literal-constant
or ¢ H character [character]...

R1017 ¢ is int-literal-constant
Constraint: ¢ must be positive.

Each character in a character string edit descriptor must be one of the characters capable of
representation by the processor.

The character string edit descriptors provide constant data to be output, and are not valid for
input.

Within a character constant, appearances of the delimiter character itself, apostrophe or
quote, must be as consecutive pairs without intervening blanks. Each such pair represents
a single occurrence of the delimiter character.

In the H edit descriptor, ¢ specifies the number of characters foliowing the H that comprise
the descriptor.

10.2.2 Fields. A field is a part of a record that is read on input or written on output when
format control encounters a data edit descriptor or a character string edit descriptor. The
field width is the size in characters of the field.

10.3 interaction Between Input/Output List and Format. The beginning of format-
ted data transfer using a format specification initiates format control. Each action of format
control depends on information jointly provided by:

(1) The next edit descriptor contained in the format specification, and

(2) The next effective item in the input/output list, if one exists. Zero-sized arrays,
zero-sized array sections, and implied-DO lists with iteration counts of zero are
ignored in determining the next effective item.

If an input/output list specifies at least one list item, at least one data edit descriptor must
exist in the format specification. Note that an empty format item list of the form () may be
used only if no input/output list items are specified; in this case, one input record is skipped
or one output record containing no characters is written. Except for a format item preceded
by a repeat specification r, a format specification is interpreted from left to right.

A format item preceded by a repeat specification is processed as a list of r items, each iden-
tical to the format item but without the repeat specification and separated by commas. Note
that an omitted repeat specification is treated in the same way as a repeat specification

Version 103 1986 December Page 10-3

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

whose value is one.

To each data edit descriptor interpreted in a format specification, there corresponds one
effective item specified by the input/output list (9.4.2), except that an input/output list item of
type complex requires the interpretation of two F, E, EN, D, or G edit descriptors. For each
control edit descriptor or character edit descriptor, there is no corresponding item specified
by the input/output list, and format control communicates information directly with the record.

Whenever format control encounters a data edit descriptor in a format specification, it deter-
mines whether there is a corresponding effective item specified by the input/output list. I
there is such an item, it transmits appropriately edited information between the item and the
record, and then format control proceeds. If there is no such item, format control termi-
nates.

If format control encounters a colon edit descriptor in a format specification and another
effective input/output list item is not specified, format control terminates.

If format control encounters the rightmost parenthesis of a complete format specification and
another effective input/output list item is not specified, format control terminates. However,
if another effective input/output list item is specified, the file is positioned at the beginning of
the next record and format control then reverts to the beginning of the format item list termi-
nated by the last preceding right parenthesis. If there is no such preceding right parenthe-
sis, format control reverts to the first left parenthesis of the format specification. If such
reversion occurs, the reused portion of the format specification must contain at least one
data edit descriptor. If format control reverts to a parenthesis that is preceded by a repeat
specification, the repeat specification is reused. Reversion of format control, of itself, has no
effect on the scale factor (10.6.5.1), the sign control edit descriptors (10.6.4), or the blank
interpretation edit descriptors (10.6.6).

10.4 Posiiioning by Format Contiol. After each data edit descriptor or character
string edit descriptor is processed, the file is positioned after the last character read or writ-
ten in the current record.

After each T, TL, TR, X, or slash edit descriptor is processed, the file is positioned as
described in 10.6.1.

If format control reverts as described in 10.3, the file is positioned in a manner identical to
the way it is positioned when a slash edit descriptor is processed (10.6.2).

During a read operation, any unprocessed characters of the record are skipped whenever
the next record is read.

10.5 Data Edit Descriptors. Data edit descriptors cause the conversion of data to or

from its internal representation. On input, the specified variable becomes defined. On out-
put, the specified expression is evaluated.

10.5.1 Numeric Editing. The |, F, E, EN, D, and G edit descriptors are used to specify the
input/output of integer, real, and complex data. The following general rules apply:

(1) On input, leading blanks are not significant. The interpretation of blanks, other
than leading blanks, is determined by a combination of any BLANK = specifier
(9.3.4.6) and any BN or BZ blank control that is currently in effect for the unit
(10.6.6). Plus signs may be omitted. A field containing only blanks is considered
to be zero.

(2) On input, with F, E, EN, D, and G editing, a decimal point appearing in the input
field overrides the portion of an edit descriptor that specifies the decimal point
location. The input field may have more digits than the processor uses to

Version 103 1986 December Page 10-4

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

approximate the value of the datum.

(3) On output, the representation of a positive or zero internal value in the field may
be prefixed with a plus, as controlled by the S, SP, and SS edit descriptors or the
processor. The representation of a negative internal value in the field must be
prefixed with a minus. However, the processor must not produce a negative
signed zero in a formatted output record.

(4) On output, the representation is right-justified in the field. If the number of charac-
ters produced by the editing is smaller than the field width, leading blanks will be
inserted in the field.

(5) On output, if the number of characters produced exceeds the field width or if an
exponent exceeds its specified length using the Ew.dEe, ENw.dEe, or Gw.dEe
edit descriptor, the processor must fill the entire field of width w with asterisks.
However, the processor must not produce asterisks if the field width is not
exceeded when optional characters are omitted. Note that when an SP edit
descriptor is in effect, a plus is not optional.

10.5.1.1 Integer Editing. The lw and lw.m edit descriptors indicate that the field to be
edited occupies w positions. The specified input/output list item must be of type integer.

On input, an lw.m edit descriptor is treated identically to an lw edit descriptor.

In the input field, the character string must be in the form of an optionally signed integer
constant, except for the interpretation of blanks.

The output field for the Iw edit descriptor consists of zero or more leading blanks followed by
a minus if the value of the internal datum is negative, or an optional plus otherwise, followed
by the magnitude of the internal value in the form of an unsigned integer constant without
leading zeros. Note that an integer constant always consists of at least one digit.

The output field for the lw.m edit descriptor is the same as for the Iw edit descriptor, except
that the unsigned integer constant consists of at least m digits and, if necessary, has leading
zeros. The value of m must not exceed the value of w. i m is zero and the value of the
internal datum is' zero, the output field consists of only blank characters, regardless of the
sign control in effect.

10.5.1.2 Real and Double Precision Editing. The F, E, EN, D, and G edit descriptors
specify the editing of real and complex data. An input/output list item corresponding to an
F, E, EN, D, or G edit descriptor must be real or complex.

10.5.1.2.1 F Editing. The Fw.d edit descriptor indicates that the field occupies w posi-
tions, the fractional part of which consists of d digits.

The input field consists of an optional sign, followed by a string of digits optionally containing
a decimal point, including any blanks interpreted as zeros. The d has no effect on input if
the input field contains a decimal point. |f the decimal point is omitted, the rightmost d digits
of the string, with leading zeros assumed if necessary, are interpreted as the fractional part
of the value represented. The string of digits may contain more digits than a processor uses
to approximate the value of the constant. The basic form may be followed by an exponent
of one of the following forms:

(1) Explicitly signed.integer constant

(2) E followed by zero or more blanks, followed by an optionally signed integer con-
stant, except for the interpretation of blanks

(3) D followed by zero or more blanks, followed by an optionally signed integer con-
stant, except for the interpretation of blanks

Version 103 1986 December Page 10-5

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

An exponent containing a D is processed identically to an exponent containing an E.

Note that if the input field does not contain an exponent, the effect is as if the basic form
were followed by an exponent with a value of k, where k is the established scale factor
(10.6.5.1).

The output field consists of blanks, if necessary, followed by a minus if the internal value is
negative, or an optional plus otherwise, followed by a string of digits that contains a decimal
point and represents the magnitude of the internal value, as modified by the established
scale factor and rounded to d fractional digits. Leading zeros are not permitted except for
an optional zero immediately to the left of the decimal point if the magnitude of the value in
the output field is less than one. The optional zero must appear if there would otherwise be
no digits in the output field.

10.5.1.2.2 E and D Editing. The Ew.d, Dw.d, and Ew.dEe edit descriptors indicate that
the external field occupies w positions, the fractional part of which consists of d digits,
unless a scale factor greater than one is in effect, and the exponent part consists of e digits.
The e has no effect on input and d has no effect on input if the input field contains a deci-
mal point.

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1).
The form of the output field for a scale factor of zero is:
[£1100]. xx2 - - xgexp
where:
+ signifies a plus or a minus.
X1X5 * * * Xy are the d most significant digits of the datum value after rounding.

exp is a decimal exponent having one of the following forms:

Edit Absolute Value Form of

Descriptor of Exponent Exponent
Ew.d jexp| = 99 Ex+ziz, or 202425

99 < |exp| = 999 +Z4Z3Z4

Ew.dEe lexp| =< 10° — 1 Exzzo: - 2z,

Dw.d lexp| < 99 Dxzyzpor E £2425

or +0z,z,

99 < |exp| =< 999 +Z4Z5Z3

where z is a digit. The sign in the exponent is required. A plus sign must be used if the
exponent value is zero. The forms Ew.d and Dw.d must not be used if |exp| >999.

The scale factor k controls the decimal normalization (10.2.1, 10.6.5.1). If —d < k = 0, the
output field contains exactly |k| leading zeros and d — |k| significant digits after the decimal
point. If 0 < k < d + 2, the output field contains exactly k significant digits to the left of
the decimal point and d — k + 1 significant digits to the right of the decimal point. Other
values of k are not permitted.

Version 103 1286 December Page 10-6

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

10.5.1.2.3 EN Editing. The EN edit descriptor produces an output field in the form of a
real number in engineering notation such that the decimal exponent is divisible by three and
the absolute value of the mantissa is greater than or equal to one and less than 1000,
except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external fieid
occupies w positions, the fractional part of which consists of d digits and the exponent part
consists of e digits.

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1).
The form of the output field is:

[£ 1yyy.xix2 - - - Xg€xp
where: '

+ signifies a plus or a minus.

yyy are the 1 to 3 decimal digits representative of the most significant digits of the
value of the datum after rounding (yyy is an integer such that 1 < yyy < 999 or yyy =
0).

XiXp -+ Xq are the d next most significant digits of the value of the datum after
rounding.

exp is a decimal exponent, divisible by three, of one of the following forms:

Edit Absolute Value Form of
Descriptor of Exponent Exponent
ENw.d jexp| =99 E+z,zp or 0242,
99 < |exp| < 999 +Z4Z5Z3
ENw.dEe |exp| = 10° — 1 Exzzy -2,

where z is a digit.

The sign in the exponent is required. A plus sign must be used if the exponent value is
zero. The form ENw.d must not be used if |exp| >999.

Examples:
Internal Value Output field Using SS, EN12.3

6.421 6.421E + 00
-5 —500.000E —03
.00217 2.170E-03
4721.3 4.721E+03

10.5.1.2.4 G Editing. The Gw.d and Gw.dEe edit descriptors indicate that the external
field occupies w positions, the fractional part of which consists of a maximum of d digits and
the exponent part consists of e digits.

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1). -

The method of representation in the output field depends on the magnitude of the datum
being edited. Let N be the magnitude of the internal datum. If 0 < N < 0.1 or N = 109,
Gw.d output editing is the same as kPEw.d output editing and Gw.dEe output editing is the
same as kPEw.dEe output editing, where k is the scale factor (10.6.5.1) currently in effect. If

Version 103 1986 December Page 10-7

INPUT/QUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

0.1 = N < 109 or N is identically 0, the scale factor has no effect, and the value of N deter-
mines the editing as follows:

Magnitude of Datum Equivalent Conversion

N=0 Fiw — n).(d — 1), n('b’)
0.1=<N<1 F(w - n).d, n('b")

1<N <10 Fiw — n).(d — 1), n('b")

1092< N <109"" Fw —n).1, n('b")
109 '< N < 107 F(w — n).0, n('b’)

where b is a blank. n is 4 for Gw.d and e + 2 for Gw.dEe.

Note that the scale factor has no effect unless the magnitude of the datum to be edited is
outside of the range that permits effective use of F editing.

10.5.1.3 Complex Editing. A complex datum consists of a pair of separate real data;
therefore, the editing is specified by two F, E, EN, D, or G edit descriptors. The first of the
edit descriptors specifies the real part; the second specifies the imaginary part. The two edit
descriptors may be different. Control and character string edit descriptors may be processed
between the two successive F, E, D, or G edit descriptors.

10.5.2 Logical Editing. The Lw edit descriptor indicates that the field occupies w posi-
tions. The specified input/output list item must be of type logical.

The input field consists of optional blanks, optionally followed by a decimal point, followed by
a T for true or F for false. The T or F may be followed by additional characters in the field.
Note that the logical constants .TRUE. and .FALSE. are acceptable input forms.

The output field consists of w — 7 blanks followed by a T or F, depending on whether the
value of the internal datum is true or false, respectively.

10.5.3 Character Editing. The Alw] edit descriptor is used with an input/output list item of
type character.

It a field width w is specified with the A edit descriptor, the field consists of w characters. If
a field width w is not specified with the A edit descriptor, the number of characters in the
field is the length of the character input/output list item.

Let /en be the length of the input/output list item. If the specified field width w for A input is
greater than or equal to /en, the rightmost len characters will be taken from the input field. If
the specified field width w is less than len, the w characters will appear left-justified with
len — w trailing blanks in the internal representation.

If the specified field width w for A output is greater than /en, the output field will consist of
w — len blanks followed by the /en characters from the internal representation. If the
specified field width w is less than or equal to len, the output field wiil consist of the leftmost
w characters from the internal representation.

10.6 Control Edit Descriptors. A control edit descriptor does not cause the transfer of
data nor the conversion of data to or from internal representation, but may affect the conver-
sion performed by subsequent data edit descriptors.

Version 103 1986 December Page 10-8

INPUT/OUTPUT EDITING : X3J3/S8

10

15

20

25

30

35

40

10.6.1 Position Editing. The T, TL, TR, and X edit descriptors specify the position at
which the next character will be transmitted to or from the record.

The position specified by a T edit descriptor may be in either direction from the current posi-
tion. On input, this allows portions of a record to be processed more than once, possibly
with different editing.

The position specified by an X edit descriptor is forward from the current position. On input,
a position beyond the last character of the record may be specified if no characters are
transmitted from such positions. Note that an nX edit descriptor has the same effect as a
TRn edit descriptor.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be trans-
mitted and therefore does not by itself affect the length of the record. K characters are
transmitted to positions at or after the position specified by a T, TL, TR, or X edit descriptor,
positions skipped and not previously filled are filled with blanks. The result is as if the entire
record were initially filled with blanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit
descriptor never directly causes a character already placed in the record to be replaced.
Such edit descriptors may result in positioning such that subsequent editing causes a
replacement.

10.6.1.1 T, TL, and TR Editing. The Tn edit descriptor indicates that the transmission of
the next character to or from a record is to occur at the nth character position.

The TLn edit descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters backward from the current position.
However, if the current position is less than or equal to position n, the TLn edit descriptor
indicates that the transmission of the next character to or from the record is to occur at posi-
tion one of the current record.

The TRn edit descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters forward from the current position.

Note that n must be specified, and must be greater than zero.

10.6.1.2 X Editing. The nX edit descriptor indicates that the transmission of the next char-
acter to or from a record is to occur at the position n characters forward from the current
position. Note that the n must be specified and must be greater than zero.

10.6.2 Slash Editing. The slash edit descriptor indicates the end of data transfer on the
current record.

On input from a file connected for sequential access, the remaining portion of the current
record is skipped and the file is positioned at the beginning of the next record. This record
becomes the current record. On output to a file connected for sequential access, a new
record is created and becomes the last and current record of the file.

Note that a record that contains no characters may be written on output. If the file is an
internal file or a file connected for direct access, the record is filled with blank characters.
Note also that an entire record may be skipped on input. The repeat specification is optional
on the slash edit descriptor. If it is not specified, the default value is one.

For a file connected for direct access, the record number is increased by one and the file is
positioned at the beginning of the record that has that record number. This record becomes
the current record.

Version 103 1986 December Page 10-9

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

10.6.3 Colon Editing. The colon edit descriptor terminates format control if there are no
more effective items in the input/output list (9.4.2). The colon edit descriptor has no effect if
there are more effective items in the input/output list.

10.6.4 S, SP, and SS Editing. The S, SP, and SS edit descriptors may be used to control
optional plus characters in numeric output fields. At the beginning of execution of each for-
matted output statement, the processor has the option of producing a plus in numeric output
fields. If an SP edit descriptor is encountered in a format specification, the processor must
produce a plus in any subsequent position that normally contains an optional plus. If an SS
edit descriptor is encountered, the processor must not produce a plus in any subsequent
position that normally contains an optional plus. If an S edit descriptor is encountered, the
option of producing the plus is restored to the processor.

The S, SP, and SS edit descriptors affect only 1, F, E, EN, D, and G editing during the exe-
cution of an output statement. The S, SP, and SS edit descriptors have no effect during the
execution of an input statement.

10.6.5 P Editing. The kP edit descriptor sets the value of the scale factor to k. The scale
factor may affect the editing of numeric quantities.

10.6.5.1 Scale Factor. The value of the scale factor is zero at the beginning of execution
of each input/output statement. It applies to all subsequently interpreted F, E, EN, D, and G
edit descriptors until another P edit descriptor is encountered, and then a new scale factor is
established. Note that reversion of format control (10.3) does not affect the established
scale factor.

The scale factor k affects the appropriate editing in the following manner:

(1) On input, with F, E, EN, D, and G editing (provided that no exponent exists in the
field) and F output editing, the scale factor effect is that the externally represented
number equals the internally represented number multiplied by 10*.

(2) On input, with F, E, EN, D, and G editing, the scale factor has no effect if there is
an exponent in the field.

(3) On output, with E and D editing, the significand (4.3.1.2) part of the quantity to be
produced is multiplied by 10% and the exponent is reduced by k.

(4) On output, with G editing, the effect of the scale factor is suspended unless the
magnitude of the datum to be edited is outside the range that permits the use of
F editing. If the use of E editing is required, the scale factor has the same effect
as with E output editing.

(5) On output, with EN editing, the scale factor has no effect.

10.6.6 BN and BZ Editing. The BN and BZ edit descriptors may be used to specify the
interpretation of blanks, other than leading blanks, in numeric input fields. At the beginning
of execution of each formatted input statement, nonleading blank characters are interpreted
as zeros or are ignored, depending on the value of the BLANK = specifier (9.3.4.6) currently
in effect for the unit. If a BN edit descriptor is encountered in a format specification, all
nonleading blank characters in succeeding numeric input fields are ignored. The effect of
ignoring blanks is to treat the input field as if blanks had been removed, the remaining por-
tion of the field right-justified, and the blanks replaced as leading blanks. However, a field
containing only blanks has the value zero. If a BZ edit descriptor is encountered in a format
specification, all nonleading blank characters in succeeding numeric input fields are treated
as zeros.

Version 103 1986 December Page 10-10

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

The BN and BZ edit descriptors affect only |, F, E, EN, D, and G editing during execution of
an input statement. They have no effect during execution of an output statement.

10.7 Character String Edit Descriptors. A character string edit descriptor must not be
used on input.

10.7.1 Character Constant Edit Descriptor. The character constant edit descriptor causes
characters to be written from the enclosed characters of the edit descriptor itself, including
blanks. Note that a delimiter is either an apostrophe or quote.

For a character constant edit descriptor, the width of the field is the number of characters
contained in, but not including, the delimiting characters. Within the field, two consecutive
delimiting characters are counted as a single character.

10.7.2 H Editing. The cH edit descriptor causes character information to be written from
the next ¢ characters (including blanks) following the H of the cH edit descriptor in the
format-list itseif. If a cH edit descriptor occurs within a character constant delimited by apos-
trophes and the H edit descriptor includes an apostrophe, the apostrophe must be repre-
sented by two consecutive apostrophes which are counted as one character in specifying c.
If a cH edit descriptor occurs within a character constant delimited by quotes and the H edit
descriptor includes a quote, the quote must be represented by two consecutive quotes which
are counted as one character in specifying c.

10.8 List-Directed Formatting. The characters in one or more list-directed records
constitute a sequence of values and value separators. The end of a record has the same
effect as a blank character, unless it is within a character constant. Any sequence of two or
more consecutive blanks is treated as a single blank, unless it is within a character constant.

Each value is either a null value or one of the forms:

c
r¥c
r*

where ¢ is a literal constant and r is an unsigned, nonzero, integer literal constant. The r*c
form is equivalent to r successive appearances of the constant ¢, and the r* form is equiva-
lent to r successive appearances of the null value. Neither of these forms may contain
embedded blanks, except where permitted within the constant c.

A value separator is one of the following:

(1) A comma optionally preceded by one or more contiguous blanks and optionally fol-
lowed by one or more contiguous blanks

(2) A slash optionally preceded by one or more contiguous blanks and optionally fol-
lowed by one or more contiguous blanks

(3) One or more contiguous blanks between two nonblank values or following the last
nonbiank value, where a nonblank value is a constant, an r*¢ form, or an r* form.

10.8.1 List-Directed Input. Input forms acceptable to edit descriptors for a given type are
acceptable for list-directed formatting, except as noted below. The form of the input vaiue
must be acceptable for the type of the input list item. Blanks are never used as zeros, and
embedded blanks are not permitted in constants, except within character constants and com-
plex constants as specified below. Note that the end of a record has the effect of a blank,
except when it appears within a character constant.

Version 103 1986 December Page 10-11

INPUT/OUTRPUT EDITING X3J3/S8

10

16

20

25

30

35

40

45

When the corresponding input list item is of type real or double precision, the input form is
that of a numeric input field. A numeric input field is a fiéld suitable for F editing (10.5.1.2.1)
that is assumed to have no fractional digits uniess a decimal point appears within the field.

When the corresponding list item is of type complex, the input form consists of a left paren-
thesis followed by an ordered pair of numeric input fields separated by a comma, and fol-
lowed by a right parenthesis. The first numeric input field is the real part of the complex
constant and the second is the imaginary part. Each of the numeric input fields may be pre-
ceded or followed by blanks. The end of a record may occur between the real part and the
comma or between the comma and the imaginary part.

When the corresponding list item is of type logical, the input form must not include slashes,
blanks, or commas among the optional characters permitted for L editing.

When the corresponding list item is of type character, the input form consists of a character
constant. Character constants may be continued from the end of one record to the begin-
ning of the next record, but the end of record must not occur between a doubled apostrophe
in an apostrophe-delimited constant, nor between a doubled quote in a quote-delimited con-
stant. The end of the record does not cause a blank or any other character to become part
of the constant. The constant may be continued on as rhany records as needed. The char-
acters blank, comma, and slash may appear in character constants.

If the corresponding input list item is of type character and:

(1) The character constant does not contain the characters blank, comma, or slash,
and

(2) The datum does not cross a record boundary, and
(3) The first nonblank character is not a quotation mark or an apostrophe, and
(4) The leading characters are not numeric followed by an asterisk,

the delimiting apostrophes or quotation marks are not required. If the delimiters are omitted,
the character constant is terminated by the first blank, comma, or slash character and apos-
trophes and quotation marks within the datum are not to be doubled.

Let len be the length of the list item, and let w be the length of the character constant. |f
len is less than or equal to w, the leftmost /en characters of the constant are transmitted to
the list item. If Jen is greater than w, the constant is transmitted to the leftmost w characters
of the list item and the remaining /en — w characters of the list item are filled with blanks.
Note that the effect is as though the constant were assigned to the list item in a character
assignment statement (7.5.1.4).

10.8.1.1 Null Values. A null value is specified by having no characters between succes-
sive value separators, no characters preceding the first value separator in the first record
read by each execution of a list-directed input statement, or the r* form. Note that the end
of a record following any other separator, with or without separating blanks, does not specify
a null value. A null value has no effect on the definition status of the corresponding input
list item.

A slash encountered as a value separator during execution of a list-directed input statement
causes termination of execution of that input statement after the assignment of the previous
value. If there are additional items in the input list, the effect is as if null values had been

'supplied for them. Any DO variable in the input list is defined as though enough null values

had been supplied for any remaining input list items.

Note that all blanks in a list-directed input record are considered to be part of some value
separator except for the following:

Version 103 1986 December Page 10-12

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

(1) Blanks embedded in a character constant
(2) Embedded blanks surrounding the real or imaginary part of a complex constant

(3) Leading blanks in the first record read by each execution of a list-directed input
statement, unless immediately followed by a slash or comma

10.8.2 List-Directed Output. The form of the values produced is the same as that
required for input, except as noted otherwise. With the exception of nondelimited character
constants, the values are separated by (1) one or more blanks or (2) a comma optionally pre-
ceded by one or more blanks and optionally followed by one or more blanks.

The processor may begin new records as necessary, but, except for complex constants and
character constants, the end of a record must not occur within a constant and blanks must
not appear within a constant.

Logical output constants are T for the value true and F for the value false.
Integer output constants are produced with the effect of an lw edit descriptor.

Real constants are produced with the effect of either an F edit descriptor or an E edit
descriptor, depending on the magnitude x of the value and a range 10% < x < 10%. If the
magnitude x is within this range, the constant is produced using OPFw.d; otherwise,
1PEw.dEe is used.

For numeric outputs, reasonabie processor-dependent integer values of w, d, and e are used
for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating the real and
imaginary parts. The end of a record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than, an entire record. The only embed-
ded blanks permitted within a complex constant are between the comma and the end of a
record and one blank at the beginning of the next record.

Character constants produced for a file opened without a DELIM= specifier (9.3.4.9) or with
a DELIM = specifier with a value of NONE:

(1) Are not delimited by apostrophes or quotation marks,
(2) Are not preceded or followed by a value separator,

(38) Have each internal apostrophe or quotation mark represented externally by one
apostrophe or quotation mark, and

(4) Have a blank character inserted by the processor for carriage control at the begin-
ning of any record that begins with the continuation of a character constant from
the preceding record.

Character constants produced for a file opened with a DELIM= specifier with a value of
QUOTE are delimited by quotes, are preceded and followed by a value separator, and have
each internal quote represented on the external medium by two quotes.

Character constants produced for a file opened with a DELIM= specifier with a value of
APOSTROPHE are delimited by apostrophes, are preceded and followed by a value separa-
tor, and have each internal apostrophe represented on the external medium by two apostro-
phes.

If two or more successive values in an output record have identical values, the processor
has the option of producing a repeated constant of the form r*c instead of the sequence of
identical values.

Slashes, as value separators, and null values are not produced by list-directed formatting.

Version 103 - 1986 December Page 10-13

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

Except for continuation of delimited character constants, each output record begins with a
blank character to provide carriage control when the record is printed.

10.9 Namelist Formatting. The characters in one or more namelist records constitute a
sequence of name-value subsequences, each of which consists of a name followed by an
equals and followed by one or more values and value separators. The equals may optionally
be preceded or followed by zero, one, or more contiguous blanks. The end of a record has
the same effect as a blank character, unless it is within a character constant. Any sequence
of two or more consecutive blanks is treated as a single blank, unless it is within a character
constant.

The name may be any name in the namelist-group-object-list.
Each value is either a null value or one of the forms:

C
r¥c
r*

where c is a literal constant and r is an unsigned, nonzero, integer literal constant. The r*c
form is equivalent to r successive appearances of the constant ¢, and the r* form is equiva-
lent to r successive null values. Neither of these forms may contain embedded blanks,
except where permitted within the constant c.

A value separator for namelist formatting is the same as for list-directed (10.8) except that a
value separator containing a slash must not immediately precede a value.

10.9.71 Namelist Input. Input for a namelist statement consists of:
(1) Optional blanks

(2) The character & followed immediately by the same namelist-group-name specified
in the namelist input statement

(3) One or more blanks

(4) A sequence of zero or more name-value subsequences separated by value sepa-
rators.

In each name-value subsequence, the name must be the name of a namelist group object
list item with an optional qualification.

If a processor is capable of representing letters in both upper and lower case, a group name
and object name is without regard to case. Any subscripts or substring ranges appearing in
the name must contain only integer constant expressions.

10.9.1.1 Nzmelist Group Object Names. Within the input data, each name must corre-
spond to a specific namelist group object name. Subseripts and substring ranges within
namelist group object names must be integer constants. If a namelist group object name is
the name of an array, the name in the input record corresponding to it may be either the
array name or the name of an element or section of that array, indicated by qualifying the
array name with constant subscripts. If the namelist group object name is the name of a
variable of derived type, the name in the input record may be either the name of the vari-
able or of one of its components, indicated by qualifying the variable name with the appropri-
ate component name. Successive qualifications may be applied as appropriate to the shape
and type of the variable represented.

The order of names in the input records need not match the order of the namelist group
object items. The input records need not contain all the names of the namelist group object
items. The definition status of any names from the namelist group object that do not occur

Version 103 1986 December Page 10-14

INPUT/QUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

50

in the input record remains unchanged. The name in the input record may be preceded and
followed by one or more optional blanks but must not contain embedded blanks.

10.9.1.2 Acceptable Namelist Input Values. The datum c is any input value acceptable to
format specifications for a given type, except for a restriction on the form of input values cor-
responding to list items of type logical. The form of the input value must be acceptable for
the type of the namelist group object list item. The number and forms of the input values
which may follow the equals in a name-value subsequence depend on the shape and type of
the object represented by the name in the input record. When the name in the input record
is the name of a scalar variable of an intrinsic type, the equals must not be followed by more
than one value. This value must be of a form acceptable to format specifications for that
type, except for the restriction on the form of input values corresponding to list items of type
logical. Blanks are never used as zeros, and embedded blanks are not permitted in con-
stants except within character constants.

When the name in the input record represents an array variable or a variable of derived
type, the effect is as if the variable represented were expanded into a sequence of list items
of intrinsic data types, in the same way that input/ouput list items are expanded (9.4.2).
Each input value following the equals must then be acceptable to format specifications for
the intrinsic type of the list item in the corresponding position in the expanded sequence,
except as noted. The number of values following the equals must not exceed the number of
list items in the expanded sequence, but may be less; in the latter case, the effect is as if
sufficient null values had been appended to match any remadining list items in the expanded
sequence. For example, if the name in the input record is the name of an integer array of
effective size 100, at most 100 values, each of which is either a digit string or a null value,
may follow the equals; these values would then be assigned to the elements of the array in
the order specified by subscript order value.

A slash encountered as a value separator during the execution of a namelist input statement
causes termination of execution of that input statement after assignment of the previous
value. If there are additional items in the namelist, the effect is as if null values had been
supplied for them.

10.9.1.3 Namelist Group Object List ltems. When the corresponding namelist group
object list item is of type real, the input form of the input value is that of a numeric input
field. A numeric input field is a field suitable for F editing (10.5.1.2.1) that is assumed to
have no fractional digits unless a decimal point appears within the field.

When the corresponding list item is of type complex, the input form of the input value con-
sists of a left parenthesis followed by an ordered pair of numeric input fields separated by a
comma and followed by a right parenthesis. The first numeric input field is the real part of
the complex constant and the second part is the imaginary part. Each of the numeric input
fields may be preceded or followed by blanks. The end of a record may occur between the
real part and the comma or between the comma and the imaginary part.

When the corresponding list item is of type logical, the input form of the input value must not
include either slashes, blanks, equals, ampersands, or commas among the optional charac-
ters permitted for L editing (10.5.2).

When the corresponding list item is of type character, the input form of the input value con-
sists of a nonempty string of characters enclosed in apostrophes or quotation marks. Each
apostrophe within a character constant delimited by apostrophes must be represented by two
consecutive apostrophes without an intervening blank or end of record. Each quotation mark
within a character constant delimited by quotation marks must be represented by two con-
secutive quotation marks without an intervening blank or end of record. Character constants
may be continued from the end of one record to the beginning of the next record. The end
of the record does not cause a blank or any other character to become part of the constant.

Version 103 1986 December Page 10-15

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

The constant may be continued on as many records as needed. The characters blank,
comma, equals, and slash may appear in character constants.

Let /len be the length of the list item, and let w be the length of the character constant. If
len is less than or equal to w, the leftmost /en characters of the constant are transmitted to
the list item. If len is greater than w, the constant is transmitted to the leftmost w characters
of the list item and the remaining fen — w characters of the list item are filled with blanks.
Note that the effect is as though the constant were assigned to the list item in a character
assignment statement (7.5.1.4).

If the corresponding list item is of type character and (1) the character constant does not
contain the value separators blank, comma, slash, ampersand, or equals, (2) the character
constant does not cross a record boundary, (3) the first nonblank character is not a quotation
mark or an apostrophe, and (4) the leading characters are not numeric followed by an aster-
isk, then the enclosing apostrophes or quotation marks are not required and apostrophes or
quotation marks within the character constant are not to be doubled.

10.9.1.4 Null Values. A null value is specified by:
(1) r* form
(2) Blanks between two consecutive value separators following an equals

(3) Zero or more blanks preceding the first value separator and following an equals,
or

(4) Two consecutive nonblank value separators

A null value has no effect on the definition status of the corresponding input list item. [f the
namelist group object list item is defined, it retains its previous value; if it is undefined, it
remains undefined. A null value must not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire complex constant. .

Note that the end of a record following a value separator, with or without intervening blanks,
does not specify a null value.

10.9.1.5 Blanks. All blanks in a namelist input record are considered to be part of some
value separator except for:

(1) Blanks embedded in a character constant,
(2) Embedded blanks surrounding the real or imaginary part of a complex constant,

(8) Leading blanks following the equals unless followed immediately by a slash or
comma, and

(4) Blanks between a name and the following equals.

10.9.2 MNamelist Qutput. The form of the output produced is the same as that required for
input, except for the form of real constants. If the processor is capable of representing let-
ters in both upper and lower case, the name in the output is in upper case. With the excep-
tion of nondelimited character constants, the values are separated by (1) one or more blanks

or (2) a comma optionally preceded by one or more blanks and optionally followed by one or
more blanks.

The processor may begin new records as necessary. However, except for complex con-
stants and character constants, the end of a record must not occur within a constant or a
name, and blanks must not appear within a constant or a name.

Version 103 1986 December ' Page 10-16

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

10.9.2.1 Namelist Output Editing. Logical output constants are T for the value true and F
for the value false.

Integer output constants are produced with the effect of an Iw edit descriptor.

Real constants are produced with the effect of either an F edit descriptor or an E edit
descriptor, depending on the magnitude x of the value and a range 10% = x < 10%. If the
magnitude x is within this range, the constant is produced using OPFw.d; otherwise,
1PEw.dEe is used.

For numeric output, reasonable processor-dependent integer values of w, d, and e are used
for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating the real and
imaginary parts. The end of a record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than, an entire record. The only embed-
ded blanks permitted within a complex constant are between the comma and the end of a
record and one blank at the beginning of the next record.

Character constants produced for a file opened without a DELIM= specifier (9.3.4.9) or with
a DELIM = specifier with a value of NONE:

(1) Are not delimited by apostrophes or quotation marks,
(2) Are not preceded or followed by a value separator,

(3) Have each internal apostrophe or quotation mark represented externally by one
apostrophe or quotation mark, and

(4) Have a blank character inserted by the processor for carriage control at the begin-
ning of any record that begins with the continuation of a character constant from
the preceding record.

Character constants produced for a file opened with a DELIM= specifier with a value of
QUOTE are delimited by quotes, are preceded and followed by a value separator, and have
each internal quote represented on the external medium by two quotes.

Character constants produced for a file opened with a DELIM= specifier with a value of
APOSTROPHE are delimited by apostrophes, are preceded and followed by a value separa-
tor, and have each internal apostrophe represented on the external medium by two apostro-
phes.

10.9.2.2 Namelist Output Records. If two or more successive values in an array in an
output record produced have identical values, the processor has the option of producing a
repeated constant of the form r*c instead of the sequence of identical values.

The name of each namelist group object list item is placed in the output record followed by
an equals and one or more values of the namelist group object list item.

An ampersand character followed immediately by a namelist-group-name will be produced by
namelist formatting at the start of the first output record to indicate which specific block of
data objects is being output. - A slash is produced by namelist formatting to indicate the end
of the namelist formatting.

A null value is not produced by namelist formatting.

Except for continuation of delimited character constants, each output record begins with a
blank character to provide carriage control when the record is printed.

Version 103 1986 December Page 10-17

10

15

20

25

30

35

40

11 PROGRAM UNITS

The terms and basic concepts of program units were introduced in 2.2. A program unit may
be a main program, subprogram, module, or block data program unit.

This section describes all of these program units except procedure subprograms, which are
described in Section 12.

11.1 Main Program.

R203 main-program is [program-stmt |
| specification-part |
[execution-part |
[internal-procedure-part |
end-program-stmt

R1101 program-stmt is PROGRAM program-name
R1102 end-program-stmt is END [PROGRAM [program-name | |

Constraint: The program-name may be included in the end-program-stmt only if the optional
program-stmt is used and, if included, must be identical to the program-name
specified in the program-stmt.

The program name is global to the executable program, and must not be the same as the
name of any other program unit, external procedure, or common block in the executable pro-
gram, nor the same as any local name in the main program.

An example of a main program is:
PROGRAM ANALYSE

REAL A, B, C (10,100 I Specification part
CALL FIND i Execution part
CONTAINS

END SUBROUTINE FIND
END PROGRAM ANALYSE

11.1.1 Main Program Specifications. The specifications in the main program must not
include an OPTIONAL statement, an INTENT statement, a PUBLIC statement, a PRIVATE
statement, or the equivalent attributes (5.1.2). A SAVE statement has no effect in a main
program.

11.1.2 Main Program Executable Part. The sequence of execution-part statements
specifies the actions of the main program during program execution. Execution of an exe-
cutable program (R201) begins with the first executable construct of the main program. A
main program execution-part statement may be any of those listed in syntax rules R216,
R222, and R223 of Section 2.1, except a RETURN statement or an ENTRY statement.

A main program must not be recursive; that is, a reference to it must not appear in any pro-
gram unit in the executable program, including itself.

Execution of an executable program ends with execution of the END PROGRAM statement
of the main program or with execution of a STOP statement in any program unit of the exe-
cutable program.

Version 103 1986 December Page 11-1

PROGRAM UNITS X3J3/88

10

15

20

25

30

35

40

11.1.3 Main Program Internal Procedures. Any definitions of procedures internal to the
main program follow the CONTAINS statement. Internal procedures are described in Sec-
tion 12. The main program is called the host of its internal procedures.

11.2 Procedures. Procedures are described in Section 12.

11.3 Modules. A module contains a set of specifications and definitions that are to be
accessed by other program units.

R207 module is module-stmt
[specification-part |
[module-subprogram-part |
end-module-stmt

R1103 module-stmt is MODULE module-name
R1104 end-module-stmt is END [MODULE [module-name]]

Constraint: |If the module-name is specified in the end-module-stmt, it must be identical to
the module-name specified in the module-stmt.

Constraint: A module specification-part must not contain an entry-stmt, format-stmt, intent-
stmt, INTENT attribute, optional-stmt, or OPTIONAL attribute.

The module name is global to the executable program, and must not be the same as the
name of any other program unit, external procedure, or common block in the executable pro-
gram, nor the same as any local name in the module.

11.3.1 Module Reference. A USE statement specifying a module name is a module refer-
ence. At the time a module reference is processed, the public portions of the specified
module must be available. A module must not reference itself, either directly or indirectly.

The accessibility, public or private, of specifications and definitions in a module to a scoping
unit making reference to the module may be controlled in both the module and the scoping
unit making the reference. In the module, the PRIVATE statement, the PUBLIC statement
(5.2.3), and the equivalent attributes (5.1.2.2) are used to control the accessibility of module
entities outside the module.

In a scoping unit making reference to a module, the ONLY option on the USE statement
may be used to further limit the accessibility, in that referencing scoping unit, of the public
entities in the module.

11.3.2 The USE Statement. The USE statement provides the means by which a scoping
unit accesses named data objects, derived types, interface blocks, procedures, range lists,
and namelist groups in a module.

R1105 use-stmt is USE module-name [, rename-list]

or USE module-name , ONLY : [only-list |
R1106 rename is use-name = > local-name
R1107 only is use-name [= > local-name]

Constraint: Each use-name must be the name of a variable, procedure, type, constant,
range list, or namelist group.

The USE statement without the ONLY option provides access to all public entities in the
specified module.

Version 103 1986 December Page 11-2

PROGRAM UNITS X3J3/58

10

15

20

25

30

35

40

45

Each use-name must be the name of a public entity in the module. If a local-name appears
in a rename-list or an only-list, it is the local name for the entity specified by use-name; other-
wise, the local name is the use-name.

A USE statement with the ONLY option provides access only to those entities whose names
appear as use-names in the only-list. In a scoping unit, two or more accessible entities may
have the same name only if no entity is referenced by this name in the scoping unit. Except
for this, the local name of any entity given accessibility by a USE statement must differ from
the local names of all other entities accessible from the scoping unit through USE state-
ments and otherwise. Note that an entity may be accessed by more than one local name.

The local name of an entity made accessible by a USE statement may appear in no other
specification statement that would cause any attribute of the entity to be respecified in the
scoping unit that contains the USE statement, except that it may appear in a PUBLIC or PRI-
VATE statement in the scoping unit of a module. The appearance of such a local name in a
PUBLIC statement in a module causes the entity accessible by the USE statement to be a
public entity of that module. If the name appears in a PRIVATE statement in a module, the
entity is not a public entity of that module. If the local name does not appear in either a
PUBLIC or PRIVATE statement, it assumes the default accessibility attribute (5.2.3) of that
scoping unit.

Note that the above rule prohibits the local name from appearing in COMMON, EQUIVA-
LENCE, and RANGE specifications, but permits such local names appearing in NAMELIST
group list.

Examples:

USE STATS_LIB

provides access to all public entities in the module STATS__LIB.
USE MATH_LIB; USE STATS_LIB, PROD => SPROD

makes all public entities in both MATH__LIB and STATS__LIB accessible. If MATH__LIB
contains an entity called PROD, it is accessible by its own name while the entity PROD of
STATS__LIB is accessible by the name SPROD. Both modules may contain an entity called
SUMM, for example, if SUMM does not appear in the scoping unit containing the USE state-
ments and SUMM is not declared in a type statement in the scoping unit.

11.3.3 Examples of Modules.

11.3.3.1 Identical Common Blocks. A common block and all its associated specification
statements may be placed in a module named, for example, MY_COMMON and accessed
by a USE statement of the form

USE MY_COMMON

that accesses the whole module without any renaming. This ensures that all instances of
the common block are identical. Module MY_COMMON could contain more than one com-
mon block.

11.3.3.2 Global Data. A module may contain just data objects, for example

MODULE DATA_MODULE

REAL AC10), B, C(20,20)
INTEGER, INITIAL :: I=0
INTEGER, PARAMETER :: J=10
COMPLEX D(J,J)

END MODULE

Version 103 1986 December Page 11-3

PROGRAM UNITS X3J3/88

10

15

20

25

30

35

40

Note that data objects made global in this manner may have any combination of data types.
Access to some of these may be made by a USE statement with the ONLY option, such as:
USE DATA_MODULE, ONLY: A, B, D

and access to all of them may be made by the following USE statement

USE DATA_MODULE

Access to all of them with some renaming to avoid name conflicts may be made by:
USE DATA_MODULE, A => AMODULE, D => DMODULE

11.3.3.3 Daia Siructures. A derived type may be defined in a module and accessed in a
number of program units. This is the only way to access the same type definition in more
than one program unit. For example:

MODULE SPARSE

TYPE NONZERO
REAL A
INTEGER I, J

END TYPE

END HMODULE

defines a type consisting of a real component and two integer components for holding the
numerical value of a nonzero matrix element and its row and column indices.

11.3.3.4 Global Allocatable Arrays. Many programs need large global allocatable arrays
whose sizes are not known before program execution. A simple form for such a program is:
PROGRAM GLOBAL_WORK

CALL CONFIGURE_ARRAYS ! PERFORM THE APPROPRIATE ALLOCATIONS
CALL COMPUTE I USE THE ARRAYS IN COMPUTATIONS

END PROGRAM GLOBAL_WORK

MODULE WORK_ARRAYS I AN EXAMPLE SET OF WORK ARRAYS
INTEGER N

REAL, ALLOCATABLE, SAVE :: A(:), B(:,2), C(:,s,3)
END MODULE WORK_ARRAYS

SUBROUTINE CONFIGURE_ARRAYS ! PROCESS TO SET UP WORK ARRAYS
USE WORK_ARRAYS

READ (INPUT,*) W

ALLOCATE (¢ A(N), B(N,N), C(N,N,2*N))

END SUBROUTINE CONFIGURE_ARRAYS

SUBROUTINE COMPUTE

USE WORK_ARRAYS

I COMPUTATIONS INVOLVING ARRAYS A, B, AND C
END SUBROUTINE COMPUTE

Typically, many procedures need access to the work arrays, and all such procedures would
contain the statement

USE WORK_ARRAYS

Version 103 1986 Decamber Page 11-4

PROGRAM UNITS X3J3/S8

10

15

20

25

30

35

40

45

11.3.3.5 Procedure Libraries. Interfaces to external procedures in a library may be gath-
ered into a module. This permits the use of keyword and optional arguments, and allows
static checking of the references. Different versions may be constructed for different appli-
cations, using keywords in common use in each application. An example is the following
library module:

MODULE LIBRARY_LLS
INTERFACE
SUBROUTINE LLS (X, A, F, FLAG)
REAL (%, *) X (:, :)
REAL (EFFECTIVE PRECISION (X), EFFECTIVE_EXPONENT_RANGE (X)), &
ARRAY (DSIZE (X, 2)) :: A, F
INTEGER FLAG
END INTERFACE
END MODULE

This module allows the subroutine LLS to be invoked:
USE LIBRARY_LLS

CALL LLS (X = ABC, A =D, F = XX, FLAG = IFLAG)

11.3.3.6 Operator Extensions. To extend an intrinsic operator symbol to have an addi-
tional meaning, a function subprogram specifying that operator symbol in the OPERATOR
option of the FUNCTION statement may be placed in a module. For example, // may be
overloaded to perform concatenation of two derived-type objects serving as varying length
character strings; + may be overloaded to specify matrix addition or interval arithmetic addi-
tion.

A module might contain several such functions. If the operation is written in a language
other than Fortran, it may be written as an external function and its procedure interface
placed in the module.

11.3.3.7 Data Abstraction. A module may encapsulate a derived-type definition and ali
the procedures that represent operations on values of this type. An example is given in
Appendix C for set operations.

11.4 Block Data Program Units. A block data program unit is used to provide initial
values for data entities in named commgn blocks.

R208 block-data is block-data-stmt
specification-part
end-block-data-stmt

R1108 block-data-stmt is BLOCK DATA [block-data-name }
R1109 end-block-data-stmt. is END [BLOCK DATA [block-data-name | |

Constraint: The block-data-name may be included in the end-block-data-stmt only if it was
provided in the block-data-simt and, if included, must be identical to the block-
data-name in the block-data-stmt.

Constraint: A block-data specification-part may contain only IMPLICIT, PARAMETER, INTE-
GER, REAL, DOUBLE PRECISION, COMPLEX, CHARACTER, LOGICAL, COM-
MON, DIMENSION, EQUIVALENCE, DATA, and SAVE statements.

If an entity in a named common block is initially defined, all entities having storage units in
the common block storage sequence must be specified even if they are not all initially

Version 103 ' 1986 December Page 11-5

PROGRAM UNITS X3J3/S8

defined. More than one named common block may have ‘objects initially defined in a single
block data program unit. Note, therefore, that the primary constituents of a block data pro-

gram unit are type declarations of common block entities, COMMON statements, and DATA
statements.

5 Only an entity in a named common block may be initially defined in a block data program
unit. Note that entities associated with an entity in a common block are considered to be in
that common block. '

The same named common block may not be specified in more than one block data program
unit in an executable program.

10 There must not be more than one unnamed block data program unit in an executable pro-
gram.

An example of a BLOCK DATA program unit is:

BLOCK DATA WORK
COMMON A, B, C (10, 100
15 DATA A /1.0/, B /2.0/, C /100 = 0.0/
END BLOCK DATA WORK

Version 103 1986 December Page 11-6

10

15

20

25

30

35

12 PROCEDURES

The concept of a procedure was introduced in 2.2.4. This section contains a complete
description of procedures. The action specified by a procedure is performed when the pro-
cedure is invoked by execution of a reference to it. The reference may identify, as actual
arguments, entities that are associated during execution of the procedure reference with cor-
responding dummy arguments in the procedure definition.

12.1 Procedure Classifications. A procedure is classified according to the form of its
reference and the way it is defined.

12.1.1 Procedure Classification by Reference. The definition of a procedure specifies it
to be a function or a subroutine. A reference to a function appears as a primary within an
expression. A reference to a subroutine is a CALL statement or a defined assignment state-
ment.

A procedure is classified as elemental if it may be referenced elementally (12.4.3, 12.4.5).

12.1.2 Procedure Classification by Means of Definition. A procedure is either an intrin-
sic procedure, an external procedure, a module procedure, an internal procedure, a dummy
procedure, or a statement function.

12.1.2.1 Intrinsic Procedures. A procedure that is provided as an inherent part of the
processor is an intrinsic procedure.

12.1.2.2 External, Internal, and Module Procedures. An external procedure is a proce-
dure that is defined by an external subprogram or by means other than Fortran.

An internal procedure is a procedure that is defined by an internal subprogram.
A module procedure is a procedure that is defined by a module subprogram.

if a subprogram contains one or more ENTRY statements, it defines a procedure for each
ENTRY statement and a procedure for the SUBROUTINE or FUNCTION statement.

An internal procedure must not contain ENTRY statements.

12.1.2.3 Dummy Procedures. A dummy argument that is specified as a procedure or
appears in a procedure reference is a dummy procedure.

12.1.2.4 Statement Functions. A function that is defined by a single statement is a state-
ment function.

12.2 Characteristics of Procedures. The characteristics of a procedure are the
classification of the procedure as a function or subroutine, the characteristics of its argu-
ments, and the characteristics of its result value if it is a function.

12.2.1 Characteristics of Dummy Arguments. Each dummy argument is either a dummy
data object, a dummy procedure, or an asterisk (alternate return indicator). A dummy argument other
than an asterisk may be specified to have the OPTIONAL attribute. This attribute means that
the dummy argument need not be associated with an actual argument for any particular ref-
erence to the procedure.

Version 103 : 1986 December Page 12-1

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

12.2.1.1 Characteristics of Dummy Data Objects. The characteristics of a dummy data
object are its type, type parameters (if any), shape, intent (5.1.2.3, 5.2.1), optionality (5.1.2.6,
5.2.2), and whether it is allocatable (5.1.2.4.3). If a type parameter or a bound of an array is
an expression, the exact dependence on other entities is a characteristic. If shape, size, or
type parameters are assumed, these are characteristics.

12.2.1.2 Characteristics of Dummy Procedures. The characteristics of a dummy proce-
dure are the explicitness of its interface (12.3.1), the characteristics of the procedure if the
interface is explicit, and its optionality (5.1.2.6, 5.2.2).

12.2.1.3 Characteristics of Asterisk Dummy Argumsnts. An asterisk as a dummy argument has
no characteristics.

12.2.2 Characteristics of Function Results. The characteristics of a function result are its
type, type parameters (if any), shape, and whether it is allocatable. Where a type parameter
or bound of an array is an expression, the exact dependence on other entities is a charac-
teristic. If the length of a character data object is assumed, this is a characteristic.

12.3 Procedure Interface. The interface of a procedure determines the forms of refer-
ence through which it may be invoked. The interface consists of the characteristics of the
procedure, the name of the procedure, the name of each dummy argument, the defined
operator (if any) by which a reference to a function may appear, and whether or not a refer-
ence to a subroutine may be implied in a defined assignment statement. The characteristics
of a procedure are fixed, but the remainder of the interface may differ in different scoping
units.

12.3.1 Implicit and Explicit Interfaces. If a procedure is accessible in a scoping unit, its
interface is either explicit or implicit in that program unit. The interface of an internal pro-
cedure, module procedure, or intrinsic procedure is always axplicit in such a scoping unit.
The interface of a statement function is always implicit. The interface of an external proce-
dure or dummy procedure is explicit if an interface block (12.3.2.1) for the procedure is sup-
plied or accessible, and implicit otherwise. For example, the subroutine LLS of 11.3.2.5 has
an explicit interface.

12.3.1.1 Explicit Interface. A procedure must have an explicit interface if any of the fol-
lowing is true:
(1) A reference to the procedure appears:
(a) With a keyword argument (12.4.1)
(b) As a defined assignment (subroutines only)
(c) In an expression as a defined operator (functions only)
(d) As an elemental reference
(2) The procedure has:
(a) An optional dummy argument
(b) An array-valued result (functions only)
(c) An allocatable result (functions only)
(d) A dummy argument that is an assumed-shape or allocatable array

(e) A dummy argument with assumed type parameters other than character
length

Version 103 1986 December Page 12-2

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

(f) A result whose type parameter values are neither assumed length (character
type only) nor constant.

(3) Another procedure having the same name is accessible

12.3.1.2 Implicit Interface. An actual argument may be sequence associated (12.4.1.4)
with its dummy argument if its interface is implicit.

12.3.2 Specification of the Procedure Interface. The interface for an internal, external,
or dummy procedure is specified by a FUNCTION, SUBROUTINE, or ENTRY statement and
by specification statements for the dummy arguments and the result of a function. These
statements may appear in the procedure definition, in an interface block, or both.

12.3.2.1 Procedure Interface Block.

R1201 interface-block is interface-stmt
interface-header
[use-stmt }...
[implicit-part |
[declaration-construct)...
end-interface-stmt

R1202 interface-stmt is INTERFACE

R1203 end-interface-stmt is END INTERFACE
R1204 interface-header is function-stmt

or subroutine-stmt

An interface block specifies the interface of the procedure named in the FUNCTION or SUB-
ROUTINE statement in the interface block. The statements are interpreted as if they were
the leading statements of the external procedure definition. For example,

IMPLICIT NONE
INTERFACE
FUNCTION INVERSE (A)
END INTERFACE

is a valid fragment of code because the FUNCTION statement is interpreted as if it were the
leading statement of an external function, so the default implicit typing rules are assumed.

An interface block that names as a procedure a dummy argument of the host scoping unit
specifies that dummy argument to be a procedure with the specified interface. A dummy
argument must not be so named more than once. Such a dummy argument may be
specified in an OPTIONAL statement or with an OPTIONAL attribute in the host but must not
appear in any other specification statement in the host. For example,

SUBROUTINE INVERSE (A, FN)
REAL A
INTERFACE
FUNCTION FN (B)
REAL FN, B

END INTERFACE

specifies a subroutine whose second argument is a real function with a single real argument.

Version 103 1986 December Page 12-3

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

In a module, the name of the external procedure may appear in a PUBLIC or PRIVATE
statement or be given the equivalent attribute, but must not appear in any other specification
statement.

The characteristics (12.2) of the procedure itself must be identical with those specified by
the interface block. The presence of the interface block does not require the availability of
the procedure until it is invoked. Within a scoping unit, only one interface block may be pro-
vided for a particular procedure. If the procedure is & module procedure or an internal pro-
cedure, the names of the arguments and the operator (if present) override those of the pro-
cedure itself.

12.3.2.2 EXTERNAL Statement. An external statemaat is used to specify a name as rep-
resenting an external procedure or dummy procedure, and to permit such a name to be
used as an actual argument.

R1205 external-stmt is EXTERNAL external-name-list

Constraint: Each external-name must be the name of an external procedure, a dummy
argument, or a block data program unit.

The appearance of the name of a dummy argument in an EXTERNAL statement specifies
that the dummy argument is a dummy procedure.

The appearance in an EXTERNAL statement of a name that is not the name of a dummy
argument specifies that the name is the name of an external procedure or block data sub-
program.

Only one appearance of a name in all of the EXTERNAL statements in any one sequence of
declaration part statements is permitted.

An example of an EXTERNAL statement is:

SUBROUTIME SUB (FOCUS)
EXTERNAL FOCUS

12.3.2.3 INTRINSIC Statament. An INTRINSIC statement is used to specify a name as
representing an intrinsic procedure (Section 13). It also permits a name that represents a
specific intrinsic function to be used as an actual argument.

R1206 intrinsic-stmt is INTRINSIC intrinsic-procedure-name-list

The appearance of a name in an INTRINSIC statement confirms that the name is the name
of an intrinsic procedure. The appearance of a generic function name (13.1) in an INTRIN-
SIC statement does not cause that name to lose its generic property.

Only one appearance of a name in all of the INTRINSIC statements in any one sequence of
specification part statements is permitted. Note that a name must not appear in both an
EXTERNAL and an INTRINSIC statement in the same sequence of specification-part state-
ments.

12.3.2.4 Implicit Interface Specification. In a scoping unit where the interface of a func-
tion is implicit, the type and type parameters of the function result are specified by implicit or
explicit type specification of the function name. The type, type parameters, and shape of
dummy arguments of a procedure referenced from a scoping unit where the interface of a
procedure is implicit are assumed to be such that the actual arguments are consistent with
the characteristics of the dummy arguments.

Version 103 1986 December Page 12-4

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

45

12.4 Procedure Reference. The form of a procedure reference is dependent on the
interface of the procedure, but is independent of the means by which the procedure is
defined. The forms of procedure references are:

R1207 function-reference is function-name ([actual-arg-spec-list |)
Constraint: The actual-arg-spec-list for a function reference must not contain an alt-return-spec.
R1208 call-simt is CALL subroutine-name | ([actual-arg-spec-list |) |

12.4.1 Actual Argument List.

R1209 actual-arg-spec is [keyword = | actual-arg
R1210 keyword is dummy-arg-name
R1211 actualarg is expr

or variable

or procedure-name
or alt-return-spec

R1212 alt-return-spec - is * label

Constraint: The keyword may be omitted from an actual-arg-spec only if the keyword has
been omitted from each preceding actual-arg-spec in the argument list.

Constraint: Each keyword must be the name of a dummy argument in the interface of the
procedure.

In either a subroutine reference or a function reference, the actual argument list identifies
the correspondence between the actual arguments supplied and the dummy arguments of
the procedure. In the absence of a keyword, an actual argument is associated with the
dummy argument occupying the corresponding position in the dummy argument list; i.e., the
first actual argument is associated with the first dummy argument, the second actual argu-
ment is associated with the second dummy argument, etc. If a keyword is present, the
actual argument is associated with the dummy argument whose name is the same as the
keyword. Exactly one actual argument must be associated with each nonoptional dummy
argument. At most one actual argument may be associated with each optional argument.
Each actual argument must be associated with a dummy argument. For example, the proce-
dure g

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)
INTERFACE
FUNCTION FUNCT (X
REAL FUNCT, X
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT

may be invoked with
CALL SOLVE (FUN, SOL, PRINT = 6)

12.4.1.1 Arguments Associated with Dummy Data Objects. If a dummy argument is a
dummy data object, the associated actual argument must be an expression of the same type
or a data object of the same type. The type parameter values of the actual argument, if
any, must agree with or be assumed by the dummy argument. The shape of the actual
argument must agree with or be assumed by the dummy argument except when a proce-
dure reference is elemental (12.4.3, 12.4.5) or when the actual argument is sequence asso-
ciated with the dummy argument (12.4.1.4). Each element of an array-valued actual

Version 103 1986 December Page 12-5

PROCEDURES X£3.3/S8

10

15

20

25

30

35

40

45

argument or of a sequence in a sequence association (12.4.1.4) is associated with the ele-
ment of the dummy array that has the same position in subscript order value (6.2.4.2).
Changing the effective range of a dummy argument array has no effect on the effective
range of the associated actual argument array.

If the dummy argument is allocatable, the actual argument must be an allocatable array that
does not have the RANGE attribute and the types, type parameter values, if any, and ranks
must agree. The allocation status of the dummy argument becomes that of the actual argu-
ment at invocation of the procedure. This may be changed during execution of the proce-
dure, in which case the actual argument allocation state becomes that of the dummy argu-
ment when the procedure completes execution.

If the intent of a dummy argument is OUT or INOUT, the actual argument must be definable.
If the intent of a dummy argument is OUT, the corresponding actual argument becomes
undefined at the time the association is established.

12.4.1.2 Arguments Associated with Dumray Procedures. |f a dummy argument is a
dummy procedure, the associated actual argument must be the name of an external,
dummy, or intrinsic procedure. The only intrinsic procedures permitted are those listed in
13.11 and not marked with a bullet (e¢). The actual argument name must be one for which
exactly one procedure is accessible in the invoking procedure. (A specific intrinsic function
and a generic intrinsic function of the same name are considered to be one procedure.)
The actual argument procedure must not have dummy arguments with assumed type param-
eters other than character assumed lengths.

if the interface of the dummy procedure is explicit, the characteristics of the associated pro-
cedure must be the same as the characteristics of the dummy procedure (12.2).

If the interface of the dummy procedure is implicit and either the name of the dummy proce-
dure is explicitly typed or the procedure is referenced as a function, the dummy procedure
must not be referenced as a subroutine and the actual argument must be a function or
dummy procedure.

If the interface of the dummy procedure is implicit and a reference to the procedure appears
as a subroutine reference, the actual argument must be a subroutine or dummy procedure.

12.4.1.3 Arguments Associated with Alternate Return !ndicators. If a dummy argument is an
asterisk (12.5.2.3), the associated actual argument must be an alternate return specifier. The label in the alternate return
specifier must identify an executable construct in the scoping unit containing the procedure reference.

12.4.1.4 Sequence Association. A sequence array is an array without the RANGE attri-
bute that is an allocatable array, assumed-size array, or explicit-shape array that is either a
dummy array associated with a sequence array or is not a dummy argument. An actual
argument represents an element sequence if it is a whole array name, array element name,
or array element substring name and the array is a sequence array. If the actual argument
is a whole array name, the element sequence consists of the elements in subscript order
value. If the actual argument is an array element name, the element sequence consists of
that array element and each element that follows it in subscript order value. If the actual
argument is an array element substring name, the element sequence consists of the charac-
ter storage units beginning with the first storage unit in that array element substring and con-
tinuing to the end of the array. The character storage units are viewed as elements consist-
ing of consecutive groups of character storage units having the length of the array element
substring. Thus, the first such element is the array element substring itself. Note that some
of the elements in the element sequence may consist of storage units from different
elements of the original array.

Version 103 1986 December Page 12-6

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

45

50

55

If the interface for a procedure reference is implicit, the actual argument represents an ele-
ment sequence, and the corresponding dummy argument is an array-valued data object that
is neither allocatable nor assumed shape, the actual argument is sequence associated with
the dummy argument. The rank and shape of the actual argument need not agree with the
rank and shape of the dummy argument, but the number of elements in the dummy argu-
ment must not exceed the number of elements in the element sequence of the actual argu-
ment. If the dummy argument is assumed size, the number of elements in the dummy argu-
ment is exactly the number of elements in the element sequence.

Table 12.1. The effects of the shape matching rules in 12.41.1 and 12.4.1.4 for
nonelemental references.

Actual Argument

Nonsequence Other Scalars
Array Sequence Array, (Including
Dummy (Including Allocatable Not Assumed- Element of element of
Argument ranged and Size, Not Assumed- Sequence nonsequence
allocatable) Not Ranged Allocatable Size Array array)
Explicit- Allowed Allowed, Allowed, Alowed, Aliowed,
Shaped Shape may Shape may Shape may Shape may
differ differ differ differ
Assumed- Allowed, Allowed, Allowed, Allowed,
Size Shape may Shape may Shape may Shape may
differ differ differ differ
Assumed- Allowed, Allowed, Allowed,
Shape Explicit Explicit Explicit
interface interface interface
required required required
Allocatable Allowed
Explicit
interface
required
Scalar Allowed Allowed

Notes for Table 12.1:
(1) For arrays of type character, “element” includes element substrings.

(2) “Shape may djffer” indicates that the shape of the actual argument need not
match the shape of the dummy argument if the interface is implicit.

12.4.2 Function Reference. A function is invoked during expression evaluation by a func-
tion reference or by defined operations (7.1.3). When it is invoked, all actual argument
expressions are evaluated, then the arguments are associated, and then the function is exe-
cuted. When execution of the function is complete, the value of the function result is avail-
able for use in the expression that caused the function to be invoked.

12.4.3 Elemental Function Reference. A reference to a function is an elemental refer-
ence if the interface for the function is explicit, if its dummy arguments and result are all
scalar data objects, and if the type parameters of the result are independent of the values of
the actual arguments. Arguments to such a reference may be arrays, provided all array
arguments have the same effective shape. The result has the same shape as the array
arguments and the value of each element in the result is obtained by evaluating the function
using the scalar arguments and the corresponding elements of the array arguments. For
example, if X and Y are arrays of shape [m, n],

Version 103 1986 December Page 12-7

PROCEDURES X3J3/s8

10

15

20

25

30

35

40

MAX (X, 0.0, Y)
is an array expression of shape [m, n] whose elements have values

MAX (X (, /),0.0,Y (i, j), i = 1,2,..m, j = 1,2,...n
The result must not depend on the order in which these references are made.
For example, the reference to the procedure

FUNCTION SCALE (A)
READ (*, #) FACTOR
SCALE = A * FACTOR

END

must not be an elemental reference.

A function reference is not interpreted as being an elemental reference if it may be interpre-
ted as a nonelemental reference to a function with the same name whose interface is
explicit in the scoping unit containing the reference. For example, the expression POWER
(A (1 :10)), where A is an array, would not be interpreted as an elemental reference if a
function POWER with one argument having the type and rank of A is accessible.

12.4.4 Subroutine Reference. A subroutine is invoked by execution of a CALL statement
or defined assignment statement (7.5.1.3). When a subroutine is invoked, all actual argu-
ment expressions are evaluated, then the arguments are associated, and then the subrou-
tine is executed. When the action specified by the subroutine is completed, execution of
the CALL statement or defined assignment statement is also completed. If a CALL statement
includes one or more alternate return specifiers among its arguments, control may be transferred to one of the state-
ments indicated, depending on the action specified by the subroutine.

12.4.5 Elemental Assignment. A reference to an assignment subroutine may be an ele-
mental reference in a defined assignment statement if its dummy arguments are scalar and
the type parameters of the first dummy argument are independent of the value of the sec-
ond dummy argument. In such a reference, the first actual argument is array valued and the
second is of the same effective shape or is scalar. The subroutine is invoked once for each
element of the first actual argument, using the corresponding element of the second actual
argument or its scalar value. The result must not depend on the order in which these invo-
cations are made. An assignment is not interpreted as an elemental assignment if it may be
interpreted as a nonelemental assignment.

12.5 Procedure Definition.

12.5.1 Intrinsic Procedure Definition. Intrinsic procedures are defined as an inherent part
of the processor. A standard-conforming processor must include the intrinsic procedures
described in Section 13, but may include others. However, a standard-conforming program
must not make use of intrinsic procedures other than those described in Section 13.

12.5.2 Procedures Defined by Subprograms. When a procedure defined by a subpro-
gram is invoked, an instance (12.5.2.4) of the procedure is created and executed. Execution
begins with the first executable construct following the FUNCTION, SUBROUTINE, or
ENTRY statement specifying the name of the procedure invoked.

Version 1G3 1986 December Page 12-8

PROCEDURES i X3J3/S8

12.5.2.1 Effects of Intent on Subprograms. The intent of dummy data objects limits the
way in which they may be used in a subprogram. A dummy data object having intent IN
may not be defined or redefined by the procedure. A dummy data object having intent QUT
is initially undefined in the procedure. A dummy data object with intent INOUT may be ref-

5 erenced or be defined. A dummy data object whose intent is neither specified nor implied
by the presence of the OPERATOR or ASSIGNMENT option is subject to the limitations of
the data entity that is the associated actual argument. That is, a reference to the dummy
data object may appear if the actual argument is defined and may be defined if the actual
argument is definable.

10 12.5.2.2 Function Subprogram.

R204 external-subprogram is procedure-heading
[specification-part |
[execution-part |

[internal-subprogram-part |
15 procedure-ending
R205 procedure-heading is function-stmt
or subroutine-stmt
R206 procedure-ending is end-function-stmt
or end-subroutine-stmt
20 R1213 function-stmt lis [prefix]| FUNCTION function-name B
B ([dummy-arg-name-list |) | suffix]
R1214 prefix is type-spec | RECURSIVE]
or RECURSIVE [type-spec]
R1215 suffix is RESULT (result-name) [OPERATOR (defined-operator)]
25 or OPERATOR (defined-operator) [RESULT (result-name)]
R1216 end-function-stmt is END [FUNCTION [function-name 1 |
Constraint: FUNCTION must be present on the end-function-stmt of an internal or module
function.

Constraint: An internal function must not contain an ENTRY statement.

30 Constraint: If function-name is supplied on the end-function-stmt, it must agree with the
function-name on the function-stmt.

The type of a function subprogram may be specified by a type specification in the FUNC-
TION statement or by the function name appearing in a type statement in the declaration
part of the function subprogram. It may not be specified both ways. If it is not specified

35 either way, it is determined by the implicit typing rules in force within the function subpro-
gram. |f the function result is array valued or allocatable, this must be specified by
specifications of the function name within the function body.

The keyword RECURSIVE must be present if the function invokes itself, either directly or
indirectly.

40 The name of the function is function-name.

If RESULT is specified, the name of the result variable of the function is resuft-name and all
occurrences of the function name in execution-part statements in the scoping unit are recur-
sive function references. If RESULT is not specified, the result variable is function-name
and all occurrences of the function name in execution-part statements in the scoping unit are

45 references to the result variable. The result-name must not appear in any specification
statement.

Version 103 1986 December Page 12-9

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

45

If OPERATOR is specified, the interface for the procedure includes the ability to invoke it
using a defined operator. This operator must be unary if the function has one dummy argu-
ment and binary if it has two dummy arguments; no other number of dummy arguments is
permitted. The dummy arguments must be nonoptional dummy data objects with intent IN.
If the intent of a dummy argument is not specified, the specification of OPERATOR causes it
to have intent IN. [f the operator is unary, in any scoping unit in which this interface is
explicit, any reference to that operator in which the operand has the characteristics corre-
sponding t> the dummy argument of the function is treated as a reference to the function. If
the operatcr is binary, in any scoping unit in which this interface is explicit, any reference to
that operator in which the left operand has the characteristics corresponding to the first
dummy argument of the function and the right operand hzs the characteristics corresponding
to the second dummy argument of the function is treated as a reference to the function.
Such a reference may be elemental (12.4.3).

An example of a recursive function is:

RECURSIVE INTEGER FUNCTION BEST (A, B) RESULT (BST)
INTEGER A, B

BST=BEST(A-1,B-1
END FUNCTION BEST

12.5.2.3 Subroutine Subprogram.

R204 external-subprogram is procedure-heading
[specification-part |
[execution-part |
[internal-subprogram-part |
procedure-ending

R205 procedure-heading is function-stmt
or subroutine-stmt
R206 procedure-ending is end-function-stmt
or end-subroutine-stmt
R1217 subroutine-stmt is [RECURSIVE | SUBROUTINE subroutine-name &
: B [(dummy-arg-list) | | ASSIGNMENT]
R1218 dummy-arg is dummy-arg-name
or *
R1219 end-subroutine-stmt is END [SUBROUTINE [subroutine-name |]
Constraint: SUBROUTINE must be present on the END statement of an internal or module
subroutine.

Constraint: An internal subroutine must not contain an ENTRY statement.

Constraint: If subroutine-name is present on the end-subroutine-stmt, it must agree with the
subroutine-name on the subroutine-stmt.

The keyword RECURSIVE must be present if the subroutine subprogram invokes itself,
either directly or indirectly.

If ASSIGNMENT is specified, the subroutine may be referenced as an assignment statement
and is called an assignment subroutine. The subroutine must have exactly two arguments
which must be nonoptional dummy data objects. The first dummy argument must have
intent OUT or INOUT. If its intent is not specified, it has intent OUT. The second dummy
argument must have intent IN. If its intent is not specified, it has intent IN. In any program
unit in which this interface is explicit, any assignment statement in which the variable has

Version 103 1986 December Page 12-10

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

45

the characteristics corresponding to the first dummy argument of the subroutine and the
expression has the characteristics corresponding to the second dummy argument of the sub-
routine is treated as a reference to the subroutine. Note also the possibility of an assign-
ment statement referencing the subroutine elementally (12.4.5).

An example of an assignment subroutine is:

SUBROUTINE ASSIGNSC (STR, CHAR) ASSIGNMENT
| A MODULE PROCEDURE FOR ASSIGNING A CHARACTER VARIABLE
! TO A STRING VARIABLE OF THE TYPE DEFINED IN 4.4.1.1,
I ASSUMING THAT THE TYPE DEFINITION IS ALSO IN THE MODULE.
TYPE (STRING (%)) STR
CHARACTER (LEN = *) CHAR
STR % LENGTH = LEN (CHAR)
STR % VALUE = CHAR -
END SUBROUTINE ASSIGNSC

12.5.2.4 Instances of a Subprogram. When a function or subroutine defined by a subpro-
gram is invoked, an instance of that subprogram is created.

Each instance has an independent sequence of execution and an independent set of
dummy arguments and nonsaved data objects. If an internal procedure or statement func-
tion contained in the subprogram is invoked directly from an instance of the subprogram, the
created instance of that internal procedure or statement function also has access to the enti-
ties of that instance of the host subprogram.

All other entities, including saved data objects, are common to all instances of the subpro-
gram. For example, the value of a saved data object appearing in one instance may have
been defined in a previous instance or by an INITIAL attribute or DATA statement.

12.5.2.5 ENTRY Statement.
R1220 entry-stmt is ENTRY entry-name [([dummy-arg-list])]

Constraint: A dummy-arg may be an alternate return indicator only if the ENTRY statement is contained in a sub-
routine subprogram.

If the ENTRY statement is contained in a function subprogram, an additional function is
defined by that subprogram. The name of the function and its result variable is entry-name.
The characteristics of the function result are specified by specifications of entry-name. The
dummy arguments of the function are those specified on the ENTRY statement. If the char-
acteristics of the result of the function named on the ENTRY statement are the same as the
characteristics of the function named on the FUNCTION statement, their result variables are
associated. Otherwise, they are storage associated with the restrictions that they are scalar,
that they have type and type parameters permitting storage association, and that they have
the same lengths if they are of character type,

If the ENTRY statement is contained in a subroutine subprogram, an additional subroutine is
defined by that subprogram. The name of the subroutine is entry-name. The dummy argu-
ments of the subroutine are those specified on the ENTRY statement.

12.5.2.6 RETURN Statement.
R1221 return-stmt is RETURN [scalar-int-expr |

Constraint: The return-stmt must be contained in the scoping unit of a function or subrou-
tine subprogram.

Constraint: The scalar-int-expr is allowed only in the scoping unit of a subroutine subprogram.

Version 103 1986 December Page 12-11

PROCEDURES X3J3/s8

10

15

20

25

30

35

40

45

Execution of the RETURN statement completes execution of the instance of the subprogram
in which it appears. If the expression is present and has a value n between 1 and the number of asterisks in the
dummy argument list, the CALL statement that invoked the subroutine transfers control to the statement identified by the
nth alternate return specifier in the actual argument list. If the expression is omitted or has a value outside the required
range, there is no transfer of control to an alternate return.

Execution of an END statement, END FUNCTION statement, or END SUBROUTINE state-
ment is equivalent to executing a RETURN statement with no expression.

12.5.2.7 CONTAINS Statement.
R1222 contains-stmt is CONTAINS

The CONTAINS statement separates the body of a program unit from any internal or module
procedures it may contain. Execution of the CONTAINS statement in a main program or
subprogram causes transfer of control to the END PROGRAM, END FUNCTION, or END
SUBROUTINE statement of the program in which it appears. The CONTAINS statement is
not executable.

12.5.2.8 Restrictions on Dummy Arguments Not Present. A dummy argument is present
in an instance of a subprogram if it is associated with an actual argument and the actual
argument either is a dummy argument that is present in the invoking procedure or is not a
dummy argument of the invoking procedure. A dummy argument that is not optional must
be present. An optional dummy argument that is not present is subject to the following
restrictions:

(1) Iif it is a dummy data object, it must not be referenced or be defined.
(2) If it is a dummy procedure, it must not be invoked.

(3) It must not be supplied as an actual argument corresponding to a nonoptional
dummy argument other than the argument of the PRESENT intrinsic function.

(4) It may be supplied as an actual argument corresponding to an optional dummy
argument. The optional dummy argument is then also considered not to be asso-
ciated with an actual argument.

12.5.2.9 Restrictions on Entities Associated with Dummy Arguments. While an entity is
associated with a dummy argument, the following restrictions hold:

(1) No action may be taken that affects the value or availability of the entity or any
part of it, except through the dummy argument. For example, in

SUBROUTINE OUTER
REAL, ALLOCATABLE :: A (:)

ALLOCATE (A (1:N))

CALL INNER (A)

CONTAINS
SUBROUTINE INNER (B)
REAL :: B (2)
END SUBROUTINE INNER

SUBROUTINE SET (C, D)
REAL, OUT :: C
REAL, IN :: D

Version 103 1986 December Page 12-12

PROCEDURES

10

15

20

25

30

35

40

Version 103

X3J3/S8

c=0
END SUBROUTINE SET
END SUBROUTINE OUTER

an assignment statement such as
A(=1.0

would not be permitted during the execution of INNER because this would be
changing A without using B, but statements such as

B () =1.0

or

CALL SET B (1), 1.00
would be allowed. Similarly,
DEALLOCATE (A)

would not be allowed because this affects the availability of A without using B. In
this case,

DEALLOCATE (B)

also would not be bermitted, but would be permitted if B were declared
ALLOCATABLE.

Note that if there is a partial or complete overlap between the actual arguments
associated with two different dummy arguments of the same procedure, the over-
lapped portions are unchangeable during the execution of the procedure. For
example, in

CALL SuB (A (1:5), A (3:9))

A (3:5) cannot be changed through the first argument because it is part of the
argument associated with the second dummy argument and cannot be changed
through the second dummy argument because it is part of the argument associ-
ated with the first dummy argument. A (1:2) remains changeable through the first
dummy argument and A (6:9) remains changeable through the the second dummy
argument.

Note that since a dummy argument declared with an intent of IN cannot be used
to change the associated actual argument, the associated actual argument
remains constant throughout the execution of the procedure.

If any part of the entity is defined through the dummy argument, then at any time
during the execution of the procedure, either before or after the definition, it may
be referenced only through that dummy argument. For example, in

MODULE DATA ’
REAL :: W, X, Y, Z
END MODULE DATA

PROGRAM MAIN
USE DATA

CALL INIT (X)
END PROGRAM MAIN ,

SUBROUTINE INIT (V)

1986 December Page 12-13

PROCEDURES X3J3/58

10

15

20

25

30

35

40

USE DATA
READ (%, *) V

END SUBROUTINE INIT

variable X may not be directly referenced at any time during the execution of INIT
because it is being defined through the dummy argument V. X may be (indirectly)
referenced through V. W, Y, and Z may be directly referenced. X may, of
course, be directly referenced once execution of INIT is complete.

12.5.3 Definition of Procedures by Means Other Thaii Fortran. The means other than
Fortran by which a procedure may be defined are processor dependent. A reference to
such a procedure is made as though it were defined by a subprogram. The definition of a
non-Fortran procedure must not be contained in a Fortran program unit and a Fortran pro-
gram unit must not be contained in the definition of a non-Fortran procedure. The interface
to a non-Fortran procedure may be specified in an interface block.

12.5.4 Statement Function.
R1223 stmt-function-stmt is function-name ([dummy-arg-name-list |) = expr

Constraint: The expr may be composed only of constants (literal and named), references to
scalar variables and array elements, references to functions, and intrinsic opera-
tors. If a reference to another statement function appears in expr, its definition
must have been provided earlier in the scoping unit.

Constraint. The function-name and each dummy-arg-name must be specified, explicitly or
implicitly, to be scalar data objects.

Each scalar variable reference may be either a reference to a dummy argument of the state-
ment function or a reference to a variable within the same scoping unit as the statement
function statement.

The statement function produces the same resulit value as an internal function of the form:

FUNCTION function-name ([dummy-arg-name-list |)
function-and-dummy-specifications
function-name = expr

END FUNCTION function-name

where function-and-dummy-specifications are the specifications necessary to cause function-
name and each dummy-arg-name to be given explicitly the same type and type parameters
that those names are given, explicitly or implicitly, in the scoping unit containing the state-
ment function. Note, however, that unlike the internal function, the statement function
always has an implicit interface and may not be supplied as a procedure argument.

12.5.5 Overloading Names. Two or more functions may be accessible with the same
name in the same program scope if any argument list would be appropriate in referencing at
most one of them. Similarly, two or more functions may be accessible with the same opera-
tor symbol in the same scoping unit, two or more subroutines may be accessible with the
same name in the same scoping unit, and two or more subroutines may be accessible as
assignments in the same program scope (Section 14). The spécific rules on how any two
such procedures must differ are given in 14.1.2.3.

Version 103 1986 December Page 12-14

10

15

20

25

30

35

13 INTRINSIC PROCEDURES

13.1 Intrinsic Functions.

An intrinsic function is either an inquiry function, an elemental function, or a transforma-
tional function. An inquiry function is one whose result depends on the explicit or implicit
declarations associated with its principal argument and not on the value of this argument; in
fact, the argument value may be undefined. An elemental function is one that is specified
for scalar arguments, but may be applied to array arguments as described in 13.2. All other
intrinsic functions are transformational functions; they aimost all have one or more array-
valued arguments or an array-valued result.

Generic names of intrinsic functions are listed in 13.9.1 through 13.9.14. In most cases,
generic functions accept arguments of more than one type and the type of the result is the
same as the type of the arguments. Specific names of intrinsic functions with correspond-
ing generic names are listed in 13.11.

If an intrinsic function is used as an actual argument to an external procedure, its specific
name must be used and it may be referenced in the external procedure only with scalar
arguments. [f an intrinsic function does not have a specific name, it must not be used as an
actual argument.

13.2 Elemental Intrinsic Function Arguments and Resuits.

If a generic name or a specific name is used to reference an elemental intrinsic function, the
shape of the result is the same as the effective shape of the argument with the greatest
rank. If the arguments are all scalar, the result is scalar. For those elemental intrinsic func-
tions that have more than one argument, all arguments must be conformable. In the array-
valued case, the values of the elements of the result are the same as would have been
obtained if the scalar-valued function had been applied separately to corresponding elements
of each argument.

13.3 Argument Presence Inquiry Function. The inquiry function PRESENT permits
an inquiry to be made about the presence of an actual argument associated with a dummy
argument. '

13.4 Numeric, Mathematical, Character, and Derived-Type Functions.

13.4.1 Numeric Functions. The elemental functions INT, REAL, DBLE, and CMPLX per-
form type conversions. The elemental functions AIMAG, CONJG, AINT, ANINT, NINT, ABS,
MOD, SIGN, DIM, DPROD, MAX, and MIN perform simple numeric operations.

13.4.2 Mathematical Functions. The elemental functions SQRT, EXP, LOG, LOG10, SIN,
COS, TAN, ASIN, ACOS, ATAN, ATAN2, SINH, COSH, and TANH evaluate elementary
mathematical functions.

13.4.3 Character Functions. The elemental functions ICHAR, CHAR, LGE, LGT, LLE,
LLT, IACHAR, ACHAR, INDEX, VERIFY, ADJUSTL, ADJUSTR, REPEAT, SCAN, and
LEN_TRIM perform character operations. The TRIM function returns the argument with
trailing blanks removed.

Version 103 1986 December Page 13-1

INTRINSIC PROCEDURES X3J3/s8

10

15

20

25

30

35

40

13.4.4 CHARACTER Inquiry Function. The inquiry function LEN returns the length of a
character entity.

13.4.5 Derived Data Type Inquiry Functions. A derived data type definition that includes
a dummy type parameter list causes the implicit definition of a set of inquiry functions, one
for each type parameter. For nonprecision parameters, these inquiry functions have names
that are the same as the dummy parameter names. For precision and exponent range
parameters, the inquiry functions are called EFFECTIVE_PRECISION and
EFFECTIVE_EXPONENT__RANGE. Each has a single argument whose type must be that
defined by the type definition and returns a single integer result. For the inquiry functions of
nonprecision parameters, the result is the value of the indicated parameter for the structure
that is the argument.

The result of the EFFECTIVE__PRECISION and EFFECTIVE_EXPONENT__RANGE func-
tions when applied to a structure of a type with precision and exponent range parameters is
the same as would be obtained if these functions were applied to an object of type real
declared with the same precision and exponent range parameter values. For example, con-
sider a type defined by:

TYPE MATRIX (PRECISION, EXPONENT_RANGE, ORDER)
REAL (PRECISION, EXPONENT_RANGE), ARRAY (ORDER, ORDER) :: A
END TYPE MATRIX

The implicitly-defined inquiry functions that take type MATRIX arguments are ORDER,
EFFECTIVE_PRECISION, and EFFECTIVE_EXPONENT_RANGE. If the following objects
were declared:

TYPE (MATRIX (10, 50, 25)) :: COVAR
TYPE (MATRIX (5, 30, 3)) :: ROTATE
REAL (10, 50) :: X
REAL (5, 30) :: Y

references to these inquiry functions would return the following results:

ORDER (COVAR) returns 25
ORDER (ROTATE) returns 3
EFFECTIVE_PRECISION (COVAR)

returns the same value as EFFECTIVE__PRECISION (X)
EFFECTIVE_EXPONENT_RANGE (COVAR)

returns the same value as EFFECTIVE_EXPONENT_RANGE (X)
EFFECTIVE_PRECISION (ROTATE)

returns the same value as EFFECTIVE__ PRECISION (Y)
EFFECTIVE_EXPONENT_RANGE (ROTATE)

returns the same value as EFFECTIVE_EXPONENT__RANGE (Y)

The scope of these implicitly defined inquiry functions is the same as that of the derived
data type. These functions may be referenced in any scoping unit in which the derived data
type definition may be referenced. Note that the argument need not be defined at the time
the function is referenced. For example, if

TYPE (STRING (100)) :: LINE

declares an object of the type STRING as defined in 4.4.1.1, the function reference
MAX__SIZE (LINE) returns the integer result 100.

Version 103 1986 December Page 13-2

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

13.5 Transfer Function. The function TRANSFER serves to gain access to the physical
representation specified by its first argument in a form specified by its second argument.

13.6 Numeric Manipulation and Inquiry Functions. The floating point manipulation
and inquiry functions are described in terms of a model for the representation and behavior
of real numbers on a processor. The model has parameters which are determined so as to
make the model best fit the machine on which the executable program is executed.

13.6.1 Models for Integer and Real Data. The model set for integer i is defined by:

; ul k1
I =8X Yy wexrt™
k=1
where r is an integer exceeding one, g is a positive integer, each w, is a nonnegative inte-
ger less than r, and s is +1 or -1. The model set for real x is defined by:

0 or
X =

p
s x b® x Y frxb7k
k=1
where b and p are integers exceeding one; each f, is a nonnegative integer less than b,
except f, which is also nonzero; s is +1 or —1; and e is an integer that lies between some
integer maximum ey, and some integer minimum e, inclusively. The integer parameters
r and q determine the set of model integers and the integer parameters b, p, €pmin, and € max
determine the set of model floating point numbers. The parameters of the integer and real
models are available for integer and each real data type implemented by the processor.
The parameters characterize the set of available numbers in the definition of the model.
The floating point manipulation and inquiry functions provide values related to the parame-
ters and other constants related to them. Examples of these functions in this section use
the models:
31
i=8x Lwexak!
k=1

and
24
x =85 %x2°x [1/2 + ka><2‘kJ, -126 < e =127
k=2

13.6.2 Numeric Inquiry Functions. The inquiry functions RADIX, DIGITS, MINEXPONENT,
MAXEXPONENT, EFFECTIVE__PRECISION, EFFECTIVE_EXPONENT__RANGE, HUGE,
TINY, and EPSILON return scalar values related to the parameters of the model associated
with the type and type parameters of the arguments. The value of the arguments to these
functions need not be defined, the shape of array arguments need not be defined, and array
arguments need not be allocated.

It is not necessary for a processor to evaluate the arguments of a numeric inquiry function if
the value of the function can be determined otherwise.

13.6.3 Floating Point Manipulation Functions. The elemental functions EXPONENT,
SCALE, NEAREST, FRACTION, SETEXPONENT, SPACING, and RRSPACING return values
related to the components of the model values (13.6.1) associated with the actual values of
the arguments.

Version 103 1986 December Page 13-3

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

45

13.7 Array Intrinsic Functions. The array intrinsic functions perform the following
operations on arrays: vector and matrix multiplication, numeric or logical computation that
reduces the rank, array structure inquiry, array construction, array manipulation, and geomet-
ric location.

13.7.1 The Shape of Array Arguments. The transformational array intrinsic functions
operate on each array argument as a whole. The effective shape of the corresponding
actual argument must therefore be defined; that is, the actual argument must be an array
section, an assumed-shape array, an explicit-shape array, an allocatable array that has been
allocated, an alias array that is not alias associated, or an array-valued expression. It must
not be an assumed-size array.

Some of the inquiry intrinsic functions accept array arguments for which the shape need not
be defined. Assumed-size arrays may be used as arguments to these functions; they
include the functions ELBOUND and DLBOUND, and certain references to DSIZE, ESIZE,
EUBOUND, and DUBOUND.

13.7.2 Mask Arguments. Some array intrinsic functions have an optional MASK argument
that is used by the function to select the elements of one or more arguments to be operated
on by the function. Any element not selected by the mask need not be defined at the time
the function is invoked.

The MASK affects only the value of the function, and does not affect the evaluation, prior to
invoking the function, of arguments that are array expressions.

A MASK argument must be of type LOGICAL.

13.7.3 Vector and Matrix Multiplication Functions. The matrix multiplication function
MATMUL operates on two matrices, or on one matrix and one vector, and returns the corre-
sponding matrix-matrix, matrix-vector, or vector-matrix product. The arguments to MATMUL
are arrays of the same type, which may be numeric (integer, real, or complex) or logical. On
logical matrices and vectors, MATMUL performs Boolean muiltiplication.

The dot product function DOTPRODUCT operates on two vectors and returns their scalar
product. The vectors are of the same type (numeric or logical) as for MATMUL. For logical
vectors, DOTPRODUCT returns the Boolean scalar product.

13.7.4 Array Reduction Functions. The array reduction functions SUM, PRODUCT,
MAXVAL, MINVAL, COUNT, ANY, and ALL perform numerical, logical, and counting opera-
tions on arrays. They may be applied to the whole array to give a scalar resu't or they may
be applied over a given dimension to yield a result of rank reduced by one. By use of a log-
ical mask that is conformable with the given array, the computation may be confined to any
subset of the array (e.g., the positive elements).

13.7.5 Array Inquiry Functions. The array inquiry function RANK returns the number of
dimensions of its argument. The functions ESIZE, ESHAPE, ELBOUND, and EUBOUND
return, respectively, the effective number of elements, the effective sizes along each dimen-
sion, and the effective lower and upper bounds of the subscripts along each dimension. The
functions DSIZE, DSHAPE, DLBOUND, and DUBOUND return, respectively, the declared
size of the array, the declared shape, and the declared lower and upper bounds of the sub-
scripts along each dimension.

The values of the array arguments to these functions need not be defined.

It is not necessary for a processor to evaluate the arguments of an array inquiry function if
the value of the function can be determined otherwise.

Version 103 1986 December Page 13-4

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

13.7.6 Array Construction Functions. The functions MERGE, SPREAD, RESHAPE,
PACK, and UNPACK construct new arrays from the elements of existing ones. MERGE
combines two conformable arrays into one by an element-wise choice based on a logical
mask. SPREAD constructs an array from several copies of an actual argument (SPREAD
does this by adding an extra dimension, as in forming a book from copies of one page).
RESHAPE produces an array with the same elements and a different shape. PACK and
UNPACK respectively gather and scatter the elements of a one-dimensional array from and
to positions in another array where the positions are specified by a logical mask.

13.7.7 Array Manipulation Functions. The functions TRANSPOSE, EOSHIFT, and
CSHIFT manipulate arrays. TRANSPOSE performs the matrix transpose operation on a two-
dimensional array. The shift functions leave the shape of an array unaltered but shift the
positions of the elements parallel to a specified dimension of the array. These shifts are
either circular (CSHIFT), in which case elements shifted off one end reappear at the other
end, or end-off (EOSHIFT), in which case specified boundary elements are shifted into the
vacated positions.

The functions MAXLOC and MINLOC return the location (subscripts) of an element of an
array that has maximum and minimum values, respectively. By use of an optional logical
mask that is conformable with the given array, the reduction may be confined to any subset
of the array.

13.8 Intrinsic Subroutines. Intrinsic subroutines are supplied by the processor and
have the special definitions given in 13.10 and 13.12. An intrinsic subroutine is referenced
by a CALL statement that uses its name explicitly. The name of an intrinsic subroutine must
not be used as an actual argument. The effect of a subroutine reference is as specified in
13.12.

13.8.1 Date and Time Subroutines. The subroutines DATE_AND_TIME and
SYSTEM__CLOCK return integer data from the date and real-time clock. The time returned
is local, but there are facilities for finding out the difference between local time and Green-
wich Mean Time.

13.8.2 Random Numbers. The subroutine RANDOM returns a random number or an array
of random numbers. The subroutine RANDOMSEED initializes or restarts the associated
rahdom number sequence.

13.9 Tables of Generic Intrinsic Functions.

13.9.1 Argument Presence Inquiry Function.
PRESENT (A) Argument presence

13.9.2 Numeric Functions.

ABS (A) Absolute value
AIMAG (2) Imaginary part of a complex number
AINT (A) Truncation to whole number
ANINT (A) Nearest whole number
CMPLX (X, Y, MOLD) Conversion to complex type
Optional Y, MOLD
CONJG (2) Conjugate of a complex number
DBLE (A) Conversion to double precision real type
DIM (X, Y) Positive difference

Version 103 1986 December Page 13-5

INTRINSIC PROCEDURES

10

13.9.

15

20

25

13.9.

30

35

40

45

50

Version 103

DPROD (X, Y)

INT (A)

MAX (A1, A2, A3,...)
Optional A3,...

MIN (A1, A2, A3,..))
Optional A3,...

MOD (A, P)

NINT (A)

REAL (A, MOLD)
Optional MOLD

SIGN (A, B)

3 Mathematical Functions.

ACOS (X)
ASIN (X)
ATAN (X)
ATAN2 (Y, X)
COS (X)
COSH (X)
EXP (X)
LOG (X)
LOG10 (X)
SIN (X)
SINH (X)
SQRT (X)
TAN (X)
TANH (X)

4 Character Functions.
ACHAR (1)

ADJUSTL (STRING)
ADJUSTR (STRING)
CHAR ()

IACHAR (C)
ICHAR (C)

INDEX (STRING, SUBSTRING, BACK)
Optional BACK

LEN__TRIM (STRING)

LGE (STRING__A, STRING__B)

LGT (STRING__A, STRING__B)

LLE (STRING__A, STRING__B)

LLT (STRING__A, STRING__B)

REPEAT (STRING, NCOPIES)

SCAN (STRING, SET, BACK)
Optional BACK

TRIM (STRING)

VERIFY (STRING, SET, BACK)
Optional BACK

1986 December

X3J3/S38

Double precision real product
Conversion to integer type
Maximum value

Minimum value

Remainder modulo P
Nearest integer
Conversion to real type

Transfer of sign

Arccosine

Arcsine
Arctangent
Arctangent

Cosine

Hyperbolic cosine
Exponential
Natural logarithm
Common logarithm (base 10)
Sine

Hyperbolic sine
Square root
Tangent
Hyperbolic tangent

Character in given position

in ASCII collating sequence
Adjust left
Adjust right
Character in given position

in processor collating sequence
Position of a character

in ASCII collating sequence
Position of a character

in processor collating sequence
Starting position of a substring

Length without trailing blank characters
Lexically greater than or equal
Lexically greater than

Lexically less than or equal

Lexically less than

Repeated concatenation

Scan a string for a character in a set

Remove trailing blank characters
Verify the set of characters in a string

Page 13-6

INTRINSIC PROCEDURES

13.9.5 Character Inquiry Functions.
LEN (STRING)

13.9.6 Numeric Inquiry Functions.

DIGITS (X)
5 EFFECTIVE__EXPONENT__RANGE (X)

EFFECTIVE__PRECISION (X)
EPSILON (X)
HUGE (X)
MAXEXPONENT (X)

10 MINEXPONENT (X)
RADIX (X)
TINY (X)

13.9.7 Transfer Function.

TRANSFER (SOURCE, MOLD)
15

13.9.8 Floating-point Manipulation Functions.

EXPONENT (X)
FRACTION (X)
NEAREST (X, S)
20
RRSPACING (X)

SCALE (X,)
SETEXPONENT (X, 1)
25 SPACING (X)

13.9.8 Vector and Matrix Multiply Functions.

DOTPRODUCT (VECTOR__A,
VECTOR_B)
30 MATMUL (MATRIX_A,
MATRIX__B)

13.9.10 Array Reduction Functions.

ALL (MASK, DIM)
Optional DIM
35 ANY (MASK, DIM)
Optional DIM
COUNT (MASK, DIM)
Optional DIM
MAXVAL (ARRAY, DIM, MASK)
40 Optional DIM, MASK
MINVAL (ARRAY, DIM, MASK)
Optional DIM, MASK
PRODUCT (ARRAY, DIM, MASK)
Optional DIM, MASK
45 SUM (ARRAY, DIM, MASK)
Optional DIM, MASK

Version 103

1986 December

X3J3/S8

Length of a character entity

Number of significant digits in the model

Effective decimal exponent range

Effective decimal precision

Number that is almost negligible compared to one
Largest number in the model

Maximum exponent in the model

Minimum exponent in the model

Base of the model

Smallest number in the model

Treat first argument as if
of type of second argument

Exponent part of a model number
Fractional part of a number
Nearest different processor number in
given direction
Reciprocal of the relative spacing
of model numbers near given number
Multiply a real by its base to an integer power
Set exponent part of a number
Absolute spacing of model numbers near given
number

Dot product of two arrays

Matrix multiplication

True if all values are true

True if any value is true

Number of true elements in an array
Maximum value in an array
Minimum value in an array

Product of array elements

Sum of array elements

Page 13-7

INTRINSIC PROCEDURES

13.9.11 Array Inquiry Functions.

ALLOCATED (ARRAY)
DLBOUND (ARRAY, DIM)
Optional DIM

X3J3/58

Array allocation
Declared lower dimension bounds of an array

5 DSHAPE (SOURCE) Declared shape of an array or scalar
DSIZE (ARRAY, DIM) Total declared number of elements in an array
Optional DIM
DUBOUND (ARRAY, DIM) Declared upper dimension bounds of an array
Optional DIM
10 ELBOUND (ARRAY, DIM) Effective lower dimension bounds of an array
Optional DIM
ESHAPE (SOURCE) Effective shape of an array or scalar
ESIZE (ARRAY, DIM) Total effective number of elements in an array
Optional DIM
15 EUBOUND (ARRAY, DIM) Effective upper dimension bounds of an array
Optional DIM
13.9.12 Array Construction Functions.
MERGE (TSOURCE, Merge under mask
FSOURCE, MASK)
20 PACK (ARRAY, MASK, VECTOR) Pack an array into an array of rank one
Optional VECTOR under a mask
RESHAPE (MOLD, SOURCE, Reshape an array
PAD, ORDER)
Optional PAD, ORDER
25 SPREAD (SOURCE, DIM, Replicates array by adding a dimension
NCOPIES)
UNPACK (VECTOR, MASK, Unpack an array of rank one into an array
FIELD) under a mask
13.9.13 Array Manipulation Functions.
30 CSHIFT (ARRAY, DIM, SHIFT) Circular shift
EOSHIFT (ARRAY, DIM, End-off shift
SHIFT, BOUNDARY)
Optional BOUNDARY
TRANSPOSE (MATRIX) Transpose of an array of rank two
35 13.9.14 Array Geometric Location Functions.
MAXLOC(ARRAY,MASK) Location of a maximum value in an array
Optional MASK
MINLOC(ARRAY,MASK) Location of a minimum value in an array
Optional MASK
40 13.10 Table of Intrinsic Subroutines.
DATE_AND__TIME (ALL, COUNT, Obtain date and time
MSECOND, SECOND, MINUTE,
HOUR, DAY, MONTH,
YEAR, ZONE)
45 Optional ALL, COUNT, MSECOND,
SECOND, MINUTE, HOUR,
DAY, MONTH, YEAR, ZONE
Version 103 1986 December Page 13-8

INTRINSIC PROCEDURES X3J3/S8

SYSTEM__CLOCK (COUNT,
COUNT_RATE, COUNT_MAX)
Optional COUNT, COUNT__RATE,
COUNT_MAX
5 RANDOM (HARVEST)
RANDOMSEED (SIZE, GET, PUT)
Optional SIZE, GET, PUT

Obtain data from the system clock

Returns pseudorandom number
Initializes or restarts random number generator

13.11 Table of Specific Intrinsic Functions.

Specific Name

Generic Name

Argument Type

10 ABS(A) ABS(A) default real
ACOS(X) ACOS(X) default real
AIMAG(Z) AIMAG(Z) default complex
AINT(A) AINT(A) default real
ALOG(X) LOG(X) default real
15 ALOG10(X) LOG10(X) default real
AMAXO(A1,A2,A3,...) REAL(MAX(A1, integer
Optional A3,... A2,A3,...))
Optional A3,...
AMAX1(A1,A2,A3,..) MAX(A1, default real
20 Optional A3,... A2,A3,..)
Optional A3,...
AMINO(A1,A2,A3,...) REAL(MIN(A1, integer
Optional AS3,... A2,A3,...))
Optional AS3,...
25 AMIN1(A1,A2,A3,...) MIN(A1, default real
Optional A3,... A2,A3,..)
Optional A3,...
AMOD(A,P) MOD(A,P) default real
ANINT(A) ANINT(A) default real
30 ASIN(X) ASINOG default real
ATAN(X) ATAN(X) default real
ATAN2(Y,X) ATAN2(Y,X) default real
CABS(A) ABS(A) default complex
CCOS(X) COS(X) default complex
35 CEXP(X) EXP(X) default complex
CHAR(I) CHAR(l) integer
CLOG(X) LOG(X) default complex
CONJG(2Z) CONJG(2Z) default complex
COS(X) COS(X) default real
40 COSH(X) COSH(X) default real
CSIN(X) SIN(X) default complex
CSQRT(X) SQRT(X) default complex
DABS(A) ABS(A) double precision real
DACOS(X) ACOS(X) double precision real
45 DASIN(X) ASIN(X) double precision real
DATAN(X) ATAN(X) double precision real
DATAN2(Y,X) ATAN2(Y,X) double precision real
DCOS(X) COS(X) double precision real
DCOSH(X) COSH(X) double precision real
50 DDIM(X,Y) DIM(X,Y) double precision real
Version 103 1986 December Page 13-9

INTRINSIC PROCEDURES

10

15

20

25

30

35

40

45

50

Version 103

e & & & @

DEXP(X)
DIM(X,Y)
DINT(A)
DLOG(X)
DLOG10(X)
DMAX1(A1,A2,A3,...)
Optional A3,...
DMIN1(A1,A2,A3,...)
Optional A3,...
DMOD(A,P)
DNINT(A)
DPROD(X,Y)
DSIGN(A,B)
DSIN(X)
DSINH(X)
DSQRT(X)
DTAN(X)
DTANH(X)
EXP(X)
FLOAT(A)
IABS(A)
ICHAR(C)
IDIM(X,Y)
IDINT(A)
IDNINT(A)
IFIX(A)
INDEX(S,T)
INT(A)
ISIGN(A,B)
LEN(S)
LGE(S,T)
LGT(S,T)
LLE(S,T)

LLT(S,T)
MAXO(A1,A2,A3,...)
Optional A3,...
MAX1(A1,A2,A3,...)
Optional A3,...
MINO(A1,A2,A3,...)
Optional A3,...
MIN1(A1,A2,A3,...)
Optional AS3,...
MOD(A,P)

NINT(A)
REAL(A)
SIGN(A,B)
SIN(X)
SINH(X)
SNGL(A)
SQRT(X)
TAN(X)
TANH(X)

EXP(X)

DIM(X,Y)

AINT(A)

LOG(X)

LOG10(X)

MAX(A1,A2,A3,...)
Optional AS3,...

MIN(A1,A2,A3,...)
Optional AS,...

MOD(A,P)

ANINT(A)

DPROD(X,Y)

SIGN(A,B)

SIN(X)

SINH(X)

SQRT(X)

TAN(X)

TANH(X)

EXP(X)

REAL(A)

ABS(A)

ICHAR(C)

DIM(X,Y)

INT(A)

NINT(A)

INT(A)

INDEX(S,T)

INT(A)

SIGN(A,B)

LEN(S)

LGE(S,T)

LGT(S,T)

LLE(S,T)

LLT(S,T)

MAX(A1,A2,A3,...)
Optional AS,...

double precision real
default real

double precision real
double precision real
double precision real
double precision real

double precision real

double precision real
double precision real
default real

double precision real
double precision real
double precision real
double precision real
double precision real
double precision real
default real

integer

integer

character

integer

double precision real
double precision real
default real
character

default real

integer

character

character

character

character

character

integer

INT(MAX(A1,A2,A3,...)) default real

Optional A3,...
MIN(A1,A2,A3,...)
Optional AS,...

integer

INT(MIN(A1,A2,A3,...)) default real

Optional AS3,...
MOD(A,P)
NINT(A)
REAL(A)
SIGN(A,B)
SIN(X)
SINH(X)
REAL(A)
SQRT(X)
TAN(X)
TANH(X)

integer

defautlt real

integer

default real

default real

default real

double precision real
default real

default real

default real

X3J3/s8

e These specific intrinsic function names must not be used as an actual argument.

1986 Decembear

Page 13-10

INTRINSIC PROCEDURES 7 X3J3/58

13.12 Specifications of the Intrinsic Procedures. This section contains detailed

specifications of all the intrinsic procedures in alphabetical order.

13.12.1 ABS (A).

10

Description. Absolute value.
Kind. Elemental function.
Argument. A must be of type integer, real, or complex.

Result Type and Type Parameters. The same as A except that if A is complex, the
result is real.

Result Value. If A is of type integer or real, the value of the result is |A|; if A is com-
plex with value (x,y), the result is equal to a processor-dependent approximation to
Vx24y2

Example. ABS ((3.0, 4.0)) has the value 5.0 (approximately).

13.12.2 ACHAR (I).

15

20

25

Description. Returns the character in a specified position of the ASCIl collating
sequence. It is the inverse of the IACHAR function.

Kind. Elemental function.
Argument. | must be of type integer.
Result Type and Type Parameters. Character of length one.

Result Value. If | has value in the range 0 < | < 127, the result is the character in
position | of the ASCIHI collating sequence; otherwise, the result is processor dependent.
If the processor is not capable of representing both upper and lower case letters and |
corresponds to an ASCII letter in a case that the processor is not capable of represent-
ing, the result is the letter in the case that the processor is capable of representing.
ACHAR (IACHAR (C)) must have the value C for any character C capable of represen-
tation in the processor.

Example. ACHAR (88) has the value 'X'.

13.12.3 ACOS (X).

30

Description. Arccosine (inverse cosine) function.

Kind. Elemental function.

Argument. X must be of type real with a value that satisfies the inequality |X| < 1.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
arccos(X), expressed ‘in radians. it lies in the range 0 < ACOS (X) < 7.

Example. ACOS (0.54030231) has the value 1.0 (approximately).

35 13.12.4 ADJUSTL (STRING).

Version 103

Description. Adjust to the left, removing leading blanks and inserting trailing blanks.
Kind. Elemental function.
Argument. STRING must be of type character.

1986 December Page 13-11

INTRINSIC PROCEDURES X3J3/S8

5

10

15

20

25

30

35

Version 103

Result Type and Type Parameters. Character of the same length as STRING.

Result Value. The value of the result is the same as STRING except that any leading
blanks have been deleted and the same number of trailing blanks have been inserted.

Example. ADJUSTL WORD’) has valu¢ 'WORD .

13.12.5 ADJUSTR (STRING).

Cescription. Adjust to the right, removing trailing blanks and inserting leading blanks.
Kind. Elemental function.

Argument. STRING must be of type character.

Result Typz and Type Parameters. Character of the same length as STRING.

Result Value. The value of the result is the same as STRING except that any trailing
blanks have been deleted and the same number of leading blanks have been inserted.

Example. ADJUSTR (WORD ’) has value ° WORD’.

13.12.6 AIMAG (2).

Description. Imaginary part of a complex number.

Kind. Elemental function.

Argument. Z must be of type complex.

Result Typ2 and Type Parameters. Real with the same type parameters as Z.
Resuli Value. If Z has the value (x, y), the result has value y.

Example. AIMAG ((2.0, 3.0)) has the value 3.0.

13.12.7 AINT (A).

Description. Truncation to a whole number.
Kind. Elemental function.

Argument. A must be of type real.

Result Type and Type Parameters. Same as A.

Result Value. If |A| < 1, AINT (A) has the value 0; if |A] = 1, AINT (A) has value equal
to the largest integer that does not exceed the magnitude of A and whose sign is the
same as the sign of A.

Example. AINT (2.783) has the value 2.0.

13.12.8 ALL (MASK, DIM).

Optional Argument. DIM
Description. Determine whether all values are true in MASK along dimension DIM.

Kind. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of MASK.

1986 December Page 13-12

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 103

Result Type and Shape. The result is of type logical. It is scalar if DIM is absent or
MASK has rank one; otherwise, the result is an array of rank n —1 and of shape (d,,
dg, —n dDIM—h leM+1.: veey dn) where (d1, dz, . dn) is the Shape of MASK.

Result Value.

Case (i) The result of ALL (MASK) has value .TRUE. if all elements of MASK are
true or if MASK has size zero, and the result has value .FALSE. if any ele-
ment of MASK is false.

Case (i) If MASK has rank one, ALL (MASK, DIM) has value equal to that of ALL
(MASK). Otherwise, the value of element (51, So, ..., SpiM—1, SDIM+1s -++» Sn)
of ALL (MASK, DIM) is equal to ALL (MASK (s1, S3, ..., SDiM=1s ©» SDIM+1
Sn))-

Examples.
Case (i) The value of ALL ([.TRUE., .FALSE., .TRUE.]) is .FALSE.

Case (i) Assuming that V is a rank one array with value [10, 11, 12, 13], the value
of ALL (V(2:3) .EQ. 2) is .FALSE.

Case (iii): If L is declared by

LOGICAL, RANGE, ARRAY (4) :: L
and assigned a value by

L = [.FALSE., .TRUE., .TRUE., .FALSE.]
then ALL (L) is .FALSE. But if the range of L is altered by

SET RANGE (2:3) L
the value of ALL (L) becomes .TRUE. Note however that ALL (L(1:4))
would be .FALSE. both before and after L is ranged.

Case (iv): If B is the array [:"2 2 g} and C is the array [(7) 2 g] , then ALL (B .NE.

C, DIM = 1) is [TRUE., .FALSE., .FALSE.] and ALL (B .NE. C, DIM = 2)
is [.FALSE., .FALSE.].

13.12.9 ALLOCATED (ARRAY).

Description. Indicate whether or not an allocatable array is currently allocated space.
Kind. Inquiry function.

Argument. ARRAY must be an allocatable array.

Result Type and Shape. The result is a logical scalar.

Result Value. The result has the value .TRUE. if ARRAY is currently allocated and has
the value .FALSE. otherwise.

13.12.10 ANINT (A).

Description. Nearest whole number.
Kind. Elemental function.
Argument. A must be of type real.

Result Type and Type Parameters. Same as A.

1986 December Page 13-13

INTRINSIC PROCEDURES X3J3/58

Result Value. If A > 0, ANINT (A) has the value AINT (A + 0.5); if A < 0, ANINT (A)
has the value AINT (A — 0.5).

Example. ANINT (2.783) has the value 3.0

13.12.11 ANY (MASK, DIM).

10

16

20

25

30

Optional Argument. DIM
Description. Determine whether any value is true in MASK along dimension DIM.

Kind. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of MASK.

Result Type and Shape. The result is of type logical. It is scalar if DIM is absent or
MASK has rank one; otherwise, the result is an array of rank n —1 and of shape (d;,
ds, ..., dpim—1, dpiM+1+ ---» dy) Where (d4, d5, ..., d;) is the shape of MASK.

Result Value.

Case (i): The result of ANY (MASK) has value .TRUE. if any element of MASK is
true and has value .FALSE. if no elements are true or if MASK has size
zero.

Case (ii): Assuming the V'is a rank one array with value {10, 11, 12, 13], the value of
ANY (V(2:3) .EQ. 11) is .TRUE.

Case (iij): If B is the array B 2 g] and C is the array

Case (iv): If MASK has rank one, ANY (MASK, DIM) has value equal to that of ANY
(MASK). Otherwise, the value of element (s1, S2, ..., SDIM—1> SDIM+1+ ---» Sn)
of ANY (MASK, DIM) is equal to ANY (MASK (51, 82, ony SpIM=1: *s SDIM+1»
vy Sp)-

Examples.
Case (i): The value of ANY ([.TRUE., .FALSE., .TRUE.]) is .TRUE.

Case (ii): It B is the array [; 2 g} and C is the array [g ‘2 g] ANY (B .NE. C,

DIM = 1) is [TRUE., .FALSE., .TRUE.] and ANY (B .NE. C, DIM = 2) is
[.TRUE., .TRUE.].

13.12.12 ASIN (X).

35

Version 103

Description. Arcsine (inverse sine) function.

Kind. Elemental function.

Argument. X must be of type real. Its value must satisfy the inequality |X| < 1.
Result Type and Type Parameters. Same as X.

Resull Value. The result has value equal to a processor-dependent approximation to
arcsin(X), expressed in radians. It lies in the range —x/2 < ASIN (X) < #/2.

Example. ASIN (0.84147098) has the value 1.0 (approximately).

1986 December Page 13-14

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

13.12.13 ATAN (X).

Description. Arctangent (inverse tangent) function.
Kind. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameters. Same as X.

Result Value. The result has the value equal to a processor-dependent approximation
to arctan(X), expressed in radians, that lies in the range —=x/2 < ATAN (X) < /2.

Example. ATAN (1.5574077) has the value 1.0 (approximately).

13.12.14 ATAN2 (Y, X).

Description. Arctangent (inverse tangent) function. The result is the principal value of
the argument of the nonzero complex number (X, Y).

Kind. Elemental function.

Arguments.
Y must be of type real.
X must be of the same type as Y. If Y has value zero, X must not

have value zero.
Result Type and Type Parameters. Same as X.

Result Value. The result has a value equal to a processor-dependent approximation to
the argument of the complex number (X, Y), expressed in radians. It lies in the range
—x < ATAN2 (Y, X) < r and is equal to a processor-dependent approximation to a
value of arctan(Y/X) if X # 0. If Y > 0, the result is positive. If Y =0, the result is zero
if X > 0 and the result is 7 if X < 0. If Y < 0, the result is negative. If X =0, the abso-
lute value of the result is «/2.

Example. ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately).

13.12.15 CHAR (I).

Description. Returns the character in a given position of the processor collating
sequence. It is the inverse of the function ICHAR.

Kind. Elemental function.

Argument. | must be of ’type integer with value in the range 0 <l <n—1, where n is
the number of characters in the collating sequence.

Result Type and Tyne Parameters. Character of length one.

Result Value. The result is the character in position | of the processor collating
sequence. ICHAR (CHAR (l)) must have the value | for 0 <l <n—1 and CHAR
(ICHAR (C)) must have the value C for any character C capable of representation in the
processor.

Example. CHAR (88) has the value 'X’ on a processor using the ASCIl collating
sequence.

Version 103 1986 December Page 13-15

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

13.12.16 CMPLX (X, Y, MOLD).

Optional Arguments. Y, MOLD
Description. Convert to complex type.

Kind. Elemental function.

Arguments.
X must be of type integer, real, or complex.
Y (optional) must be of type integer or real. It must not be present if X is of

type complex.
MOLD (optional) must be of type real.

Result Type and Type Parameters. The resuit is of type complex. If MOLD is pre-
sent, the type parameters are those of MOLD; otherwise, the type parameters are
those of default real type.

Result Value. If Y is absent and X is not complex, it is as if Y were present with the
value zero. If MOLD is absent, it is as if MOLD were present with default real type.
CMPLX(X, Y, MOLD) has the compiex value whose real part is REAL(X, MOLD) and
whose imaginary part is REAL(Y, MOLD).

Example. CMPLX (—3) has the value (—3.0, 0.0).

13.12.17 CONJG (2).

Description. Conjugate of a complex number.

Kind. Elemental function.

Argument. Z must be of type complex.

Result Type and Type Parameters. Same as Z.

Result Value. If Z has the value (x, y), the result has value (x, —y).
Example. CONJG ((2.0, 3.0)) has the value (2.0, —3.0).

13.12.18 COS (X).

Description. Cosine function.

Kind. Elemental function.

Argument. X must be of type real, or complex.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
cos(X). If X is of type real, it is regarded as a value in radians. If X is of type complex,
its real part is regarded as a value in radians.

Examplza. COS (1.0) has the value 0.54030231 (approximately).

13.12.19 COSE (X).

Description. Hyperbolic cosine function.
Kind. Elemental function.

Argument. X must be of type real.

Version 103 1986 December Page 13-16

INTRINSIC PROCEDURES X3J3/58

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
cosh(X).

Example. COSH (1.0) has the value 1.5430806 (approximately).

5 13.12.20 COUNT (MASK, DIM).

10

15

20

25

30

35

Version 103

Optional Argument. DIM
Description. Count the number of true elements of MASK along dimension DIM.
Kind. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of MASK.

Result Type and Shape. The result is of type integer. It is scalar if DIM is absent or
MASK has rank one; otherwise, the result is an array of rank n —1 and of shape (d4,
ds, ..., dom—1, doiM+1s ---» dy) Where (d4, dy, ..., dp) is the shape of MASK.

Result Value.

Case (i) The result of COUNT (MASK) has value equal to the number of true
elements of MASK or has value zero if MASK has size zero.

Case (i) If MASK has rank one, COUNT (MASK, DIM) has value equal to that of
COUNT (MASK). Otherwise, the value of element (sy, Sz, ..., Spm-1
SpM+1» -+ Sp) of COUNT (MASK, DIM) is equal to COUNT (MASK (s,, s2,
cxes SDIM=15 %1 SDIM+1s =1 Sn))-

Examples.
Case (i) The value of COUNT ([.TRUE., .FALSE., .TRUE.]) is 2.

Case (i) Assuming that V is a rank one array with value [10, 11, 12, 13], the value
of COUNT (V(2:3) .EQ. 11) is 1.

Case (iii): If L is declared by
LOGICAL, RANGE, ARRAY (4) :: L
and assigned value by
L = [.TRUE., .FALSE., .FALSE., .TRUE.]
then COUNT (L) is 2. But if the range of L is altered by
SET RANGE (2:3) L

the value of COUNT (L) becomes 0. Note however that COUNT (L(1:4))
would be 2 both before and after L is ranged.

Case (iv): If B is the array [; 2 g] and C is the array [g i g] , COUNT (B .NE. C,

DIM = 1) is [2, 0, 1] and COUNT (B .NE. C, DIM = 2)is [1, 2].

1986 December Page 13-17

INTRINSIC PROCEDURES X3J3/58

13.12.21 CSHIFT (ARRAY, DIM, SHIFT).

Description. Perform a circular shift on an array expression of rank one or perform cir-
cular shifts on all the complete rank one sections along a given dimension of a many-

10

15

20

25

30

35

40

Version 103

ranked

array expression. Elements shifted out at one end of a section are shifted in at

the other end. Different sections may be shifted by different amounts and in different
directions.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM must be a scalar and of type integer with value in the range
1 = DIM = n, where n is the rank of ARRAY.

SHIFT must be of type integer and must be scalar if ARRAY has rank one;

otherwise, it must be scalar or of rank n—1 and of shape [E
(1:DIM-1), E (DIM + 1:n)] where E (1:n) is the shape of ARRAY.

Result Type, Type Pararaeters, and Shape. The result is of the type and type param-
eters of ARRAY, and has the shape of ARRAY.

Result Value.

Case (i): Iif ARRAY has rank one, the result is obtained by applying |SHIFT| circular

shifts to ARRAY in the direction indicated by the sign of SHIFT. If SHIFT
has value 1, element j of the result is ARRAY (i+1) fori = 1,2,....m — 1
and element m of the result is ARRAY (1) where m is the size of ARRAY.
If SHIFT is positive, the result is equivalent to SHIFT applications of
CSHIFT with SHIFT=1. If SHIFT has value —1, element j of the result is
ARRAY (i—1) fori = 2,3,...,m and element 1 of the result is ARRAY (m).
If SHIFT is negative, the result is equivalent to —SHIFT applications of
CSHIFT with SHIFT= —1.

Case (ii): If ARRAY has rank greater than one, section (s, S2, ..., SpiM—1s s SDIM+1s

...., Sp) of the result has value equal to CSHIFT (ARRAY (s1, S, ..., Spm—1»
% SDIM4+1s - Sn» 1, Sh), where sh is SHIFT or SHIFT (s4, S5, ..., SpiM—1:
SDIM+1s -=» Sn)-

Examples.

Case (i): If Vis the array [1, 2, 3, 4, 5, 6], the effect of shifting V circularly to the left

by two positions is achieved by CSHIFT (V, DIM=1, SHIFT =2) which has
the value [3, 4, 5, 6, 1, 2]; CSHIFT (V, DIM=1, SHIFT = —2) achieves a cir-
cular shift to the right by two positions and has the value [5, 6, 1, 2, 3, 4].

Case (ii): Assuming that V is a rank one array with value [10, 11, 12, 13], the value

of CSHIFT (V(2:3), DIM = 1, SHIFT = —1)is [12, 11].

Case (iii): 1If C is declared by

CHARACTER, RANGE, ARRAY (4) :: C
and assigned a value by
c - [lAl’ IBI' lcl' IDl]

then CSHIFT (C, DIM = 1, SHIFT = —1)is ['D’, °’C’, 'B’, 'A’]. But if the
range of C is altered by

SET RANGE (2:3) C

1986 December Page 13-18

INTRINSIC PROCEDURES X3J3/S8

Case (iv):

the value of CSHIFT (C, DIM = 1, SHIFT = —1) becomes ['C’, 'B']. Note
however that CSHIFT (C(1:4), DIM = 1, SHIFT = —1) would be ['D’, ’A’,
'B’, 'C’] both before and after C is ranged.

The rows of an array of rank two may all be shifted by the same amount or

ABC
by different amounts. If M is the array [ﬁ g 8], the value of CSHIFT

(M, DIM=2, SHIFT=—-1) is [

o000
mO>» B>>r

}, and the value of CSHIFT (M,

B
B
B
B

DIM=2, SHIFT=[—-1, 1, 0) is é .

>0

13.12.22 DATE_AND__TIME (ALL, COUNT, MSECOND, SECOND, MINUTE, HOUR,
DAY, MONTH, YEAR, ZONE).

Optional Arguments. ALL, COUNT, MSECOND, SECOND, MINUTE, HOUR, DAY,
MONTH, YEAR, ZONE

Description. Returns integer data from the date available to the processor and a real-

10

15

20

25

30

35

40

Version 103

time clock.

Kind. Subroutine.

Arguments.

ALL (optional) must be of type integer and rank one. Its size must be at least 9.

The values returned in ALL are as for the remaining 9 arguments,
taken in order.

COUNT (optional) must be scalar and of type integer. It is set to a processor-

dependent value based on the current value of the basic clock or
to —HUGE (0) if there is no clock. The processor-dependent value
is incremented by one for each clock count until the value
COUNT_MAX (as returned by subroutine SYSTEM__CLOCK) is
reached and is reset to zero at the next count. It lies in the range
0 to COUNT__MAX if there is a clock.

MSECOND (optional) must be scalar and of type integer. It is set to the millisecond

part of the local time, or to —HUGE (0) if there is no clock. It lies
in the range 0 to 999 if there is a clock.

SECOND (optional) must be scalar and of type integer. It is set to the second part of

the local time, or to —HUGE (0) if there is no clock. It lies in the
range O to 59 if there is a clock.

MINUTE (optional) must be scalar and of type integer. It is set to the minute part of

the local time, or to —HUGE (0) if there is no clock. It lies in the
range 0 to 59 if there is a clock.

HOUR (optional) must be scalar and of type integer. It is set to the hour part of the

local time, or to —HUGE (0) if there is no clock. It lies in the range
0 to 23 if there is a clock.

DAY (optional) must be scalar and of type integer. It is set to the day of the

month, or to —HUGE (0) if there is no date available. It lies in the
range 1 to 31 if there is a date available.

1986 December Page 13-19

INTRINSIC PROCEDURES K3J3/S8

10

15

20

25

30

35

MONTH (optional) must be scalar and of type integer. It is set to the month of the
year, or to —HUGE (0) if there is no date available. It lies in the
range 1 to 12 if there is a date available.

YEAR (optional) must be scalar and of type integer. It is set to the year according
to the Gregorian calendar (e.g. 1988), or to —HUGE (0) if there is
no date available.

ZONE (optional) must be scalar and of type integer. It is set to the number of min-
utes that local time is behind Greenwich Mean Time, or to —HUGE
(0) if there is no clock.

Example.
CALL DATE_AND TIME (ZONE = HERE)
will assign the value 300 to the variable HERE if the local time is 5 hours behind GMT.

13.12.23 DBLE (A).

Description. Convert to double precision real type.

Kind. Elemental function.

Argument. A must be of type integer, real, or complex.
Result Type. Double precision real.

Result Value.

Case (i): If A is of type double precision, DBLE (A) = A.

Case (i) If A is of type integer or real, the result is as much precision of the
significant part of A as a doubie precision datum can contain.

Case (iii): If A is of type complex, the result is as much precision of the significant
part of the real part of A as a double precision datum can contain.

Example. DBLE (—3) has the value —3.0D0.

13.12.24 DIGITS (X).

Description. Returns the number of significant digits in the model representing num-
bers of the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type integer or real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value g if X is of type integer and p if X is of type real,
where g and p are as defined in 13.6.1 for the model representing numbers of the
same type and type parameters as X.

Example. DIGITS (X) has the value 24 for real X whose model is as at the end of
13.6.1.

13.12.25 DIM (X, Y).

Description. The difference X—Y if it is positive; otherwise zero.
Kind. Elemental function.

Version 103 1986 December Page 13-20

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

Arguments.
X must be of type integer or real.
Y must be of the same type as X.

Result Type and Type Parameters. Same as X.
Result Value. The value of the result is X—Y if X > Y and zero otherwise.
Example. DIM (—3.0, 2.0) has the value 0.0.

13.12.26 DLBOUND (ARRAY, DIM).

Optional Argument. DIM

Description. Returns all the declared lower bounds of an array or a specified declared
lower bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be an
allocatable array that is not allocated or an alias array that is not
alias associated.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): DLBOUND (ARRAY, DIM) has value equal to the declared lower bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value 1 if dimension DIM has size zero. For an array
section or an array expression, it has the value 1.

Case (i) DLBOUND (ARRAY) has value whose i-th component is equal to
DLBOUND (ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared by the statement
REAL A (2:3, 7:10
then DLBOUND (A) is [2, 7} and DLBOUND (A, DIM=2) is 7.

13.12.27 DOTPRODUCT (VECTOR__A, VECTOR__B).

Description. Performs dot-product multiplication of numeric or Boolean vectors.

Kind. Transformational function.

Arguments.

VECTOR_A must be of numeric type (integer, real, or complex) or of logical
type. It must be array valued and of rank one.

VECTOR_B must be of numeric type if VECTOR_A is of numeric type or of

type logical if VECTOR__A is of type logical. It must be array val-
ued and of rank one. It must be of the same size as VECTOR__A.

Result Type, Type Parameters, and Shape. If the arguments are of numeric type, the
type and type parameters of the result are those of the expression VECTOR__A *

Version 103 1986 December Page 13-21

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 103

VECTOR__B determined by the types of the arguments according to 7.1.4. If the argu-
ments are of type logical, the result is of type logical. The result is scalar.

Result Value.

Case (i if VECTOR_A is of type integer or real, the result has value SUM
(VECTOR_A*VECTOR__B). If the vectors have size zero, the result has
value zero.

Case (ij): If VECTOR_A is of type complex, the result has value SUM (CONJG
(VECTOR_A)*VECTOR__B). If the vectors have size zero, the result has
value zero.

Case (iij): If VECTOR__A is of type logical, the result has value ANY (VECTOR__A
.AND. VECTOR__B). [f the vectors have size zero, the result has value
.FALSE.

Example. DOTPRODUCT ([1, 2, 3], [2, 3, 4]) has the value 20.

13.12.28 DPROD (X, Y).

Description. Double precision real product.

Kind. Elemental function.

Arguments.
X must be of type real.
Y must be of type real.

FResult Type. Double precision real.
Result Value. The value of the result is X * Y.
Example. DPROD (—3.0, 2.0) has the value —6.0D0.

13.12.29 DSHAPE (SOURCE).

Description. Returns the declared shape of an array or a scalar.
Kind. Inquiry function.

Argument. SOURCE may be of any typé. It may be array valued or scalar. It must
not be an assumed-size array.

Result Type and Shape. The result is an integer array of rank one whose size is
equal to the rank of SOURCE.

Result Value. The value of the result is the declared shape of SOURCE.

Examples. The value of DSHAPE (A (2:5, —1:1)) is [4, 8]. The value of DSHAPE (3)
is the rank-one array of size zero.

13.12.30 DSIZE (ARRAY, D!i).

Optional Argument. DIM

Déscription. Returns the declared extent of an array along a specified dimension or
the total declared number of elements in the array.

Kind. Inquiry function.

Arguments.

1966 December Page 13-22

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

Version 103

ARRAY may be of any type. It must not be scalar. If ARRAY is an
assumed-size array, DIM must be present with value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the declared extent of dimension DIM of
ARRAY or, if DIM is absent, the total declared number of elements of ARRAY.

Examples. The value of DSIZE (A (2:5, —1:1), DIM=2) is 3. The value of DSIZE (A
(2:5, —1:1)) is 12.

13.12.31 DUBOUND (ARRAY, DIM).

Optional Argument. DIM

Description. Returns all the declared upper bounds of an array or a specified declared
upper bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It may not be an
allocatable array that has not been allocated or an alias array that
is not alias associated. If DIM is omitted or is present with value
equal to the rank of ARRAY, ARRAY must not be an assumed-size
array.

DIM (optional) must be scalar and of type integer with value in the range 1 < DIM

< n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): DUBOUND (ARRAY, DIM) has value equal to the declared upper bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero. For an array
section or an array expression, its value is the number of elements in the
corresponding dimension.

Case (i): DUBOUND (ARRAY) has value whose i-th component is equal to
DUBOUND (ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared by the statement
REAL A (2:3, 7:10)
then DUBOUND (A) is [3, 10] and DUBOUND (A, DIM=2) is 10.

13.12.32 EFFECTIVE_EXPONENT_RANGE (X).

Description. Returns the decimal exponent range in the model representing numbers
of the same type and type parameters as the argument.

Kind. Inquiry function.

Argument. X must be of type real, complex, or derived type with type parameters
named PRECISION and EXPONENT_RANGE. It may be scalar or array valued.

1986 December Page 13-23

INTRIMSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

Version 103

Result Type and Shape. Integer scalar.

Result Value. The result has value INT (MIN (LOG10 (fuge), —LOG10 (tiny))), where
huge and tiny are the largest and smallést numbers in the model representing real
numbers with the same values for the type parameters as X (see 13.6.1); huge has
value HUGE (X) and tiny has value TINY (X).

Example. EFFECTIVE_EXPONENT_RANGE (X) has the value 38 for real X whose

model is as at the end of 13.6.1, since in this case huge = (1—2"2% x 2'? and tiny
= 2—127_)

13.12.33 EFFECTIVE__PRECISION (X).

Description. Returns the decimal precision in the model representing numbers of the
same type and type parameters as the argument.

Kind. Inquiry function.

Argument. X must be of type real, complex, or derived type with type parameters
named PRECISION and EXPONENT_RANGE. It may be scalar or array valued.

Result Type and Shape. Integer scalar.

Result Value. The result has value INT ((p —1) * LOG10 (b)) + k, where b and p are
as defined in 13.6.1 for the model representing real numbers with the same values for
the type parameters as X, and where k is 1 if b is an integral power of 10 and 0 other-
wise.

Example. EFFECTIVE__PRECISION (X) has the value INT (23 * LOG10 (2.)) = INT
(6.92...) = 6 for real X whose model is as at the end of 13.6.1.

13.12.34 ELBOUND (ARRAY, DiM).

Optional Argument. DIM

Description. Returns all the effective lower bounds of an array or a specified effective
lower bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be an
allocatable array that is not allocated or an alias array that does not
exist.

DIM (optional) must be scalar and of type integer with value in the range

1 = DIM = n, where n is the rank of ARRAY.

Resu!t Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): ELBOUND (ARRAY, DIM) has value equal to the effective lower bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value 1 if dimension DIM has size zero. For an array
section or an array expression, it has the value 1.

Case (ii): ELBOUND (ARRAY) has value whose i-th component is equal to ELBOUND
(ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared and its range is set as follows:

1986 December Page 13-24

INTRINSIC PROCEDURES X3J3/58

REAL, RANGE :: A (2:10, 5:100
SET RANGE (4:6, 7:9) A

then ELBOUND (A) is [4, 7] and ELBOUND (A, DIM=2) is 7.

13.12,35 EOSHIFT (ARRAY, DIM, SHIFT, BOUNDARY).

10

15

20

25

30

35

40

45

Version 103

Optional Argument. BOUNDARY

Description. Perform an end-off shift on an array expression of rank one or perform
end-off shifts on all the complete rank-one sections along a given dimension of a
many-ranked array expression. Elements are shifted off at one end of a section and
copies of a boundary value are shifted in at the other end. Different sections may have
different boundary values and may be shifted by different amounts and in different
directions.

Kind. Transformational function.

Arguraents.

ARRAY may be of any type. It must not be scalar.

DIM must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

SHIFT must be of type integer and must be scalar if ARRAY has rank one;

otherwise, it must be scalar or of rank n—1 and of shape [E
(1:DIM—1), E (DIM + 1:n)], where E (1:n) is the shape of ARRAY.

BOUNDARY (optional) must be of the same type and type parameters as ARRAY and
must be scalar if ARRAY has rank one; otherwise, it must be either
scalar or of rank n—-1 and of shape [E (1:DIM-1), E (DIM+1:n)].
BOUNDARY may be omitted for the data types in the following
table and, in this case, it is as if it were present with the scalar

value shown.
Type of ARRAY Value of BOUNDARY
Integer 0
Real 0.0
Double precision 0.0D0
Complex (0.0, 0.0)
, Logical .FALSE.

Character (fen) fen blanks

Result Type, Type Parameters, and Shape. The result has the type, type parame-
ters, and shape of ARRAY.

Result Value. Element (s4, S5, ..., 8y) of the result has the value ARRAY (s4, s, ...,
Spm—-1, Som+Sh, Spm+1r ---» Sp) where sh is SHIFT or SHIFT (s4, S2, ..., Spm—1»
SpiM+1s ---» Sp) Provided the inequality 1 < sp + sh = E (DIM) holds and is otherwise
BOUNDARY or BOUNDARY (S1, S2: --:s SDIM—1: SDIM+1s s Sn).

Examples.

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V end-off to the left
by 3 positions is achieved by EOSHIFT (V, DIM=1, SHIFT =3) which has
the value [4, 5, 6, 0, 0, 0]; EOSHIFT (V, DIM=1, SHIFT= -2, BOUND-
ARY =99) achieves an end-off shift to the right by 2 positions with the
boundary value of 99 and has the value [99, 99, 1, 2, 3, 4].

1986 December Page 13-25

INTRINSIC PROCEDURES A3J3/S8

Case (ij): The rows of an array of rank two may all be shifted by the same amount or
by different amounts and the boundary elements can be the same or

ABC
different. If M is the array {A B 8}, then the value of EOSHIFT (M,
A B

* A B
DIM=2, SHIFT=—1, BOUNDARY ="#’) is [* ﬁ B}, and the value of
B

CSHIFT (M, DIM=2, SHIFT=[—-1, 1, 0], BOUNDARY =['*', '/’, ’?']) is

* A B
B C/
ABC

13.12.36 EPSILON (X).

10

15

Description. Returns a positive model number that is almost negligible compared to
one in the model representing numbers of the same type and type parameters as the
argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.

Resu!t Type, Type Parameters, and Shape. Scalar of the same type and type param-
eters as X.

Result Value. The result has value b'~P where b and p are as defined in 13.6.1 for
the model representing numbers of the same type and type parameters as X.

Example. EPSILON (X) has the value 2~ for real X whose model is as at the end of
13.6.1.

13.12.37 ESHAPE (SOURCE).

20

25

30

Version 103

Descrintion. Returns the effective shape of an array or a scalar.
Kind. Inquiry function.

Argument. SOURCE may be of any type. It may be array valued or scalar. |t must
not be an assumed-size array.

Result Type and Shane. The result is an integer array of rank one whose size is
equal to the rank of SOURCE.

Result Value. The value of the result is the effective shape of SOURCE.
Examples.

Case (i): The value of ESHAPE (A (2:5, —1:1)) is [4, 3].

Case (ii): The value of ESHAPE (3) is the rank-one array of size zero.
Case (iii): If B is declared and its range is set as follows:

INTEGER, RANGE, ARRAY (20, 300) ::
SET RANGE (5:15, :) B

then ESHAPE (B) is [11, 300] and‘Fuﬁhermeﬁe'gESHAPE (B(1:4, 10)) is [4].

1986 December Page 13-26

/

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

13.12.38 ESIZE (ARRAY, DIM).

Optional Argument. DIM

Description. Returns the effective extent of an array along a specified dimension or
the total effective number of elements in the array.

Kind. Inquiry function.
Arguments.

ARRAY may be of any type. It must not be scalar. If ARRAY is an
assumed-size array, DIM must be present with value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range
1 = DIM =< n, where n is the rank of ARRAY.

Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the effective extent of dimension DIM of
ARRAY or, if DIM is absent, the total effective number of elements of ARRAY.

Examples.

Case (i): The value of ESIZE (A (2:5, —1:1), DIM=2) is 3.
Case (ii): The value of ESIZE (A (2:5, —1:1)) is 12.

Case (iij): If B is declared and its range is set as follows:

INTEGER, RANGE, ARRAY (20, 300) :: B
SET RANGE (5:15, :) B

then ESIZE (B) is 3300 and ESIZE (B(1:4, 10), DIM = 1) is 4.

13.12.39 EUBOUND (ARRAY, DIM).

Optional Argument. DIM

Description. Returns all the effective upper bounds of an array or a specified effective
upper bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. it may not be an
allocatable array that has not been allocated or an alias array that
does not exist. If DIM is omitted or is present with value equal to
the rank of ARRAY, ARRAY must not be an assumed-size array.

DIM (optional) must be scalar and of type integer with value in the range 1 < DIM

= n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): EUBOUND (ARRAY, DIM) has value equal to the effective upper bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero. For an array
section or an array expression, its value is the number of elements in the
corresponding dimension.

Version 103 1986 December Page 13-27

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Case (ii): EUBOUND (ARRAY) has value whose i-th component is equal to
EUBOUND (ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Examples. If A is declared by the statement

REAL A (2:3, 7:10)

then EUBOUND (A) is [3, 10] and EUBOUND (A, DIM=2) is 10.
If B is declared and its range is set as follows:

INTEGER, RANGE, ARRAY (20, 300) :: B
SET RANGE (5:15, :) B

then EUBOUND (B) is [15, 300] and EUBOUND (B, DIM = 1) is 15. Furthermore,
EUBOUND (B(1:4, 10)) is [4].

13.12.40 EXP (X).

Description. Exponential.

Kind. Elemental function.

Argument. X must be of type real, or complex.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to

e*. If X is of type complex, its imaginary part is regarded as a value in radians.

Example. EXP (1.0) has the value 2.7182818 (approximately).

13.12.41 EXPONENT (X).

Description. Returns the exponent part of the argument when represented as a model
number.

Kind. Elemental function.
Argument. X must be of type real.
Result Type. Integer.

Result Value. The result has value equal to the exponent e of the model representa-
tion (see 13.6.1) for the value of X, provided X is nonzero and e is within range for inte-
gers.

Examples. EXPONENT (1.0) has the value 1 and EXPONENT (4.1) has the value 3 for
reals whose model is as at the end of 13.6.1.

13.12.42 FRACTION (X).

Description. Returns the fractional part of the model representation of the argument
value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value X x b~¢, where b and e are as defined in 13.6.1
for the model representation of X. If X has value zero, the result has value zero.

Example. FRACTION (3.0) has the value 0.75 for reals whose model is as at the end
of 13.6.1.

Version 103 1986 December Page 13-28

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

Version 103

13.12.43 HUGE (X).

Description. Returns the largest number in the model representing numbers of the
same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type integer or real. It may be scalar or array valued.

Result Type, Type Parameters, and Shape. Scalar of the same type and type param-
eters as X.

Result Value. The result has value r9—1 if X is of type integer and (1—b ~P)b°™ if X
is of type real, where r, q, b, p, and en. are as defined in 13.6.1 for the model repre-
senting numbers of the same type and type parameters as X.

Example. HUGE (X) has the value (1—272%)x2'% for real X whose model is as at the
end of 13.6.1.

13.12.44 IACHAR (C).

Description. Returns the position of a character in the ASCII collating sequence.
Kind. Elemental function.

Argument. C must be of type character and of length one.

Result Type. Integer.

Result Value. The result is the position of C in the collating sequence described in
ANSI X3.4-1977 (ASCIl). It satisfies the inequality (0 <IACHAR (C)=<127). A
processor-dependent value is returned if C is not in the ASCIl collating sequence. The
results must be consistent with the LGE, LGT, LLE, and LLT lexical comparison func-
tions. For example, if LLE (C, D) is true, IACHAR (C) .LE. IACHAR (D) is true where C
and D are any two characters representable by the processor.

Example. |ACHAR ('X’) has the value 88.

13.12.45 ICHAR (C).

Description. Returns the position of a character in the processor collating sequence.
Kind. Elemental function.

Argument. C must be of type character and of length one. Its value must be that of a
character capable of representation in the processor.

Result Type. Integer.

Result Value. The result-is the position of C in the processor collating sequence and
is in the range 0 < ICHAR (C) < n—1, where n is the number of characters in the col-
lating sequence. For any characters C and D capable of representation in the proc-
essor, C .LE. D is true if and only if ICHAR (C) .LE. ICHAR (D) is true and C .EQ. D is
true if and only if ICHAR (C). EQ. ICHAR (D) is true.

Example. ICHAR ('X’) has the value 88 on a processor using the ASCIl collating
sequence.

13.12.46 INDEX (STRING, SUBSTRING, BACK).

Optional Argument. BACK

Description. Returns the starting position of a substring within a string.

1986 December Page 13-29

INTRINSIC PROCEDURES X3J3/88

10

15

20

25

30

35

40

Version 103

Kind. Elemental function.

Arguments.
STRING must be of type character.
SUBSTRING must be of type character.

BACK (optional) must be of type logical.
Result Type. Integer.
Result Value.

Case (i): If SUBSTRING occurs within STRING, the value returned is the minimum
value of | such that STRING (I : | + LEN (SUBSTRING) — 1) ==
SUBSTRING; otherwise, zero is returned. Zero is returned if LEN
(STRING) < LEN (SUBSTRING) and one is returned if LEN (SUBSTRING)
= 0. The default value of BACK is .FALSE. and its inclusion is optional
when processing starts with the first character of STRING.

Case (i): If STRING is to be processed starting with the last character, BACK must
contain the logical value .TRUE. If SUBSTRING occurs within STRING, the
value returned is the maximum value of | such that STRING (I : | + LEN
(SUBSTRING) — 1) = = SUBSTRING; otherwise, zero is returned. Zero is
returned if LEN (STRING) < LEN (SUBSTRING) and LEN (STRING) + 1 is
returned if LEN (SUBSTRING) = 0.

Example. INDEX ((FORTRAN’, 'R’) has value 3.

13.12.47 INT (A).

Description. Convert to integer type.

Kind. Elemental function.

Argument. A must be of type integer, real, or complex.
Result Type. Integer.

Result Value.

Case (i): If A is of type integer, INT (A) = A.

Case (i): If A is of type real, there are two cases: if |A| < 1, INT (A) has the value 0;
if |Al = 1, INT (A) is the integer whose magnitude is the largest integer that
does not exceed the magnitude of A and whose sign is the same as the
sign of A.

Case (iii): If A is of type complex, INT (A) is the value obtained by applying the case
(i) rule to the real part of A.

Example. INT(-3.7) has the value —3.

13.12.48 LEN (STRING).

Description. Returns the length of a character entity.

Kind. Inquiry function.

Argument. STRING must be of type character. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the number of characters in STRING if it
is scalar or in a component of STRING if it is array valued.

1986 December Page 13-30

INTRINSIC PROCEDURES X3J3/58

Example. If C is declared by the statement
CHARACTER (11) ¢ (100)
LEN (C) has value 11.

13.12.49 LEN__TRIM (STRING).

10

Description. Returns the length of the character argument without trailing blank char-
acters.

Kind. Elemental function.
Argument. STRING must be of type character.
Result Type. Integer.

Result Value. The result has a value equal to the number of characters after any trail-
ing blanks in STRING are removed. If the argument contains no nonblank characters,
the result is zero.

Examples. LEN_TRIM (" A B ’) has value 4 and LEN_TRIM (" ’) has value 0.

13.12.50 LGE (STRING__A, STRING__B).

15

20

25

Description. Test whether a string is lexically greater than or equal to another string,
based on the ASCII collating sequence.

Kind. Elemental function.

Arguments.
STRING__A must be of type character.
STRING_B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCIl character set, the result is proc-
essor dependent. The result is true if the strings are equal or if STRING__A follows
STRING_B in the coliating sequence described in ANSI X3.4-1977 (ASCIl); otherwise,
the result is false.

Example. LGE ('ONE’, 'TWO’) has the value .FALSE.

13.12.51 LGT (STRING_A, STRING__B).

30

35

Version 103

Description. Test whether a string is lexically greater than another string, based on
the ASCII collating sequence.

Kind. Elemental function.

Arguments.
STRING__A must be of type character.
STRING_B must be of type character.

Result Type. Logical. '

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCIl character set, the result is

1986 December Page 13-31

INTRINSIC PROCEDURES X3J3/s8

10

15

20

25

30

35

40

Version 103

processor dependent. The result is true if STRING__A follows STRING__B in the collat-
ing sequence described in ANSI X3.4-1977 (ASCII); otherwise, the result is false.

Example. LGT ('ONE’, 'TWQ') has the value .FALSE.

13.12.52 LLE (STRING_A, STRING__B).

Description. Test whether a string is lexically less than or equal to another string,
based on the ASCII collating sequence.

Kind. Elemental function.

Arguments.
STRING_A must be of type character.
STRING__B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCII character set, the result is proc-
essor dependent. The result is true if the strings are equal or if STRING__A precedes
STRING__B in the collating sequence described in ANSI X3.4-1977 (ASCIl); otherwise,
the result is false.

Example. LLE ('ONE’, 'TWO’) has the value .TRUE.

13.12.53 LLT (STRING__A, STRING__B).

Description. Test whether a string is lexically less than another string, based on the
ASCII collating sequence.

Kind. Elemental function.

Arguments.
STRING__A must be of type character.
STRING_B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCIl character set, the result is proc-
essor dependent. The result is true if STRING__A precedes STRING__B in the collat-
ing sequence described in ANSI X3.4-1977 (ASCII); otherwise, the result is false.

Example. LLT (ONE’, 'TWO’) has the value .TRUE.

13.12.54 LOG (X).

Description. Natural logarithm.
Kind. Elemental function.

Argument. X must be of type real, or complex. Unless X is complex, its value must
be greater than zero. If X is complex, its value must not be zero.

Result Type and Type Parameters. Same as X.

Fiesult Value. The result has value equal to a processor-dependent approximation to
logeX. A result of type complex is the principal value with imaginary part » in the

1986 December Page 13-32

INTRINSIC PROCEDURES X3J3/S8

range —r < w < «. The imaginary part of the result is = only when the real part of the
argument is less than zero and the imaginary part of the argument is zero.

Example. LOG (10.0) has the value 2.3025851 (approximately).

13.12.55 LOG10 (X).

10

Description. Common logarithm.

Kind. Elemental function.

Argument. X must be of type real. The value of X must be greater than zero.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
long.

Example. LOG10 (10.0) has the value 1.0 (approximately).

13.12.56 MATMUL (MATRIX_ A, MATRIX_B).

15

20

25

30

35

40

Version 103

Description. Performs matrix multiplication of numeric or Boolean matrices.
Kind. Transformational function.
Arguments.

MATRIX_A must be of numeric type (integer, real, or complex) or of logical
type. It must be array valued and of rank one or two. Ilts shape
must be defined.

MATRIX__B must be of numeric type if MATRIX_A is of numeric type and of
logical type if MATRIX__A is of logical type. It must be array val-
ued and of rank one or two. If MATRIX_A has rank one,
MATRIX_B must have rank two. Its shape must be defined. The
size of the first (or only) dimension of MATRIX_B must equal the
size of the last (or only) dimension of MATRIX__A.

Result Type, Type Parameters, and Shape. If the arguments are of numeric type, the
type and type parameters of the result are determined by the types of the arguments
according to 7.1.4. If the arguments are of type logical, the result is of type logical.
The shape of the result depends on the shapes of the arguments as follows:

Case (i): if MATRIX_A has shape [n, m] and MATRIX_B has shape [m, k], the
result has shape [n, k].

Case (ii): |If MATRIX__A has shape [m] and MATRIX__B has shape [m, k], the result

has shape [k].

Case (iii): 1f MATRIX_A has shape [n, m] and MATRIX_B has shape [m], the result
has shape [n].

Result Value.

Case (i): Element (i, j) of the result has value SUM (MATRIX_A (i, ;) * MATRIX_B
(:, f)) if the arguments are of numeric type and has value ANY (MATRIX_A
(i, 1) .AND. MATRIX__B (:, j)) if the arguments are of logical type.

Case (ii): Element (j) of the result has value SUM (MATRIX_A (:) * MATRIX_B (:,
J)) if the arguments are of numeric type and has value ANY (MATRIX__A ()
AND. MATRIX__B (:, j)) if the arguments are of logical type.

1986 December Page 13-33

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

Version 103

Case (iii): Element (i) of the result has value SUM (MATRIX_A (i, :) * MATRIX__B
(:)) if the arguments are of numeric type and has value ANY (MATRIX_A
(7, ;) .AND. MATRIX__B (})) if the arguments are of logical type.

12
Examples. Let A and B be the matrices [; % 2} and {2 3} ; let X and Y be the
' 3 4

vectors [1, 2] and [1, 2, 3].
Case (i): The result of MATMUL (A, B) is the matrix-matrix product AB with value
[14 20]
20 29 |-
Case (ii): The result of MATMUL (X, A) is the vector-matrix product XA with value [5,
8, 11].

Case (ifi) The result of MATMUL (A, Y) is the matrix-vector product AY with value
[14, 20}.

13.12.57 MAX (A1, A2, A3, ...).

Optional Arguments. A3, ...
Dascription. Maximum value.
Kiand. Elemental function.

Arguments. The arguments must all have the same type which must be integer or
real and they must all have the same type parameters.

Resuit Type and Type Parameters. Same as the arguments.
Result Value. The value of the result is that of the largest argument.
Example. MAX (—9.0, 7.0, 2.0) has the value 7.0.

13.12.58 ANXEXPONENT (X).

Description. Returns the maximum exponent in the model representing numbers of
the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Aesult Value. The result has value ey, as defined in 13.6.1 for the model represent-
ing numbers of the same type and type parameters as X.

Example. MAXEXPONENT (X) has the value 127 for real X whose model is as at the
end of 13.6.1.

13.12.59 MAXLOC (ARRAY, MASK).

Optional Argument. MASK

Description. Determine the location of an element of ARRAY having the maximum
value of the elements identified by MASK.

Kind. Transformational function.

Arguments.

1986 December Page 13-34

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

Version 103

ARRAY must be of type integer or real. It must not be scalar.
MASK (optional) must be of type logical and must be conformable with ARRAY.

Result Type and Shape. The result is of type integer; it is an array of rank one and of
size equal to the rank of ARRAY.

Result Value.

Case (i): if MASK is absent, the result is a rank-one array whose element values are
the values of the subscripts (in subscript order value) of an element of
ARRAY whose value equals the maximum value of all of the elements of
ARRAY. The ith subscript returned lies in the range 1 to e;, where g; is
the extent of the ith dimension of ARRAY. If more than one element has
maximum value, the element whose subscripts are returned is processor
dependent. If ARRAY has size zero, the value of the result is processor
dependent.

Case (i) If MASK is present, the result is a rank-one array whose element values
are the values of the subscripts (in subscript order value) of an element of
ARRAY, corresponding to a true element of MASK, whose value equals the
maximum value of all such elements of ARRAY. The ith subscript returned
lies in the range 1 to e, where e; is the extent of the ith dimension of
ARRAY. If more than one such element has maximum value, the element
whose subscripts are returned is processor dependent. If there are no
such elements (that is, if ARRAY has size zero or every component of
MASK has the value .FALSE.), the value of the result is processor depend-
ent.

Examples.
Case (i): The value of MAXLOC ([2, 4, 8]) is [3].
0 -5 8 -3
Case (iij): If A has the value |3 4 -1 2 |, MAXLOC (A, MASK=A.LT.6) has

1 5 6 -4
the value. [3, 2].

13.12.60 MAXVAL (ARRAY, DIM, MASK).

Optional Arguments. DIM, MASK

Description. Maximum value of the elements of ARRAY along dimension DIM corre-
sponding to the true elements of MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar. Its shape
must be defined.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of ARRAY.
MASK (optional) must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARBAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,
the result is an array of rank n—1 and of shape (d,, da, ..., dpm—1, dom+1r - Tp)
where (d4, ds, ..., d;) is the shape of ARRAY.

1986 December Page 13-35

INTRINSIC PROCEDURES X3J3/S8

10

15

Result Value.

Case (i):

Case (ii):

Case (iii):

Examples.

Case (i):
Case (ii):

Case (iii):

The result of MAXVAL (ARRAY) has value equal to the maximum value of
all the elements of ARRAY or has value —HUGE (ARRAY) if ARRAY has
size zero.

The result of MAXVAL (ARRAY, MASK) has value equal to the maximum
value of the elements of ARRAY corresponding to true elements of MASK
or has value —~HUGE (ARRAY) if there are no true elements.

If ARRAY has rank one, MAXVAL (ARRAY, DIM [,MASK]) has value equal
to that of MAXVAL (ARRAY [,MASK]). Otherwise, the value of element (s;,
S2, s SDIM—15 SDIM+1s ---» Sp) Of MAXVAL (ARRAY, DIM [,MASK]) is equal
to MAXVAL (ARRAY (31, 82, «-.; SDIM=15 s SDIM+1s -+ Sn), [, MASK (31, So,
c+ss SDIM=15 5 SDIM+1 -+ Sn)])-

The value of MAXVAL ([1, 2, 3]) is 3.

MAXVAL (C, MASK = C .GT. 0.0) finds the maximum of the positive
elements of C.

If B is the array B) g} MAXVAL (B, DIM=1) is [2, 4, 6] and MAXVAL
(B, DIM=2) is [5, 6].

13.12.61 MERGE (TSOURCE, FSOURCE, MASK).

Description. Choose alternative value according to value of a mask.

20

25

30

Kind. Elemental function.

Arguments.
TSOURCE
FSOURCE
MASK

may be of any type.
must be of the same type and type parameters as TSOURCE.
must be of type logical.

Result Type and Typzs Parameters. Same as TSOURCE.
Result Value. The result is TSOURCE if MASK is true and FSOURCE otherwise.

246 748

Example. If TSOURCE is the array [1 ° 5], FSOURCE is the array [0 3 2} and

T.T

MASK is the array T where “T” represents .TRUE. and “.” represents .FALSE.,

746

then MERGE (TSOURCE, FSOURCE, MASK) is [1 3 5]

13.12.62 MIN (A1, A2, A3, ...).
Optional Arguments. A3, ...

35

Version 103

Description. Minimum value.

Kind. Elemental function.

Arguments.

The arguments must all be of the same type which must be integer or

real and they must all have the same type parameters.

Result Type and Type Parameters. Same as the arguments.

1986 December Page 13-36

INTRINSIC PROCEDURES X3J3/58

Result Value. The value of the result is that of the smallest argument.
Example. MIN (-9.0, 7.0, 2.0) has the value —9.0.

13.12.63 MINEXPONENT (X).

10

Description. Returns the minimum (most negative) exponent in the model representing
numbers of the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value e, as defined in 13.6.1 for the model represent-
ing numbers of the same type and type parameters as X.

Example. MINEXPONENT (X) has the value —126 for real X whose model is as at the
end of 13.6.1.

13.12.64 MINLOC (ARRAY, MASK).

15

20

25

30

35

40

Version 103

Optional Argument. MASK

Description. Determine -the location of an element of ARRAY having the minimum
value of the elements identified by MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

MASK (optional) must be of type logical and must be conformable with ARRAY.

Result Type and Shape. The result is of type integer; it is an array of rank one and of
size equal to the rank of ARRAY.

Result Value.

Case (i): If MASK is absent, the result is a rank-one array whose element values are
the values of the subscripts (in subscript order value) of an element of
ARRAY whose value equals the minimum value of all the elements of
ARRAY. The ith subscript returned lies in the range 1 to e;, where ¢; is
the extent of the ith dimension of ARRAY. If more than one element has
minimum value, the element whose subscripts are returned is processor
dependent. If ARRAY has size zero, the value of the result is processor
dependent.

Case (ij): If MASK is present, the result is a rank-one array whose element values
are the values of the subscripts (in subscript order value) of an element of
ARRAY, corresponding to a true element of MASK, whose value equals the
minimum value of all such elements of ARRAY. The ith subscript returned
lies in the range 1 to e;, where e; is the extent of the ith dimension of
ARRAY. If more than one such element has minimum value, the element
whose subscripts are returned is processor dependent. If ARRAY has size
zero or every element of MASK has the value .FALSE., the value of the
result is processor dependent.

Examples.
Case (i): The value of MINLOC ([2, 4, 6]) is [1].

1986 December Page 13-37

INTRINSIC FROCEDURES X3J3/S8

10

15

20

25

30

35

Version 103

0 -5 8 -3
Case (i) If A hasthe value (3 4 —1 2|, MINLOC (A, MASK=A.GT.—4) has
i 5 6 —4

the value [1,4].

13.12.65 WMINVAL (ARRAY, DIil, MASK).

Optional Arguments. DIM, MASK

Description. Minimum value of all the elements of ARRAY along dimension DIM corre-
sponding to true elements of MASK.

Kind. Transformational function.

Arguments_.
ARRAY must be of type integer or real. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM = n, where n is the rank of ARRAY.
MASK (optional) must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,
the result is an array of rank n—1 and of shape (d4, da, ..., dpm_1, doms1s -or Gp)
where (04, d,, ..., d,) is the shape of ARRAY.

Result Value.

Case (i): The result of MINVAL (ARRAY) has value equal to the minimum value of all
the elements of ARRAY or has value HUGE (ARRAY) if ARRAY has size
zero.

Case (ij): The result of MINVAL (ARRAY, MASK) has value equal to the minimum
value of the elements of ARRAY corresponding to true elements of MASK
or has value HUGE (ARRAY) if there are no true elements.

Case (iij): If ARRAY has rank one, MINVAL (ARRAY, DIM [,MASK]) has value equal to
that of MINVAL (ARRAY [,MASK]). Otherwise, the value of element (s, S5,
.-y SDIM=1s SpiM+1+ ---» Spn) Of MINVAL (ARRAY, DIM [,MASK]) is equal to
MINVAL (ARRAY (sq, S, ..., SpiM—1s » SDIM+1s - Sp) [, MASK (s4, S, ...,
SDIM—1s '+ SDIM+1s --+s Sn) |). '

Examples.

Case (i): The value of MINVAL ([1, 2, 3]) is 1.

Case (i) MINVAL (C, MASK = C .GT. 0.0) forms the minimum of the positive
elements of C.

Case (iii): If B is the array B 2 g] , MINVAL (B, DIM=1) is [1, 3, 5] and MINVAL (B,
DIM=2)is [1, 2].

13.12.66 MOD (A, P).

Description. Remainder modulo P.
Kind. Elemental function.
Arguments.

1986 December Page 13-38

INTRINSIC PROCEDURES X3J3/s8

10

15

20

25

30

35

A must be of type integer or real.
P must be of the same type as A.
Result Type and Type Parameters. Same as A.

Result Value. If P = 0, the value of the result is A—INT (A/P) * P. If P = 0, the
result is undefined.

Example. MOD (3.0, 2.0) has the value 1.0.

13.12.67 NEAREST (X, S).

Description. Returns the nearest different machine representable number in a given
direction.

Kind. Elemental function.

Arguments.
X must be of type real.
S must be of type real and not equal to zero.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to the machine representable number dis-
tinct from X and nearest to it in the direction of the infinity with the same sign as S.

Example. NEAREST (3.0, 2.0) has the value 3+27% on a machine whose representa-
tion is that of the model at the end of 13.6.1.

13.12.68 NINT (A).

Description. Nearest integer.
Kind. Elemental function.
Argument. A must be of type real.
Result Type. Integer.

Result Value. If A > 0, NINT (A) has the value INT (A+0.5); if A <0, NINT (A) has
the value INT (A—0.5).

Example. NINT (2.783) has the value 3.

13.12.69 PACK (ARRAY, MASK, VECTOR).

Optional Argument. VECTOR
Description. Pack an array into an array of rank one under the control of a mask.

Kind. Transformational function.

Arguments.
ARRAY may be of any type. It must not be scalar.
MASK must be of type logical and must be conformable with ARRAY.

VECTOR (optional) must be of the same type and type parameters as ARRAY and
must have rank one. It must have at least as many elements as
there are true elements in MASK and if MASK is scalar with value
true, it must have at least as many elements as there are in
ARRAY.

Version 103 1986 December Page 13-39

INTRINSIC PROCEDURES X3J3/S8

10

Result Type, Type Parameters, and Shape. The .result is an array of rank one with
the same type and type parameters as ARRAY. If VECTOR is present, the result size
is that of VECTOR; otherwise, the result size is the number t of true elements in MASK
unless MASK is scalar with value true, in which case the result size is the size of
ARRAY.

Result Value. Element i of the result is the i-th element of ARRAY that corresponds to
a true element of MASK, taking elements in subscript order value, fori = 1,2,...,t. If
VECTOR is present and has size n > t, element i of the result has value VECTOR (i),
fori =t+1,..,n.

000
Example. The nonzero elements of an array M with value [g 0 0] may be “gath-
07
ered” by the function PACK. The result of PACK (M, MASK=M.NE.0) is [9, 7] and the
result of PACK (M, M.NE.O, VECTOR =[6[0]]) is [9, 7, O, O, 0, 0].

13.12.70 PRESENT (A).

15

20

Description. Determine whether an optional argument is present.
Kind. Inquiry function

Argument. A must be an optional argument of the procedure in which the PRESENT
function reference appears.

Result Type and Shape. Logical scalar.

Result Value. The result has the value .TRUE. if A is present (12.5.2.8) and is other-
wise .FALSE.

13.12.71 PRODUCT (ARRAY, DIM, MASK).

25

30

35

40

Version 103

Optional Arguments. DIM, MASK

Description. Product of all the elements of ARRAY along dimension DIM correspond-
ing to the true elements of MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be scalar.
Its shape must be defined.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of ARRAY.
MASK (optional) must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,
the result is an array of rank n —1 and of shape (d4, da, ..., dpm—1, dpMsts oo T)
where (d4, dy, ..., d,) is the shape of ARRAY.

Result Value.

Case (i): The result of PRODUCT (ARRAY) has value equal to a processor-
dependent approximation to the product of all the elements of ARRAY or
has value one if ARRAY has size zero.

Case (ii): The result of PRODUCT (ARRAY, MASK) has value equal to a processor-
dependent approximation to the product of the elements of ARRAY

1986 December Page 13-40

INTRINSIC PROCEDURES X3J3/S8

10

corresponding to true elements of MASK or has value one if there are no
true elements.

Case (ifi); If ARRAY has rank one, PRODUCT (ARRAY, DIM [,MASK]) has value equal
to that of PRODUCT (ARRAY [,MASK]). Otherwise, the value of element
(31, So, -y SpIM=1: SDIM+1s -0 Sn) of PRODUCT (ARRAY, biM [,MASK]) is
equal to PRODUCT (ARRAY (S, S2, ---s SpIM=1: » SDIM+1s ---» Sn) [, MASK

(S1: S2, s SDIM—15 ©» SDIM+15 --+ Sp)])-
Examples.
Case (i): The value of PRODUCT ([1, 2, 3]) is 6.

Case (i) PRODUCT (C, MASK = C .GT. 0.0) forms the product of the positive
elements of C.

Case (ii): i Bisthe array |32 |, PRODUCT (B, DIM=1) is [2, 12, 30] and PROD-
246

UCT (B, DIM=2) is [15, 48].

13.12.72 RADIX (X).

15

20

Description. Returns the base of the model representing numbers of the same type
and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type integer or real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value r if X is of type integer and b if X is of type real,
where r and b are as defined in 13.6.1 for the model representing numbers of the
same type and type parameters as X.

Example. RADIX (X) has the value 2 for real X whose model is as at the end of
13.6.1.

25 13.12.73 RANDOM (HARVEST).

30

35

Description. Returns one pseudorandom number or an array of pseudorandom num-
bers from the uniform distribution over the-range 0 = x < 1.

Kind. Subroutine.

Argument. HARVEST must be of type real. It may be a scalar or an array variable. |t
is set to contain pseudorandom numbers from the uniform distribution in the interval
0O=x<1.

Examples.

REAL X, Y (10, 100

CALL RANDOM (HARVEST = X) | INITIALIZES X WITH A PSEUDORANDOM NUMBER
CALL RANDOM (Y)

I X AND Y CONTAIN UNIFORMLY DISTRIBUTED RANDOM NUMBERS

13.12.74 RANDOMSEED (SIZE, PUT, GET).

Version 103

Optional Argument. SIZE, PUT, GET

Description. Initializes or restarts the pseudorandom number generator.

1986 December Page 13-41

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 103

Kind. Subroutine.
Arguments. There must either be exacly one or no arguments present.

SIZE (optional) must be scalar and of type integer. It is set to the number N of
integers that the processor uses to hold the value of the seed.

PUT (optional) must be an integer array of rank one and size = N. It is used by
the processor to set the seed value.

GET (optional) must be an integer array of rank one and size = N. It is set by
the processor to the current value of the seed.

If no argument is present, the processor sets the seed to a processor-determined
value.

Examples.

CALL RANDOMSEED | PROCESSOR INITIALIZAION

CALL RANDOMSEED (SIZE = K) ! SETS K =N .

CALL RANDOMSEED (PUT = SEED (1 : K)) | SET USER SEED
CALL RANDOMSEED (GET = OLD (1 : K)) | READ CURRENT SEED

13.12.75 REAL (A, MOLD).

Optional Argument. MOLD

Descrintion. Convert to real type.

Kind. Elemental function.

Arguments.

A must be of type integer, real, or complex.
MOLD (optional) must be of type real.

Result Type and Type Parameiers. Real. If MOLD is present, the type parameters

are those of MOLD; otherwise, they are the processor-dependent default type parame-
ters for real type.

Result Value.

Case (i): If A is of type integer or real, the result is equal to a processor-dependent
approximation to A.

Case (ii): If A is of type complex, the result is equal to a processor-dependent
approximation to the real part of A.

Example. REAL (—3) has the value —3.0.

13.12.76 REPEAT (STRING, NCOPIES).

Description. Concatenate several copies of a string.
Kind. Elemental function.

Arguments.
STRING must be of type character.
NCOPIES must be of type integer. Its value must not be negative.

Result Type and Type Parameters. Character of length NCOPIES times that of
STRING.

1986 December Page 13-42

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 103

Result Value. The value of the result is the concatenation of NCOPIES copies of
STRING.

Example. REPEAT ('H’, 2) has value 'HH’.

13.12.77 RESHAPE (MOLD, SOURCE, PAD, ORDER).

Optional Arguments. PAD, ORDER
Description. Change the shape of an array.

Kind. Transformational function.

Arguments.

MOLD must be of type integer and rank one. Ilts size must be positive
and less than 8.

SOURCE may be of any type. It must be array valued. Its shape must be

defined. If PAD is absent, the size of SOURCE must be at least as
great as that of the result.

PAD (optional) must be of the same type and type parameters as SOURCE. PAD
must be array valued.

ORDER (optional) must be of type integer, must have the same shape as MOLD, and
its value must be a permutation of [1:n], where n is the size of
MOLD. If absent, it is as if it were present with value [1:n].

Result Type, Type Parameters, and Shape. The result is an array of shape MOLD
(i.e., SHAPE (RESHAPE (MOLD, SOURCE)) = MOLD) with type and type parameters
those of SOURCE.

Result Value. The elements of the result, taken in permuted subscript order ORDER
(1), ..., ORDER (n), are those of SOURCE in normal subscript order value followed if
necessary by those of PAD in subscript order value, followed if necessary by additional
copies of PAD in subscript order value.

Example. RESHAPE ([2, 3], [1:6]) has value B f{ 2}

13.12.78 RRSPACING (X).

Description. Returns the reciprocal of the relative spacing of mode! numbers near the
argument value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value | X x b~°| x bP, where b, e, and p are as defined
in 13.6.1 for the model representation of X, provided this result is within range.

Example. RRSPACING (—3.0) has the value 0.75 x 22* for reals whose model is as at
the end of 13.6.1.

13.12.79 SCALE (X, I).

Description. Returns X x b' where b is the base in the model representation of X.
Kind. Elemental function.

1986 December Page 13-43

INTRINSIC PROCEDURES X3J3/S8

Arguments.

X must be of type real.

| must be of type integer.
Result Type and Type Parameters. Same as X.

5 Result Value. The result has the value X x b, where b is defined in 13.6.1 for model
numbers representing values of X, provided this result is within range.

Example. SCALE (3.0, 2) has the value 12.0 for reals whose model is as at the end of
13.6.1.
13.12.80 SCAN (STRING, SET, BACK).
10 Optional Argument. BACK
Description. Scan a string for a character in a set of characters.

Kind. Elemental function.

Arguments.
STRING must be of type character.
15 SET must be of type character.

BACK (optional) must be of type logical.
Result Type. Integer.
Result Value.

Case (i): If any of the characters of SET appears in STRING, the value of the result
20 is the integer index of the leftmost character of STRING that is in SET.
The result is zero if STRING does not contain any of the characters that
are in SET or if the length of STRING or SET is zero. The default value of
BACK is .FALSE. and its inclusion is optional when processing starts with
the first character of STRING.

25 Case (ii): If STRING is to be processed starting with the last character, BACK must
contain the logical value .TRUE. The value of the result is the integer
index of the rightmost character of STRING that is in SET. The result is
zero if STRING does not contain any of the characters that are in SET or if
the length of STRING or SET is zero.

30 Example. SCAN (FORTRAN’, 'TR') has value 3.

13.12.81 SETEXPONENT (X, I).

Description. Returns the model number whose fractional part is the fractional part of
the model representation of X and whose exponent part is |.

Kind. Elemental function.
35 Arguments.
X must be of type real.
I must be of type integer.
Result Type and Type Parameters. Same as X.

Result Value. The result has value X x b'~¢, where b and e are as defined in 13.6.1
40 for the model representation of X, provided this result is within range. If X has value

Version 103 1986 December Page 13-44

INTRINSIC PROCEDURES X3J3/88

10

15

20

25

30

35

Version 103

zero, the result has value zero.

Example. SETEXPONENT (3.0, 1) has the value 1.5 for reals whose model is as at the
end of 13.6.1.

13.12.82 SIGN (A, B).

Description. Absolute value of A times the sign of B.

Kind. Elemental function.

Arguments.
A must be of type integer or real.
B must be of the same type as A.

Result Type and Type Parameters. Same as A.
Result Value. The value of the result is |A| if B = 0 and —|A] if B < 0.
Example. SIGN (—3.0, 2.0) has the value 3.0.

13.12.83 SIN (X).

Description. Sine function.

Kind. Elemental function.

Argument. X must be of type real, or compiex.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
sin(X). If X is of type real, it is regarded as a value in radians. [f X is of type complex,
its real part is regarded as a value in radians.

Example. SIN (1.0) has the value 0.84147098 (approximately).

13.12.84 SINH (X).

Description. Hyperbolic sine function.

Kind. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
sinh(X).

Example. SINH (1.0) has the value 1.1752012 (approximately).

13.12.85 SPACING (X).

Description. Returns the absolute spacing of model numbers near the argument
value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value b®~P, where b, e, and p are as defined in 13.6.1
for the model representation of X, provided this result is within range; otherwise, the

1986 December Page 13-45

INTRINSIC PROCEDURES X3J3/S8

10

16

20

25

30

35

Version 103

result is the same as that of TINY (X).

Example. SPACING (3.0) has the value 2-2 for reals whose model is as at the end of
13.6.1.

13.12.86 SPREAD (SOURCE, DIM, MCOPIES).

Description. Replicates an array by adding a dimension. Broadcasts several copies of
SOURCE along a specified dimension (as in forming a book from copies of a single
page) and thus forms an array of rank one greater.

Kind. Transformational function.

Arguments.

SOURCE may be of any type. It may be scalar or array valued. The rank of
SOURCE must be less than 7.

DIM must be scalar and of type integer with value in the range
1 < DIM < n 41, where n is the rank of SOURCE.

NCOPIES must be scalar and of type integer.

Result Type, Type Parameters, and Shape. The result is an array of the same type
and type parameters as SOURCE and of rank n +1, where n is the rank of SOURCE.

Case (i): If SOURCE is scalar, the shape of the result is [MAX (NCOPIES, 0)).

Case (ij): 1f SOURCE is array valued with shape E (1:n), the shape of the result is [E
(1:DIM-1), MAX (NCOPIES, 0), E (DIM:n)).

Result Value.

Case (i): If SOURCE is scalar, each element of the result has value equal to
SOURCE.

Case (ij): If SOURCE is array valued, the element of the result with subscript (r, 7o,
..y In44) has the value SOURCE (s4, S5, ..., S,) Where (sS4, S, ..., Sp) is (rq,
ra, ..., I'n4+1) With subscript rpy omitted.

Example. If A is the array [2, 3, 4], SPREAD (A, DIM=1, NCOPIES =3) is the array

234
234 |.
234

13.12.87 SQRT (X).

Description. Square root.
Kind. Elemental function.

Argument. X must be of type real or complex. Unless X is complex, its value must be
greater than or equal to zero.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
the square root of X. A result of type complex is the principal value with the real part
greater than or equal to zero. When the real part of the result is zero, the imaginary
part is greater than or equal to zero.

Example. SQRT (4.0) has the value 2.0 (approximately).

1986 December Page 13-46

INTRINSIC PROCEDURES X3J3/s8

13.12.88 SUM (ARRAY, DIM, MASK).

10

15

20

25

30

Optional Arguments. DIM, MASK

Description. Sum all the elements of ARRAY along dimension DIM with mask MASK.
Kind. Transformational function.

Arguments.
ARRAY must be of type integer, real, or complex. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of ARRAY.
MASK (optional) must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the Same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,

the result is an array of rank n—1 and of shape (d;, d,, ..., dom-1, domsq, .., d,)
where (d,, d,, ..., d,) is the shape of ARRAY.
Result Value.

Case (i) The result of SUM (ARRAY) has value equal to a processor-dependent

approximation to the sum of all the elements of ARRAY or has value zero if
ARRAY has size zero.

Case (i): The result of SUM (ARRAY, MASK) has value equal to a processor-
dependent approximation to the sum of the elements of ARRAY corre-
sponding to the true elements of MASK or has value zero if there are no
true elements.

Case (iii): If ARRAY has rank one, SUM (ARRAY, DIM [:MASK]) has value equal to
that of SUM (ARRAY [L,MASK]). Otherwise, the value of element (51, 82, ...,
SpM—1: SDIM+1s ..., Sp) of SUM (ARRAY, DIM [.MASK]) is equal to SUM
(AHRAY (S1, Sa, ..., SpimM-1, 5, SDIM+1s =eey S,,) [, MASK (31, Sy, ..., SpM-1, :,
SDIM+15 s Sp) 1).

Examples.
Case (i): The value of SUM ([1, 2, 3]) is 6.

Case (i) SUM (C, MASK= C .GT. 0.0) forms the arithmetic sum of the positive
elements of C. :

Case (ii): If B is the array B 2 g] SUM (B, DIM=1) is [3, 7, 11] and SUM (B,

DIM=2) is [9, 12).

13.12.89 SYSTEM__CLOCK (COUNT, COUNT__RATE, COUNT__MAX).

35

40

Version 103

Optional Arguments. COUNT, COUNT__RATE, COUNT__MAX
Description. Returns integer data from a real-time clock.

Kind. Subroutine.

Arguments.

COUNT (optional) must be scalar and of type integer. It is set to a processor-
dependent value based on the current value of the basic clock or
to —HUGE (0) if there is no clock. The processor-dependent value
is incremented by one for each clock count until the value
COUNT_MAX is reached and is reset to zero at the next count. It

1986 December Page 13-47

INTRINSIC PROCEDURES X3J3/S8

5

10

15

20

25

30

35

Version 103

Result Value. Element (i, j) of the result has value MATRIX (j, i), i = 1,2,...n; j =
1,2,....m.

123
Example. If A is the array [4 5 6], then TRANSPOSE (A) has the value

789
147
25 8.
369

13.12.95 TRIM (STRING).

Description. Returns the argument with trailing blank characters removed.
Kind. Transformational function.

Argument. STRING must be of type character and must be a simple variable or array
element (not an array or array section).

Result Type and Type Parameters. Character with a length that is the length of
STRING less the number of trailing blanks in STRING.

Resul: Value. The value of the result is the same as STRING except any trailing
blanks are removed. If STRING contains no nonblank characters, the result has zero
length.

Example. TRIM’ A B ') hasvalue’ A B'.

13.12.96 UNPACK (VECTOR, MASK, FIELD).

Description. Unpack an array of rank one into an array under the control of a mask.
Kind. Transformational function.

Arguments.

VECTOR may be of any type. It must have rank one. Its size must be at
least t where t is the number of true elements in MASK.

MASK must be array valued and of type logical. Its shape must be
defined.

FIELD must be of the same type and type parameters as VECTOR and

must be conformable with MASK.

Result Type, Type Parameters, and Shape. The result is an array of the same type
and type parameters as VECTOR and the same shape as MASK.

Result Value. The element of the result that corresponds to the i-th true element of
MASK, counting in subscript order value, has value VECTOR (/) for i = 1,2,...,t,
where t is the number of true values in MASK. Other elements have value equal to
FIELD if FIELD is scalar or to the corresponding element of FIELD if it is an array.

Example. Specific values may be “scattered” to specific positions in an array by using

000
UNPACK. If M is the array [0 8 0}, V is the array [1, 2, 3], and Q is the logical
0 0

T
mask [T . 'i'} , where “T” represents .TRUE. and “.” represents .FALSE., then the

020
result of UNPACK (V, MASK=Q, FIELD =M) has the value [1 0 0} and the resuit of
003

1986 December Page 13-50

INTRINSIC PROCEDURES X3J3/58

UNPACK (V, MASK=Q, FIELD =0) has the value [

WOoo
| I |

oO=0
QON

13.12.97 VERIFY (STRING, SET, BACK).
Optional Argument. BACK

Description. Verify that a set of characters contains all the characters in a string.

5 Kind. Elemental function.
Arguments.
STRING must be of type character.
SET must be of type character.
BACK (optional) must be of type logical.
10 Result Type. Integer.
Result Value.

Case () The value of the result is zero if each character in STRING appears in SET
or if STRING has zero length; otherwise, the value of the result is the posi-
tion of the leftmost character of STRING that is not in SET. The default

15 value of BACK is .FALSE. and its inclusion is optional when processing
starts with the first character of STRING.

Case (ij): If STRING is to be processed starting with the last character, BACK must
contain the logical vaiie .TRUE. The value of the result is zero if each
character in STRING appears in SET or if STRING has zero length; other-

20 wise, the value of the result is the position of the rightmost character of
STRING that is not in SET.

Example. VERIFY (CAB’, 'A’) has value 2.

Version 103 1986 December Page 13-51

10

15

20

25

30

35

14 SCOPE, ASSOCIATION, AND DEFINITION

Each lexical token has a scope, which is either an executable program, a scoping unit, a
single statement, or part of a statement. Within its scope, a lexical token has a single inter-
pretation. An entity identified by a lexical token whose scope is an executable program is
called a global entity. An entity identified by a lexical token whose scope is a scoping unit
(2.2.1) is called a local entity. An entity identified by a lexical token whose scope is a sin-
gle statement or part of a statement is called a statement entity.

14.1 Scope of Mames. The names of external procedures, common blocks, and pro-
gram units have a scope of an executable program.

The names of variables, constants, statement functions, internal procedures, module proce-
dures, dummy procedures, intrinsic procedures, keyword arguments, types, type parameters,
type components, range lists, namelist groups, and constructs have a scope of a scoping
unit.

The name of a variable that appears as an IDENTIFY subscript or as a dummy argument in
a statement function statement has a scope of the statement in which it appears.

The name of a variable that appears as the DO variable of an implied-DO in a DATA state-
ment has a scope of the implied-DO list.

14.1.1 Global Entities. Program units, common blocks, and external procedures are global
entities of an executable program. A name that identifies a global entity must not be used
to identify any other giobal entity in the same executable program.

14.1.2 Local Entities. Within a scoping unit, entities in the following classes:

(1) Named variables, named constants, constructs, statement functions, internal pro-
cedures, module procedures, dummy procedures, intrinsic procedures, derived
types, range lists, and namelist group names.

(2) Type parameters, in a separate class for each type,
(3) Type components, in a separate class for each type, and

(4) Keyword arguments, in a separate class for each procedure with an explicit inter-
face

are local entities of that scoping unit.

A name that identifies a global entity in a scoping unit must not be used to identify a local
entity of class (1) in that scoping unit, except for a common block name (14.1.2.1) or an
external function name (14.1.2.2).

Within a scoping unit, a name that identifies a local entity of one class must not be used to
identify another entity of the same class, except in the case of overloaded procedures
(14.1.2.83). A name that identifies a local entity of one class may be used to identify a local
entity of another class. '

The name of a local entity identifies that entity in a single scoping unit and may be used to
identify any local or global entity in another scoping unit.

Version 103 1986 December Page 14-1

SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

10

15

20

25

30

35

40

45

14.1.2.1 Common Blocks. A common block name in a scoping unit also may be the name
of any local entity other than a named constant, intrinsic function, or a local variable that is
also an external function in a function subprogram. If a name is used for both a common
block and a local entity, the appearance of that name in any context other than as a com-
mon block name in a COMMON or SAVE statement identifies only the local entity. Note that
an intrinsic function name may be a common block name in a scoping unit that does not ref-
erence the intrinsic function.

14.1.2.2 Function Results. If a function subprogram does not have a RESULT clause in
its function statement, there must be a local variable with the same name as that function.
If a function subprogram contains an ENTRY statement, there must be a local variable with
the same name as the entry.

14.1.2.3 Procedure Overloading. Within a scoping unit, two procedures may have the
same name provided they both have explicit interfaces and at least one of them has a
nonoptional dummy argument which

(1) Corresponds by position in the argument list to a dummy argument not present in
the other, present with a different type, present with different type parameters, or
present with a different rank when both are deferred-shape arrays; and

(2) Corresponds by keyword argument to a dummy argument not present in the other,
present with a different type, present with different type parameters, or present
with a different rank when both are deferred-shape arrays.

14.1.2.4 Compoinents. A component name has the same scope as the type of which it is a
component. It may appear only within a designator of a component of a structure of that
type. If the type is accessible in another scoping unit by use association (14.7.1.2), the com-
ponent name is accessible for names of components of structures of that type in that scop-
ing unit.

14.1.2.5 Type Parameters. A type parameter name has the same scope as the type of
which it is a parameter. There is also a variable of the same name whose scope is the
derived-type definition. As a type parameter name, it may appear only in a derived-type
declaration for the type of which it is a parameter. If the type is accessible in another scop-
ing unit by use association (14.7.1.2), the type parameter name is accessible for derived-type
declarations for that type in that scoping unit.

14.1.2.6 Keyword Arguments. A dummy argument name in an internal procedure, mod-
ule procedure, or a procedure interface block has a scope as a keyword argument of the
scoping unit of its host program unit. As a keyword argument name, it may appear only in a
procedure reference for the procedure of which it is a dummy argument. If the procedure or
procedure interface block is accessible in another scoping unit by use association (14.7.1.2),
the keyword argument name is accessible for procedure references for that procedure in
that scoping unit.

14.1.3 Statement Entities. The name of a variable that appears as a dummy argument in
a statement function statement has a scope of the statement in which it appears. It has the
type that it would have if it were the name of a variable in the scoping unit that includes the
statement function.

The name of an IDENTIFY subscript has a scope of that IDENTIFY statement. It is always
of type integer.

The name of a variable that appears as the DO variable of an implied-DO in a DATA state-
ment has a scope of the implied-DO list. It has the type that it would have if it were the

Version 103 1986 December Page 14-2

SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

10

15

20

25

30

35

name of a variable in the scoping unit that includes the DATA statement and this type must
be integer.

The name of a statement entity also may be the name of a global or local entity in the same
scoping unit; in this case, the name is interpreted within its statement scope as that of the
statement variable.

14.2 Scope of Labels. A label has a scope of a scoping unit. No two statements in the
same scoping unit may have the same label.

14.3 Scope of Exponent Letters. An exponent letter has a scope of a scoping unit. It
also may be the name of a global or local entity in the same scoping unit.

14.4 Scope of External Input/Output Units. An external input/output unit has a
scope of an executable program.

14.5 Scope of Operators. The intrinsic operators have a scope of an executable pro-
gram. A defined operator has a scope of a scoping unit. Within a scoping unit, two opera-
tions may be identified by the same operator provided they have a pair of corresponding
operands with different type, different type parameters, or different rank.

14.6 Scope of the Assignment Symbol. Intrinsic assignment has a scope of an exe-
cutable program. A defined assignment has a scope of a scoping unit. Within a scoping
unit, two assignments may be identified by the assignment symbol provided they have a pair
of corresponding operands with different type, different type parameters, or different rank.

14.7 Association. Two entities may become associated by name association or by stor-
age association. When entities become associated, each part of one is associated with the
corresponding part of the other.

14.7.1 Name Association. There are three forms of name association: argument associa-
tion, alias association, and use association. Argument and use association provide a
mechanism by which entities known in a scoping unit may be accessed in another scoping
unit. Alias association provides alternative avenues (for example, different names) of access
to a data object within a single scoping unit.

14.7.1.1 Argument Association. The rules governing argument association are given in
Section 12. As explained in Section 12.4, execution of a procedure reference establishes
an association between an actual argument and its corresponding dummy argument. Argu-
ment association may be sequence association (12.4.1.4).

The name of the dummy argument may be different from the name, if any, of its associated
actual argument. (Note that an actual argument may be a nameless data entity, such as an
expression that is not simply a variable or constant.) The dummy argument name is the
name by which the associated actual argument is known, and may be accessed by, in the
called procedure.

Upon termination of execution of a procedure reference, all argument associations estab-
lished by that reference are terminated. A dummy argument of that procedure may be asso-
ciated with an entirely different actual argument in a subsequent execution of the procedure.

Version 103 1986 December Page 14-3

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

15

20

25

30

35

40

45

14.7.1.2 Use Association. The rules for use association are given in 11.3.1. They allow
for the renaming of the entities being accessed.

Use association allows access in one scoping unit to entities defined in another scoping unit
and remains in effect throughout the execution of the executable program.

An entity accessed by use association must not appear in a type declaration statement or
otherwise have any of its attributes specified. It assumes all attributes, and only those attri-
butes, of its associated entity. If the entity is renamed in a USE statement in a scoping unit,
the original name is not associated with it in this scoping unit and may be used for other pur-
poses. The new name may be used in exactly the same way as the original name could
have been used if there had been no renaming.

14.7.1.3 Alias Association. Alias association provides another form of name association,
in addition to argument association and use association.

An alias provides an alternative access to a data object within a single scoping unit. The
process of establishing an alias and the resuiting relationship is known as alias association.

The rules for alias association are given in 6.2.6. The alias name must have the ALIAS attri-
bute.

An alias association between an alias and a nonalias object is established upon execution of
an IDENTIFY statement and continues thereafter until the first occurrence of:

(1) Execution of another IDENTIFY statement in the same scoping unit involving the
same alias,

(2) Termination of execution of the scoping unit, or
(3) Deallocation of the associated nonalias data object.

An alias may be associated with any nonalias data object or subobject that has the same
type and type parameters. The association may be established through an existing alias.
An alias must not be referenced or defined unless it is alias associated. An alias association
with an allocatable array must not be established unless the allocatable array is allocated.
Deallocation of an allocatable array terminates all alias associations with it.

Any number of aliases may be associated concurrently with a given nonalias object. Each
such alias provides access to the associated data object, and the nonalias object continues
to be accessible by its original name. An alias may be reassociated by IDENTIFY state-
ments any number of times with the same data object during execution of a scoping unit.

Summary Comparison of Alias and Use Associations

Characteristic Alias Associations Use Associations

Scope Single scoping unit Single scoping unit,
plus using scoping units
if in a module

Duration Temporary Entire program execution
May change? Yes No
How established? Execution of Appearance in USE statement

IDENTIFY statement

How terminated? Execution of Termination of execution

Version 103 1986 December Page 14-4

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

15

20

25

30

35

40

IDENTIFY statement of the executable program
Deallocation of the entity

Termination of execution

of the executable program

Appearance in USE statement Not allowed Normal (only) way
to establish
Appearance in IDENTIFY statement As alias variable as host variable

As host variable
Allowed with unallocated host No Yes

May be allocated? No Yes
(appear in ALLOCATE statement)

May be deallocated? Yes Yes
(appear in DEALLOCATE statement)

Host name also accessible? Yes No

ALIAS attribute Explicit or implicit Implicit for all entities
for scalars, required
for arrays, not allowed
for procedures

14.7.2 Storage Association. Storage sequences are used to describe relationships that
exist among variables, array elements, substrings, common blocks, and arguments.

14.7.2.1 Storage Sequence. A storage sequence is a sequence of storage units. The
size of a storage sequence is the number of storage units in the storage sequence. A
storage unit is a character storage unit or a numeric storage unit.

A variable or array element of type integer, default real, or logical has a storage sequence of
one numeric storage unit.

A structure, structure component, or structure element has no storage sequence.

A variable, array, or array element with explicitly specified precision and range attributes of
type real or complex has no storage sequence.

A variable of type double precision real or default complex has a storage sequence of two
numeric storage units. In a complex storage sequence, the real part has the first storage
unit and the imaginary part has the second storage unit.

A variable of type character has a storage sequence of character storage units. The number
of character storage units in the storage sequence is the length of the character entity. The
order of the sequence corresponds to the ordering of character positions (4.3.2.1 and
5.1.1.5).

Each common block has a storage sequence (5.5.2.1).

Each data object appearing in a storage association context has a storage sequence (2.4.5).

Version 103 1986 December Page 14-5

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

15

20

25

30

35

40

45

14.7.2.2 Association of Storage Sequences. Two storage sequences s and s, are asso-
ciated if the ith storage unit of s, is the same as the jth storage unit of s,. This causes the
(i + k)th storage unit of s; to be the same as the (j + k)th storage unit of s,, for each inte-
gerk suchthat1 < i+ k < size of s;and 1 < j + k < size of s».

14.7.2.3 Association of Data Objects. Two data objects are storage associated if their
storage sequences are associated. Two entities are totally associated if they have the

same storage sequence. Two entities are partially associated if they are associated but not
totally associated.

The definition status and value of a data object affects the definition status and value of any
associated entity. An EQUIVALENCE statement, a COMMON statement, an ENTRY state-
ment, or a procedure reference may cause association of storage sequences.

An EQUIVALENCE statement causes association of data objects only within one scoping
unit, unless one of the equivalenced entities is also in a common block (5.5.1.1 and 5.5.2.1).

COMMON statements cause data objects in one scoping unit to become associated with
data objects in another scoping unit.

In a function subprogram, an ENTRY statement causes the entry name to become associ-
ated with the name of the function subprogram which appears in the FUNCTION statement.

Partial association may exist only between two character entities or between a double preci-
sion or complex entity and an entity of type integer, real, logical, double precision, or com-
plex.

Except for character entities, partial association may occur only through the use of COM-
MON, EQUIVALENCE, or ENTRY statements. Partial association must not occur through
argument association, except for arguments of type character.

In the example:

REAL A (4), B

CGMPLEX C (2)

DOUBLE PRECISION D

EQUIVALENCE (C(2), A(2), B), (A, D)

the third storage unit of C, the second storage unit of A, the storage unit of B, and the sec-

ond storage unit of D are specified as the same. The storage sequences may be illustrated
as:

Storage unit 1 2 3 4 5
cn |-—C(2)
A1) A() AG) AL
__B.._
______D______

A(2) and B are totally associated. The following are partially associated: A(1) and C(1), A(2)
and C(2), A(3) and C(2), B and C(2), A(1) and D, A(2) and D, B and D, C(1) and D, and C(2)
and D. Note that although C(1) and C(2) are each associated with D, C(1) and C(2) are not
associated with each other.

Partial association of character entities occurs when some, but not all, of the storage units of
the entities are the same. In the example:

CHARACTER A*4, Bx&4, C*3
EQUIVALENCE (A(2:3), B, C)

A, B, and C are partially associated.

Version 103 1986 December Page 14-6

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

15

20

25

30

35

40

14.8 Definition and Undefinition of Variables. A constant has a value throughout the
execution of an executable program and it does not change. A variable may be defined with
a value or may be undefined and its definition status may change during execution of an
executable program.

14.8.1 Variables That Are Always Defined. Zero-sized array and zero-length strings are
always defined.

14.8.2 Variables That Are Initially Defined. The following variables are defined initially:
(1) Variables specified to have initial values by DATA statements,

(2) Variables specified to have initial values by type declaration statements with the
DATA attribute, and

(3) \Variables that are always defined.
14.8.3 Variables That Are Initially Undefined. All other variables are initially undefined.

14.8.4 Events That Cause Variables to Become Defined. Variables become defined as
follows:

(1) Execution of an assignment statement other than a masked array assignment
statement causes the variable that precedes the equals to become defined.

(2) Execution of a masked array assignment statement causes some of the array
elements in the assignment statement to become defined (7.5.2.2).

(3) As execution of an input statement proceeds, each variable that is assigned a
value from the input file becomes defined at the time that data is transferred to it.

(4) Execution of a DO statement causes the DO-variable to become defined.

(5) Beginning of execution of the action specified by an implied-DO list in an
input/output statement causes the implied-DO-variable to become defined.

(6) Execution of an ASSIGN statement causes the variable in the statement to become defined with a statement
label value.

(7) A reference to a procedure causes a part of dummy argument to become defined
if the corresponding part of the actual argument is defined with a value that is not a
statement label.

(8) Execution of an input/output statement containing an input/output I0STAT =
specifier causes the specified integer variable to become defined.

(9) Execution of a READ statement containing a NULLS= or VALUES = specifier
causes the specified integer variable to become defined.

(10) Execution of an INQUIRE statement causes any variable that is assigned a value
during the execution of the statement to become defined if no error condition
exists.

(11) When a variable of a given type becomes defined, all associated variables of the
same type become defined except that variables associated with the variable in an ASSIGN state-
ment become undefined when the ASSIGN statement is executed.

(12) When a variable becomes defined, all parts of the variable become defined.

(13) When all parts of a variable become defined, the variable becomes defined.

Version 103 1986 December Page 14-7

SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

(14)

Execution of a SET RANGE statement changes the range of one or more arrays
and therefore may change their definition status.

14.8.5 Events That Cause Variables to Become Undefined. Variables become undefined
as follows:

10

15

20

25

30

35

40

Version 103

M

©)

4

(5)

(6)

@)

(8)
(9)

(10)

(11)
(12)

(13)

When a variable of a given type becomes defined, all associated variables of
different type become undefined.

Execution of an ASSIGN statement causes the variable in the statement to become undefined as an integer.

If the evaluation of a function may cause an argument of the function or a variable
in a module or in a common block to become defined and if a reference to the
function appears in an expression in which the value of the function is not needed
to determine the value of the expression, the argument or variable becomes
undefined when the expression is evaluated.

The execution of a RETURN statement or an END statement within a subprogram
causes all variables local to its scoping unit or local to the current instance of its
scoping unit for a recursive invocation to become undefined except for the follow-
ing:

(a) Variables with the SAVE attribute.
(b) Variables in blank common.

(c) \Variables in a named common block that appears in the subprogram and
appears in at least one other scoping unit that is making either a direct or
indirect reference to the subprogram.

(d) Variables accessed from the host scoping unit.

(e) Variables accessed from a module that also is accessed in a scoping unit
that is currently in execution.

(f) Initially defined entities that neither have been redefined nor have become
undefined.

When an error condition or end-of-file condition occurs during execution of an
input statement, all of the variables specified by the input list of the statement
become undefined, except those counted by a VALUES = specifier.

Execution of a direct access input statement that specifies a record that has not
been written previously causes all of the variables specified by the input list of the
statement to become undefined.

Execution of an INQUIRE statement may cause the NAME=, RECL=, and
NEXTREC = variables to become undefined (9.6).

When any part of a variable becomes undefined, the variable becomes undefined.

When a variable becomes undefined, all its parts and all associated variables
become undefined.

A reference to a procedure causes a part of a dummy argument to become undefined if the corresponding
part of the actual argument is defined with a value that is a statement label value.

When an allocatable array is deallocated, it becomes undefined.

Execution of an IDENTIFY statement changes alias associations and therefore
may change the definition status of alias variables. -

Execution of a SET RANGE statement changes the range of one or more arrays
and therefore may change their definition status.

1986 December Page 14-8

APPENDIX A FORTRAN FAMILY OF STANDARDS

A host language standard, such as Fortran, should take responsibility for coordinating other
standards built on its base to prevent the development of conflicting collateral standards. A
Fortran Reference Model has been suggested for the Fortran Family of Standards.

5 The Fortran Family of Standards consists of:
(1) The Fortran Language Standard
(2) Supplementary Standards based on Procedure Libraries
(3) Supplementary Standards based on Module Libraries
(4) Secondary Standards

10 X3.9-1978 (the previous Fortran standard) is referred to as Fortran 77 in this appendix.
X3.9-198x is referred to as Fortran 8x. A possible successor is referred to as Fortran 9x.

A.1 The Fortran Language Standard. The Fortran Language consists of primary fea-

tures from Fortran 77, decremental features that are deleted, obsolescent, or deprecated in

this standard, and incremental features that add new constructs to Fortran. (See Figure 1.)
FORTRAN Faoamily of Steandarcs

(Refaor-aencs MoOodael)

—
FORTRAN
oLD NEW
FEATURES INTERSECTION FEATURES
(DECREMENTAL) (PRIMARY) (INCREMENTAL)
iy
-7 Fortramn o
rﬁ Fortramn Dix]
[Fortran 77 I
CORE FORTRENM IS
PRIMARY -+ INCREMENTAL FEATURES
15 Figure 1. The Fortran Language Standard.

A.1.1 Primary Features. These features are those from the Fortran 77 standard that con-
tinue to be useful and characteristic of the language. Primary features are expected to con-
tinue throughout the life of Fortran or at least for the next several revisions of the language:

Version 103 1986 December Page A-1

FORTRAN FAMILY OF STANDARDS X3J3/S8

10

15

20

25

30

35

A.1.2 Incremental Features. These features are new to the language and are needed to
improve the usefulness of Fortran. They are developed from current practice in extended
Fortran implementations and in other contemporary languages.

The criteria for incremental features are:
(1) The feature is responsive to new system architectures.
(2) The feature improves the functionality of Fortran.
(3) The feature is desirable for certain important special purpose applications.
(4) The feature’s inclusion enhances portability.
(6) The feature uses modern language technology.

(6) The feature is compatible with the primary and decremental features.

A.1.3 Decremental Features. Decremental features are those features that are deleted,
obsolescent, or deprecated in the Fortran Standard. They are candidates for removal from
future versions of the Fortran Standard. Marking a feature as obsolescent or deprecated
does not imply its removal from subsequent standards; notification is given that these fea-
tures may be removed in the next revision.

Appendix B further describes deprecating features.

A.1.4 Compatibility. All of Fortran 77 is included within Fortran 8x. Fortran 8x consists of
the complete language of primary, incremental, and decremental features. No segmentation
or subsetting of the language is implied. Fortran 77 is the combination of the primary fea-
tures and the decremental features. Programs written in Fortran 77 are compatible with For-

tran 8x and, with few exceptions, incremental features may be added to existing Fortran 77
programs.

A.1.5 Core. Core Fortran is the combination of the primary features and incremental fea-
tures.

A.2 Suppizmentary Standaids Based on Procedure Libraries. Supplementary
Standards add functionality to the Fortran language by using the interface mechanisms
specified in the Fortran Language Standard. Examples of supplementary standards are the
industrial Real Time Fortran specification and the Fortran binding to the Graphical Kernel
System. These are standards themselves and conform with the Fortran 77 standard. Other
possible candidates for supplementary standards might be the standardization of certain util-
ity or mathematical libraries and the standardization of data base facilities. While a supple-
mentary standard adds functionality to the Fortran Family, it does not alter the syntax of con-
structs in Fortran.

A.2.1 Inierface Mechanisms. A supplementary standard based on procedure references
is called a procedure supplementary standard. Such standards must use the interface
mechanisms provided in Fortran to describe specific definitions of a process. The interface
mechanisms provided in Fortran 77 are limited to procedure references. Fortran 8x extends

this interface capability by allowing keywords and optional arguments in procedure refer-
ences.

Varsion 103 1986 December Page A-2

FORTRAN FAMILY OF STANDARDS X3J3/S8

10

15

A.3 Supplementary Standards Based on Module Libraries. A supplementary stan-
dard based on modules is called a module supplementary standard. Supplementary stan-
dards may specify modules that provide a high level of application-oriented functionality.
These may include the defining of new data types and their accompanying operators. Mod-
ules are nonexecutable program units containing definitions made available to any other pro-
gram unit by the USE statement. Many problem-oriented applications would make excelient
candidates for module supplementary standards. Modules may be included in the Fortran
Standard document or they may be standardized in separate documents.

A.3.1 Interface Mechanisms. The interface mechanisms provided in Fortran 8x contain a
set of facilities for binding a variety of additional features, such as graphics, to Fortran.
These facilities include modules which make definitions, data declarations, and procedure
libraries available to an executable program. The USE statement provides the means for
referencing specific modules. Supplementary standards may use these mechanisms in
defining a specific process within the Fortran Family of Standards.

SUFFILEMENTARY STANDA&GRDS

FORTRAN Family of Standards

—

FORTRAN INTERFACES

Mechaninms

Modul es
Mzchanisms Blocka
Mechanisms Procedurz Calls Extended Call
None Darived Type

Fortramn 9x

[ﬁ Fortrarmn Bx *J

[—4' Fortram 77 AAJ

Applaication Application
€1 “n

Supplmmentary Standards Modul e Supplzmentary Standards

Figure 2. Supplementary Standards.

Version 103 1986 December Page A-3

FORTRAN FAMILY OF STANDARDS X3J3/58

10

15

20

25

30

35

40

A.3.2 Rules. Some rules governing the preparation of supplementary standards that are
based on procedure and module libraries are:

(1) A module may be appended to the Fortran Standard or it may be a separate stan-
dard.

(2) If a module is appended to the Fortran Standard, it is forwarded for review at the
same time as the standard. If it is a separate supplementary standard, there is an
independent standardization process.

(3) A moduie is not part of the Standard. It is a member of the Fortran Family of
Standards.

(4) Standard modules must not use deprecated features (i.e., must conform to the
Fortran Core.) When the Fortran Standard is revised, a formerly standard-
conforming module may cease to be standard conforming because of the use of
(old) decremental features.

(5) When the Fortran Standard is revised, a review may determine that modifications
are needed to take advantage of any new functionality (incremental features) in
the standard.

(6) A name registration for supplementary standards is available from the Fortran
Standards Technical Subcommittee.

(7) Separate standards projects should be defined (SD-3) for each supplementary and
secondary standard. Task groups may be formed within the Fortran Standards

Technical Subcommittee for development of supplementary and secondary stan-
dards.

(8) Standard Modules prepared outside the committee and its task groups must use
the interface mechanisms in the language. Requests for new facilities in the For-

tran Standard must be processed by the Fortran Standards Technical Subcommit-
tee.

(9) The Fortran Standards Technical Subcommitiee should review all candidates for
supplementary and secondary standards to determine if they are standard con-
forming. This must be done in a timely manner.

A.4 Secondary Standards. Secondary standards do not impact or change the syntax of
the language nor do they change the semantics of the Fortran Standard. Instead, these
standards may make requirements on the conformance of programs using the Fortran Stan-
dard. For example, certain constructs that control the execution sequence of a program may
be required to flag specific conditions that occur during execution. Validation of programs
during compilation or execution is another example. Conformance requirements could be
expanded in a separate secondary standard. The syntax rules used to help describe the
form that Fortran statements take are included in the Fortran Standard (1.5). These rules
are described in a variation of BNF. A formal grammar might also be produced as a sepa-
rate document. Currently, there are no secondary standards in the Fortran Family of Stan-
dards; however, work is proceeding in these areas for Fortran and for programming lan-

Version 103 1986 December Page A-4

FORTRAN FAMILY OF STANDARDS - X3J3/S8

guages in general. See Figure 3.

SECONDARY STANDARDS

FORTRAN Family of Standardcds

e
FORTRAN
OLD NEW
FEATURES INTERSECT ION FEATURES
(DECREMENTAL) (PRIMARY) (INCREMENTAL)
- Fortramn P =
[Fortran 8x J
l Fortr-amn 77]
l‘"“l_-"l I""""J"'_"1
i validation | ‘ Campletaness-J

Secondary Standards

Figure 3. Secondary Standards.

A.5 Standard Conformance. Any program unit containing syntax not defined in the
Fortran language is not standard conforming with respect to the Fortran Standard. The inclu-

5 sion of a USE statement does not make the nonstandard conforming syntax standard con-
forming. A program unit that uses only syntax and semantics defined in the Fortran lan-
guage standard and one or more standard modules is standard conforming with respect to
the Fortran Family of Standards.

In moving to a revised standard, a number of features rather than the complete standard are

10 often selected by implementors. It is recommended that partial implementations of major
features not be done. For example, if the array facilities are to be included, as many of the
array features as possible should be implemented.

Version 103 1986 December Page A-5

FORTRAN FAMILY OF STANDARDS X3J3/S8

A.5.1 Name Registration. A list of names registered with the Fortran Standards Technical
Subcommittee will be kept for reference by those who are preparing a module intended for
the Fortran Family of Standards.

A.6 Fortran Family of Standards. Figure 4 is the complete diagram of the Fortran

5 Family of Standards. It includes the Fortran language with incremental, decremental, and
primary features. The interface mechanisms shown refer to the procedure and module sup-
plementary standards in the reference model.

FORTRAN Family of Stanmndards

(Raeferceance Modesl)

_ g
Decramental Primary Incremental
Interface Interface
Mechani sms Mechani ams
Frocedure Calls Modul rs
S —
-0 Fortramn S9x
[7 Fortran 8x]
| Fortran 77] 3
Suppl emzntary Standards Modul® Supplementary Standards

Sacondary Standardg

Figure 4. The Fortran Family of Standards

Version 103 1986 December Page A-6

APPENDIX B DELETED, OBSOLESCENT, AND DEPRECATED FEATURES

This appendix more fully describes the rationale for the specific decremental (deleted, obso-
lescent, and deprecated) features (1.6). Possible alternatives to the obsolescent and depre-
cated features are described.

5 B.1 Deleted Features. The deleted features are those features of ANSI X3.9-1978 that
are redundant and considered largely unused. Section 1.6.1 describes the nature of the
deleted features. The list of deleted features in the standard is empty.

B.2 Obsolescent Features. The obsolescent features are those features of ANSI X3.9-
1978 that are redundant and for which better methods are available. Section 1.6.2 describes
10 the nature of obsolescent features. The obsolescent features are:

(1) Arithmetic IF — replaced by logical IF and block IF (8.1.2)
(2) Real and double precision control variables — use integer (8.1.4.1)

(3) Share than END DO or CONTINUE — use an END DO or CONTINUE statement
for each DO statement

15 (4) Branching to an END IF statement from outside its IF block — branch to the state-
ment following the END IF

(5) Alternate return — see B.2.1

(6) PAUSE statement — see B.2.2

(7) ASSIGN and assigned GO TO — see B.2.3
20 (8) Assigned FORMAT specifiers--see B.2.4

B.2.1 Alternate Return. An alternate return introduces a label into an argument list to
allow the called subprogram to direct the execution of the caller upon return. Readability
and maintainability suffer when alternate returns are used. A better practice is to provide a
return code argument that is set by the called subprogram and used in a SELECT CASE

25 construct of the calling program unit to direct its subsequent execution. Maintainability is
enhanced because an additional case selector may be added without modifying the actual
and dummy argument lists.

CALL subr—name (X, Y, Z, *100, *200, ...)
30 100 CONTINUE

GO TO 999
200 CONTINUE

35 GO TO 999

999 CONTINUE

where labels 100, 200, etc., are alternate return points. In many cases, the effect can be
more safely achieved with a return code and a SELECT CASE structure:

40 CALL subr-name (X, Y, Z, RETURN__CODE)
SELECT CASE (RETURN__CODE)
CASE (return,)

Version 103 1986 December Page B-1

DELETED, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/s8

10

16

20

25

30

35

40

45

CASE (return,)

END SELECT

B.2.2 PAUSE Statement. Execution of a PAUSE statement requires operator or system-
specific intervention to resume execution. In most cases, the same functionality can be
achieved as effectively and in a more portable way with the use of an appropriate READ
statement that awaits some input data.

E.2.3 ASSIGN and Assigned GO TO. The ASSIGN statement allows a label to be dynami-
cally assigned to an integer variable, and the assigned GO TO statement allows “indirect
branching” through this variable. This hinders the readability of the program flow, especially
if the integer variable also is used in arithmetic operations. The two totally different usages
of the integer variable can be an obscure source of error.

Previously, internal subroutines were simulated by the presence of remote code blocks in a
procedure. The assigned GO TO statement provided the simulated return from the remote
code block “internal subroutine”. The addition of internal subroutines to the language
replaces this error prone usage.

Example: .,
ASSIGN 720 TO RETURN ! SET UP RETURN POINT
GO TO 740 ! BRANCH TO ''SUBROUTINE"

120 CONTINUE

740 CONTINUE _
i | ""'SUBROUTINE'* BODY
GO TO RETURN I ""SUBROUTINE'" RETURN

This functionality also is provided in this standard through the use of internal subroutines:
CALL SUBR_740

SUBROUTINE SUBR_740
! SUBROUTINE BODY
END

This illustrates the use of internal subroutines to conveniently provide “remote code block”
functionality.

B.2.4 Assigned FORWAT Specifiers. The ASSIGN statement also allows the label of a
FORMAT statement to be dynamically assigned to an integer variable, which can later be
used as a format specifier in READ, WRITE, or PRINT statements. This hinders readability
and inconsistent usages of the integer variable and can be an obscure source of error.

This functionality was provided in Fortran 77 via character variables, arrays, and constants.
Automatic storage allocation, in this standard, may also be used.

B.3 Nature of Depiecated Features. Section 1.6 describes a set of obsolescent fea-
tures that are identified in this revision of Fortran. There is another set of features, called
the deprecatad features, which will become obsolescent as the new features of this revision
of the Fortran language become widely used. These features are characterized by:

Version 103 1986 December Page B-2

DELETED, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/58

10

15

20

25

30

35

40

45

(1) Better methods exist in this document.

(2) It is recommended that programmers use these better methods in new programs
and convert existing code to these methods.

(3) If these features have appeared in a list of obsolescent features in a prior revision
of the Fortran standard and their use has become insignificant in Fortran pro-
grams, it is recommended that future Fortran standards committees consider
removing them from the next revision.

(4) 1t is recommended that future Fortran standards committees do not consider
removing language features defined in this revision that do not exist on this list
unless they have been identified as obsolescent in a prior Fortran revision.

(5) It is recommended that processors supporting the Fortran language continue to
support these features as long as they continue to be used widely in Fortran pro-
grams.

B.3.1 Storage Association. Storage association is the association of data objects through
storage sequence patterns rather than by object identification. Storage association allows
the user to configure regions of storage and to conserve the use of storage by dynamically
designating the objects contained within these storage regions. Though the disadvantages
of the use of storage association have been known for some time, features added in this
standard have provided Fortran with adequate replacement facilities for important functional-
ity formerly only provided by storage association. The six items below are deprecated due
to their use of storage association.

B.3.1.1 Assumed-Size Dummy Arrays. These are dummy arrays declared using an aster-
isk to specify its last dimension. In this standard, dummy arrays may be declared as
assumed-shape arrays by using the colon with no upper bound in one or more dimension
positions of the dummy array declaration. Assumed-shape arrays include all of the function-
ality of assumed-size arrays. Assumed-size arrays assume that a contiguous set of array
elements is being passed. With assumed-shape arrays, an array section that does not con-
sist of a contiguous set of array elements (such as a row of a matrix) may also be passed.

B.3.1.2 Passing an Array Element or Substring to a Dummy Array. This functionality is
now achieved more safely by passing the desired array section. For example, if a one-
dimensional array XX is to be passed starting with the sixth element, then instead of passing
XX (6) to the dummy array, one would pass the array section XX (6:); if the eleventh through
forty-fifth elements are to be passed, the actual argument would be the array section XX
(11:45).

B.3.1.3 BLOCK DATA Program Unit. The principal use of BLOCK DATA program units is
to initialize common blocks. Modules provide a complete replacement for BLOCK DATA pro-
gram units. The global data functionality of common blocks is also provided by modules.
Global data in modules may be initialized when specified.

B.3.1.4 COMMON Statement. The important functionality of the COMMON statement has
been in its use in specifying global data pools. In this standard, global data pools may be
provided more safely and conveniently with MODULE program units and USE statements.
Using the COMMON statement, a global data pool could be specified by:

INTEGER X (1000)
REAL Y (100, 100)
COMMON / POOLY / X, Y

Each scoping unit using this global data would need to contain these specifications.

Version 103 1986 December Page B-3

DELETED, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/S8

Alternatively, one can define the global data pool in a MODULE program unit:

MODULE POOL1
INTEGER X (1000)
REAL Y (100, 100)
5 END MODULE

Each scoping unit using this global data would contain the statement
USE POOL1

When used in this manner, the MODULE/USE functionality is similar to the INCLUDE exten-
sion in many Fortran implementations. This is safer than using common blocks because the

10 specification of the global data pool appears only once. In addition, the USE statement is
very short and easy to use. Facilities are provided in the USE statement (not shown here)
to rename module objects if different names are desired in the scoping unit using the mod-
ule objects.

Another advantage is that modules do not involve storage association. Therefore, they may

15 contain any desired mix of character, noncharacter, and structured objects. Because a com-
mon block involves storage association, a common block cannot contain both character and
noncharacter data objects.

B8.3.1.5 EMTRY Statement. The ENTRY statement is typically used in situations where
there are several operations involving the same set of data objects:

20 procedure-heading
data-specifications
en try 1

RETURN
25 entry,

RETURN

entry,
30

RETURN
END

The MODULE program unit provides the equivalent functionality in the form:

MODULE module-name
35 dala-specifications
procedure

END

procedure,
40
END

procedure,
45 END
END MODULE

A scoping unit using this module may call each procedure in it, exactly as if they were entry

Version 103 1986 December Page B-4

DELETED, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/S8

10

15

20

25

30

35

40

points. One advantage is that some of the procedures in a module may be functions and
some may be subroutines, whereas all entry points in a function procedure must be invoked
as functions and all entry points in a subroutine procedure must be invoked as subroutines.

B.3.1.6 EQUIVALENCE Statement. A major use of the EQUIVALENCE statement is to
have two or more data objects, possibly of different types, share the same storage region.
This was important in earlier periods when address space was limited making conservation
necessary. The EQUIVALENCE statement also provides the means of simulating certain
data types, structures, and transfer functions. This functionality is now available in the lan-
guage.

Reuse of storage can now be achieved by using automatic arrays (5.1.2.4.1) and allocatable
arrays. Following the return from the subprogram, the space for the dynamic local array is
available for reuse.

The derived type capability provides a replacement for the more awkward means of achiev-
ing data structures through the use of EQUIVALENCE statements.

The ability of the EQUIVALENCE statement to alias two or more data objects or remap two
or more arrays is now provided by the SET RANGE and IDENTIFY statements. Where this
new facility is nevertheless inadequate, the TRANSFER function (13.9.7) may be used.

B.3.2 Redundant Functionality. The features identified below are deprecated simply
because they are now completely redundant, having been superseded.

(1) Fixed source form — replaced by the new source form (3.3)

(2) Specific names for intrinsic function — use generic names (13.1)

(3) Statement functions — replaced by internal functions (12.1.2.2)

(4) Computed GOTO statement — replaced by SELECT construct (see B.3.2.2 below)

() The old form of the DATA statement and allowing DATA statements among exe-
cutable constructs

(6) DIMENSION statement — use type declaration instead (5.1)

(7) DOUBLE PRECISION statement — use precision control attributes (4.3.1.2,
5.1.1.3)

(8) * char-length specifier — use LEN = char-length

B.3.2.1 Use of Internal Functions for Statement Functions. The functionality of the inter-
nal function provides a better replacement for the limited statement function capability. For
example:

function-name (dummy-arguments) = expr

may be replaced by the following internal function definition in the internal procedure part of
the program unit.

FUNCTION function-name (dummy-arguments)
function-and-dummy specifications
function-name = expr

END

The use of an internal function in a program unit is the same as the use of a statement func-
tion.

Version 103 1986 December Page B-5

DELETED, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/S8

B.3.2.2 Example Replacement of the Computed GO TO Statement. The execution
sequence controlled by the computed GO TO:

GO TO (/abel,, labels, ..., label,), integer-variable

5 GO TO label,
label, CONTINUE

GO TO /abel,

label, CONTINUE
10
GO TO label,

label, CONTINUE

15 GO TO Jabel,
label, CONTINUE
may be replaced by the SELECT CASE construct:
SELECT CASE (integer-variable)
CASE DEFAULT
20
CASE (1)
CASE (2)
25 CASE (n)
END SELECT

Also see Section 8.1.3.

Version 103 1986 December ' ' Page B-6

10

15

20

25

30

35

40

APPENDIX C SECTION NOTES

C.1 Section 1 Notes. Use of obsolescent features is discouraged. Each obsolescent
feature may be considered for removal in the next revision of the Fortran standard.

C.2 Section 2 Notes. Keywords can make procedure references more readable and
allow actual arguments to be in any order. This latter property permits optional arguments.

C.3 Section 3 Notes. A partial collating sequence is specified. If possible, a processor
should use the American National Standard Code for information Interchange, ANSI X3.4-
1977 (ASCIl), sequence for the complete Fortran character set.

The standard does not restrict the number of consecutive comment lines. The limit of 19
continuation lines or 1320 characters permitted for a statement should not be construed as
being a limitation on the number of consecutive comment lines.

There are 99999 unique statement labels and a processor must accept 99999 as a state-
ment label. However, a processor may have an implementation limit on the total number of
unique statement labels in one program unit.

Blanks are not permitted within statement labels in free source form.

The source form of Fortran 77, Fortran 66, and the initial Fortran in 1954 was predicated on
a common form of input, the 80-column card. However, on the IBM 704, only 72 columns
could be used and the remaining eight columns were designated as commentary. In some
implementations of Fortran 77, these columns are so used. They contain “line numbers”
and are used by an editor to manage changes to a program.

in developing Fortran 8x, X3J3 sought to eliminate the Fortran 77 restriction on source line
size. X3J3 believes that 66 positions are inadequate to represent readable Fortran source
code, particularly with “long” names and the use of indentation. '

Given the need for an incompatible new source form in Fortran 8x, X3J3 relaxed other
restrictions of the rigid card form. Positions six and seven are no longer “special” and the
continuation mark is on the line being continued rather than on the continuation line. Other
features of the Fortran 8x form apply to either form, and are allowed in either.

C.4 Section 4 Notes. A processor must not consider a negative zero to be different
from a positive zero.

ANSI X3.9-1978 provided only data types explicitly defined in the standard (logical, integer,
real, double precision, complex, and character). This standard provides those intrinsic types
and provides derived types to allow the creation of new data types. A derived type definition
specifies a data structure composed of intrinsic types and other derived types. Such a type
definition does not represent a data object, but rather, a template for declaring named
objects of that derived type. For example, the definition

TYPE POINT
INTEGER X_COORD
INTEGER Y_COORD

END TYPE POINT

specifies a new derived type named POINT which is composed of two components of intrin-
sic type integer (X_COORD and Y_COORD). The statement TYPE (POINT) FIRST, LAST
declares two data objects, FIRST and LAST, that can hold values of type POINT.

Version 103 1986 December Page C-1

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

X3.9-1978 provided REAL and DOUBLE PRECISION intrinsic types as approximations to
mathematical real numbers. This standard generalizes REAL as an intrinsic type with
specifiable precision and exponent range. DOUBLE PRECISION is treated as a synonym for
an implementation defined precision and exponent range of the REAL type. Therefore, the
DOUBLE PRECISION statement is redundant and use of it is deprecated.

The EXPONENT_LETTER statement may be used to designate a letter to be used for the
exponent character in real literal constants to ensure that they have a particular precision
and exponent range.

X3.9-1978 did not allow zero length character strings. They are permitted by this standard.

Derived types may have parameters as part of the declarziion. This allows a derived type to
represent simple variations in the data structure such as different string lengths and preci-
sions.

Objects are of different derived type if they are declared using different derived-type
definitions. For example, '

TYPE APPLES
INTEGER NUMBER
END TYPE APPLES
TYPE ORANGES
INTEGER NUMBER
END TYPE ORANGES
TYPE (APPLES) COUNT 1
TYPE (ORANGES) COUNT 2
COUNT 1 = COUNT2 ! ERRONEOUS STATEMENT MIXING APPLES AND ORANGES

Even though, all components of objects of type apples and objects of type oranges have
identical intrinsic types, the objects are of different type because they were declared using
different derived type definitions.

A derived type is said to resolve into a sequence of components of intrinsic type. The use
of this terminology in no way implies that these components are stored in this, or any other,
order. Nor is there any requirement that contiguous storage is used. The sequence merely
refers to the fact that in writing the definitions there will necessarily be an order in which the
components appear, and this will define a sequence of components. This order is of limited
significance since a component of an object of derived type will always be accessed by a
component name except in two contexts. These contexts are: the sequence of expressions
in a derived-type value constructor, and the inclusion of the structure in an input/output list
of a formatted data transfer, where it is expanded to this sequence of components. Pro-
vided the processor adheres to the defined order in these two cases, it is otherwise free to
organize the storage of the components for any structure in memory as best siiited to the
particular architecture.

C.5 Section 5 Notes. Type declaration statements in X3.9-1978 required the attributes
of an entity to be specified in multiple statements (INTEGER, SAVE, DATA,...). This stan-
dard allows most attributes of an entity to be specified in a single extended form of the type
statement. For example,

INTEGER , ARRAY (10, 10), SAVE :: A, B, C
REAL, PARAMETER :: P1 = 3.14159265, E = 2.718281828

To retain compatibility and consistency with Fortran 77, most of the attributes that may be

specified in the extended type statement may alternatively be specified in separate state-
ments.

Version 103 1986 December Page C-2

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

If precision and exponent range are omitted from a REAL declaration, the objects are of
default real type. This corresponds to the Fortran 77 real type.

The RANGE attribute allows arrays to have a declared upper and lower bound as in Fortran
77 and additionally to have a changeable effective lower and upper bound. The effective
bounds provide a concise way to set the working bounds on a group of arrays and to
improve the readability of the statements. For example, the following statement using the
triplet notation

AWK+, J-1:K) = B(J:K+1, J-1:K) + C(J:K+1, J-1:K) + C(J:K+1, J:=K+1)
ACJ:K+1, J-1:K) = AQJ:K+1, J-1:K) + AQJ:K+1, J-1:K)

may be written as follows if the RANGE attribute and SET RANGE statement are used:

SET RANGE (J:K+1, J-1:K) A, B, C
A=B+C+C (:,J:K+t1)
A=A+ A

Note that the declared bounds of A, B, and C are not changed by the SET RANGE state-
ment. The only change is to the bounds used when a whole array is referenced or an array
section with omitted lower bounds is referenced.

An explicit subscripted reference to an array element outside the effective bounds is allowed
and is not an error. Subscript references to elements outside the declared bounds remains
undefined as in Fortran 77.

C.6 Section 6 Notes. Substrings are of zero length when the starting point exceeds the
ending point. This was not allowed in Fortran 77. This standard also allows substrings of lit-
eral character constants and named character constants.

Components of a structure are referenced by writing the components of successive levels of
the structure hierarchy until the desired component is described. For example,

TYPE ID NUMBERS

INTEGER SSN

INTEGER EMPLOYEE_NUMBER
END TYPE ID_NUMBERS

TYPE PERSON_ID
CHARACTER (LEN=30) LAST_NAME
CHARACTER (LEN=1) MIDDLE_INITIAL
CHARACTER (LEN=30) FIRST_NAME
TYPE (ID_NUMBERS) NUMBER

END TYPE PERSON_ID

TYPE PERSON

INTEGER AGE

TYPE (PERSON_ID) ID
END TYPE PERSON

TYPE (PERSON) GEORGE, MARY

PRINT *, GEORGE % AGE I PRINT THE AGE COMPONENt

PRINT *, MARY %X ID %X LAST_NAME ! PRINT LAST_NAME OF MARY

PRINT *, MARY % ID % NUMBER % SSN ! PRINT SSN OF MARY

PRINT *, GEORGE % ID % NUMBER I PRINT SSN AND EMPLOYEE_NUMBER OF GEORGE

Version 103 1986 December Page C-3

SECTION HOTES X3J3/S8

10

15

20

25

30

35

40

45

The component identified by the reference may be a data object of intrinsic type as in the
case of GEORGE%AGE or it may be of derived type as in the case of
GEORGE%ID%NUMBER. The resultant component may be a scalar or an array of intrinsic
or derived type.

TYPE LARGE
INTEGER ELT (10)
INTEGER VAL
END TYPE LARGE
TYPE (LARGE) A (5) 5 ELEMENT ARRAY EACH OF WHOSE ELEMENTS INCLUDES
A 10 ELEMENT ARRAY ELT /iiD A SCALAR VAL.
PRINTS 10 ELEMENT ARRAY ELT AND SCALAR VAL.
PRINTS SCALAR ELEMENT 3 OF ARRAY ELEMENT 1 OF A.
PRINTS SCALAR VAL FOR ARRAY ELEMENTS 2 TO &4 OF A.

PRINT *, A (1)
PRINT *, A (1) % ELT (3)
PRINT *, A (2:4) % VAL

C.7 Section 7 MNotes. The Fortran 77 restriction that none of the character positions
being defined in the character assignment statement may be referenced in the expression
has been removed (7.5.1.5).

As defined in Section 4, default real and double precision real are described as instances of
the real data type. However, for reasons of portability, they are regarded as being different
from any instance of the real data type with any particular type parameters. In particular,
actual arguments of default real type do not associate with dummy arguments of type real
with any particular type parameters except asterisk. As a result, in order to remain upward
compatible with Fortran 77, an expression such as R + D, where R is a default real entity
and D is a double precision real entity, must be regarded as a double precision real entity,
and not an entity of type real with any particular type parameters.

C.8 Section 8 lNotes. There are no Section 8 notes.

C.9 Section 9 Notes. What is called a “record” in Fortran is commonly called a “logical
record”. There is no concept in Fortran of a “physical record”.

An endfile record does not necessarily have any physical embodiment. The processor may
use a record count or other means to register the position of the file at the time an ENDFILE
statement is executed, so that it can take appropriate action when that position is reached
again during a read operation. The endfile record, however it is implemented, is considered
to exist for the BACKSPACE statement.

This standard accommcdates, but does not require, file cataloging. To do this, several con-
cepts are introduced.

Before any input/output can be performed on a file, it must be connected to a unit. The unit
then serves as a designator for that file as long as it is connected. To be connected does
not imply that “buffers” have or have not been allocated, that “file-control tables” have or
have not been filled out, or that any other method of implementation has been used. Con-
nection means that (barring some other fault) a READ or WRITE statement can be executed
on the unit, hence on the file. Without a connection, a READ or WRITE statement cannot
be executed.

Totally independent of the connection state is the property of existence, this being a file
property. The processor “knows” of a set of files that exist at a given time for a given exe-
cutable program. This set would include tapes ready to read, files in a catalog, a keyboard,
a printer, etc. The set may exclude files inaccessible to the executable program because of
cecurity, because they are already in use by another executable program, etc. This

Version 103 1986 Decembar Page C-4

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

standard does not specify which files exist, hence wide latitude is available to a processor to
implement security, locks, privilege techniques, etc. Existence is a convenient concept to
designate all of the files that an executable program can potentially process.

All four combinations of connection and existence may occur:

Connect Exist Examples

Yes Yes A card reader loaded
and ready to be read
Yes No A printer before the
first line is written
No Yes A file named 'JOAN’
in the catalog
No No A reel of tape destroyed

in the fire last week
Means are provided to create, delete, connect, and disconnect files.

A file may have a name. The form of a file nhame is not specified. If a system does not
have some form of cataloging or tape labeling for a least some of its files, all file names will
disappear at the termination of execution. This is a valid implementation. Nowhere does
this standard require names to survive for any period of time longer than the execution time
span of an executable program. Therefore, this standard does not impose cataloging as a
prerequisite. The naming feature is intended to allow use of a cataloging system where one
exists.

A file may become connected to a unit in either of two ways: preconnection or execution of
an OPEN statement. Preconnection is performed prior to the beginning of execution of an
executable program by means external to Fortran. For example, it may be done by job con-
trol action or by processor established defaults. Execution of an OPEN statement is not
required to access preconnected files.

The OPEN statement provides a means to access existing files that are not preconnected.
An OPEN statement may be used in either of two ways: with a file name (open by name)
and without a file name (open by unit). A unit is given in either case. Open by name con-
nects the specified file to the specified unit. Open by unit connects a processor-determined
default file to the specified unit. (The default file may or may not have a name.)

Therefore, there are three ways a file may become connected and hence processed:
preconnection, open by name, and open by unit. Once a file is connected, there is no
means in standard Fortran to determine how it became connected.

An OPEN statement may also be used to create a new file. In fact, any of the foregoing
three connection methods may be performed on a file that does not exist. When a unit is
preconnected, writing the first record created the file. With the other two methods, execu-
tion of the OPEN statement creates the file.

When a unit becomes connected to a file, either by execution of an OPEN statement or by
preconnection, the foliowing connection properties may be established:

(1) An access method, which is sequential or direct, is established for the connection.

(2) A form, which is formatted or unformatted, is established for a connection to a file
that exists or is created by the connection. For a connection that results from
execution of an OPEN statement, a default form (which depends on the access
method, as described in 9.2.1.2) is established if no form is specified. For a
preconnected file that exists, a form is established by preconnection. For a
preconnected file that does not exist, a form may be established, or the

Version 103 1986 December Page C-5

SECT!ON NOTES X3J3/58

10

15

20

25

30

35

40

45

establishment of a form may be delayed until the file is created (for example, by
execution of a formatted or unformatted WRITE statement).

(3) A record length may be established. If the access method is direct, the connec-
tion established a record length, which specifies the length of each record of the
file. A connection for sequential access does not have this property. An existing
file with records that are not all of equal length must not be connected for direct
access.

(4) A blank significance property, which is ZERO or NULL, is established for a con-
nection for which the form is formatted. This property has no effect on output.
For a connection that results from execution ¢f an OPEN statement, the blank
significance property is NULL by default if no blank significance property is
specified. For a preconnected file, the propzrty is established by preconnection.

The blank significance property of the connection is effective at the beginning of
each formatted input statement. During execution of the statement, any BN or BZ
edit descriptors encountered may temporarily change the effect of embedded and
trailing blanks.

A processor has wide latitude in adapting these concepts and actions to its own cataloging
and job control conventions. Some processors may require job control action to specify the
set of files that exist or that will be created by an executable program. Some processors
may require no job control action prior to execution. This standard enables processors to
perform a dynamic open, close, and file creation, but it does not require such capabilities of
the processor.

The meaning of “open” in contexts other that Fortran may include such things as mounting a
tape, console messages, spooling, label checking, security checking, etc. These actions
may occur upon job control action external to Fortran, upon execution of an OPEN state-
ment, or upon execution of the first read or write of the file. The OPEN statement describes
properties of the connection to the file and may or may not cause physical activities to take
place. It is a place for an implementation to define properties of a file beyond those
required in standard Fortran.

Similarly, the actions of dismounting a tape, protection, etc. of a “close” may be implicit at
the end of a run. The CLOSE statement may or may not cause such actions to occur. This
is another place to extend file properties beyond those of standard Fortran. Note, however,
that the execution of a CLOSE statement on unit 10 followed by an OPEN statement on the
same unit to the same file or to a different file is a permissible sequence of events. The
processor must not deny this sequence solely because the implementation chooses to do
the physical act of closing the file at the termination of execution of the program.

Table 9.1. Values Assigned to INQUIRE specifier variables (assuming no error condition is
encountered).

INQUIRE by File INQUIRE by Unit
Specifier Unconnected Connected Connected Unconnected
EXIST = .TRUE. if file exists .TRUE. if unit exists

.FALSE. otherwise .FALSE. otherwise
OPENED = .FALSE. .TRUE. .TRUE. .FALSE
NUMBER = -1 unit no. unit no. -1
NAMED = .TRUE. if file named .FALSE.

.FALSE. otherwise

NAME = filename filename undefined

{may not be same if named

Version 103 1986 December Page C-6

SECTION NOTES X3J3/58
as FILE= value) else undefined
ACCESS = UNDEFINED SEQUENTIAL UNDEFINED
or DIRECT
SEQUENTIAL = YES, NO, or UNKNOWN UNKNOWN
5 DIRECT = YES, NO, or UNKNOWN UNKNOWN
FORM = UNDEFINED FORMATTED or UNFORMATTED UNDEFINED
FORMATTED = YES, NO, or UNKNOWN UNKNOWN
UNFORMATTED = YES, NO, or UNKNOWN UNKNOWN
RECL = undefined if direct access, record undefined
10 length; else undefined
NEXTREC = undefined if direct access, next undefined
record #,; else undefined
BLANK = UNDEFINED NULL, ZERO, or UNDEFINED UNDEFINED
DELIM = UNDEFINED APOSTROPHE, QUOTE UNDEFINED
15 NONE, or UNDEFINED
PAD = YES YES or NO YES
POSITION = UNDEFINE REWIND, APPEND UNDEFINED
ASIS, or UNDEFINED
ACTION = UNDEFINED READ, WRITE, UNDEFINED
20 or READ/WRITE
IOLENGTH = RECL = value for output-item-list
This standard does not address problems of security, protection, locking, and many other
concepts that may be part of the concept of “right of access”. Such concepts are consid-
ered to be in the province of an operating system.

25 The OPEN and INQUIRE statements can be extended naturally to consider these things.
Possible access methods for a file are: sequential and direct. The processor may implement
two different types of files, each with its own access method. It may also implement one
type of file with two different access methods.

Direct access to files is of a simple and commonly available type, that is, fixed-length

30 records. The key is a positive integer.

Keyword forms of specifiers are used because there are many specifiers and a positional
notation is difficult to remember. The keyword form sets a style for processor extensions.
The UNIT= and FMT= keywords are offered for completeness, but their use is optional.
Thus, compatibility with ANSI X3.9-1966 and ANSI X3.9-1978 is achieved.
35 Format specifications may be included in the READ and WRITE statements, as in:

READ (UNIT = 10, FMT = '(I3, A4, F10.2)') K, ALPH, X

Unformatted input/output involving derived-type list items forms the single exception to the
rule that the appearance of an aggregate list item (such as an array) is equivalent to the
appearance of its expanded list of component parts. This exception permits the processor

40 greater latitude in improving efficiency or in matching the processor-dependent sequence of
values for a derived-type object to similar sequences for aggregate objects used by means
other than Fortran. However, formatted input/output of all list items, and input/output of list
items other than those of derived types, adhere to the above rule.

The intent of the VALUES = specifier is to determine, in case of an error or end-of-file condi-

45 tion, how far processing of the input/output list has been completed. In the determination of

i
Version 103 1986 December Page C-7

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

the values counts associated with input/output list items, allowance is made for the explo-
sions of aggregate list items ultimately into equivalent lists of scalar objects, which in format-
ted input/output are all of intrinsic data types. However, no allowance is made for the corre-
spondence, in some cases, between two values in a record and the matching scalar object
of type complex; a values count of one is always associated with such an item for each use.
For example, in:

COMPLEX :: Z (10D

REAL :: X (10), Y (1)
INTEGER :: IOS, NVALS, I
CHARACTER (LEN = 8) XYZFMT
DATA (XYZFMT = '(6E12.3)")

READ (5, XYZFMT, IOSTAT
READ (5 ,XYZFMT, IOSTAT
Z=X+ (.0, 1.00 > Y

While both READ statements can process the same external data with functionally equiva-
lent results (if the following assignment is included in the second case), the maximum values
with which NVALS is defined are 10 and 20 for the two READ statements respectively.

NVALS)

I0S, VALUES

I0S, VALUES

NVALS) (X (D), Y (D) ,1 =1, 10)

Allowance is also made for the treatment of a scalar object of a derived type, as a list item
in an unformatted input/output statement, as a single, indivisible value.

For example, if STRUCT is a scalar object of a derived type, in:
READ (1, IOSTAT = IOS, VALUES = NVALS) STRUCT

the maximum value count is assignable to NVALS is 1, but in:
READ (5, *, IOSTAT = IOS, VALUES = NVALS) STRUCT

the value count assigned to NVALS may range anywhere from O to the number of scalar
objects of intrinsic types into which STRUCT is ultimately resolved.

List directed input/output allows data editing according to the type of the list item instead of
by a format specifier. It also allows data to be free-field, that is, separated by commas or
blanks.

If no list items are specified in a list-directed input/output statement, one input record is
skipped or one empty output record is written.

An example of a restriction on input/output statements (9.8) is that an input statement must
not specify that data are to be read from a printer.

C.10 Section 10 Motes. If a character constant is used as a format specifier in an
input/output statement, care must be taken that the value of the character constant is a
valid format specification. In particular, if the format specification contains an apostrophe
edit descriptor, two apostrophes must be written to delimit the apostrophe edit descriptor and
four apostrophes must be written for each apostrophe that occurs within the apostrophe edit
descriptor. For example, the text:

2 ISN'T 3

may be written by various combinations of output statements and format specifications:

WRITE (6, 100 2, 3
100 FORMAT (1X, I1, 'ISN''T', 11X, I1)

WRITE (6, 'C(1X, I1, 1X, '"ISN''''T'', 1X, TV") 2, 3

Version 103 1986 December Page C-8

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

WRITE €6, "CA)') ' 2 ISN''T 3'

The T edit descriptor includes the carriage control character in lines that are to be printed.
T1 specifies the carriage control character and T2 specifies the first character that is printed.

The length of a record is not always specified exactly and may be processor dependent.

The number of records read by a formatted input statement can be determined from the fol-
lowing rule: A record is read at the beginning of the format scan (even if the input list is
empty), at each slash edit descriptor encountered in the format, and when a format rescan
occurs at the end of the format.

The number of records written by a formatted output statement can be determined from the
following rule: A record is written when a slash edit descriptor is encountered in the format,
when a format rescan occurs at the end of the format, and at completion of execution of the
output statement (even if the output list is empty). Thus, the occurrence of n successive
slashes between two other edit descriptors causes n — 1 blank lines if the records are
printed. The occurrence of n slashes at the beginning or end of a complete format
specification causes n blank lines if the records are printed. However, a complete format
specification containing n slashes (n > 0) and no other edit descriptors causes n + 1 blank
lines if the records are printed. For example, the statements

PRINT 3
3 FORMAT (/)

will write two records that cause two blank lines if the records are printed.

The following exampiles illustrate list-directed input. A blank character is represented by b.
Example 1:

Program:

J=3
READ *, I
READ *, J

Sequential input file;

b1b, 4bbbbb
, 2bbbbbbbb

Result: | = 1,J = 3.

Explanation: The second READ statement reads the second record. The initial comma in
the record designates a null value; therefore, J is not redefined.

Example 2:
Program:

CHARACTER A *8, B *1
READ *, A, B

Sequential input file:

record 1: 'bbbbbbbb"*
record 2: 'QXY'b'Zz’

Result: A = 'bbbbbbbb', B = 'Q'

Explanation: The end of a record cannot occur between two apostrophes representing an
embedded apostrophe in a character constant; therefore, A is set to the character constant
'bbbbbbbb’. The end of a record acts as a blank, which in this case is a value separator
because it occurs between two constants.

Version 103 1986 December Page C-9

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

50

C.11 Section 11 Notes. The name of the main program or of a block data program unit
has no explicit use within the Fortran language. It is available for documentation and for
possible use within a computer environment.

A processor may implement an unnamed main program or unnamed block data program unit
assigning it a default name. However, this name must not conflict with any other global
name in a standard-conforming executable program. This might be done by making the
default name one which is not permitted in a standard-conforming program (for example, by
including a character not normally allowed in names) or by providing some external mechan-
ism such that for any given program the default name can be changed to one that is other-
wise unused.

This standard, like its predecessors, is intended to permit the implementation of conforming
processors in which a program can be broken into multiple units, each of which can be sep-
arately translated in preparation for execution. Such processors are commonly described as
supporting separate compilation. There is an important difference between the way separate
compilation can be implemented under this standard and the way it could be implemented
under the previous standards. Under the previous standards, any information required to
translate a program unit was specified in that program unit. Each translation was thus totally
independent of all others. Under this standard, a program unit can use information that was
specified in a separate module and thus may be dependent on that module. The implemen-
tation of this dependency in a processor may be that the translation of a program unit may
depend on the results of translating one or more modules. Processors implementing the
dependency this way are commonly described as supporting dependent compilation.

The dependencies involved here are new only in the sense that the Fortran processor is
now aware of them. The same information information dependencies existed under the pre-
vious standards, but it was the programmer’s responsibility to transport the information nec-
essary to resolve them by making redundant specifications of the.information in multiple pro-
gram units. The availability of separate, but dependent compilation offers several potential
advantages over the redundant textual specification of information:

(1) Specifying information at a single place in the program ensures that different pro-
gram units using that information will be translated consistently. Redundant
specification leaves the possibility that different information will erroneously be
specified. Even if some kind of textual inclusion facility is used to ensure that the
text of the specifications is identical in all involved program units, the presence of
other specifications (for example, an IMPLICIT statement) may change the inter-
pretation of that text.

(2) During the revision of a program, it is possible for a processor to assist in deter-
mining whether different program units have been translated using different
(incompatible) versions of a module, although there is no requirement that a proc-
essor provide such assistance. Inconsistencies in redundant textual specification
of information, on the other hand, tend to be much more difficult to detect.

(3) Putting information in a module provides a way of packaging it. On the other
hand, because of the Fortran statement ordering constraints, specifications fre-
quently must be interleaved with other specifications in a program unit, making
convenient packaging of such information difficult.

(4) Because a processor may be implemented such that the specifications in a mod-
ule are translated once and then repeatedly referenced, there is the potential for
greater efficiency than when the processor must translate redundant specifications
of information in multiple program units.

Another benefit of the USE statement is its enhanced facilities for name management. If
one needs to use only selected entities in a module, one can do so without having to worry

VYersion 103 1986 December Page C-10

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

50

about the names of all the other entities in that module. If one needs to use two different
modules that happen to contain entities with the same name, there are several ways to deal
with the conflict. If none of the entities with the common name are to be used, they can
simply be ignored. If the name happens to refer to the same entity in both modules (for
example, if both modules obtained it from a third module), then there is no confusion about
what the name denotes and the name can be freely used. If the entities are different and
one or both is to be used, the local renaming facility in USE makes it possible to give those
entities different names in the program unit containing the USE statements.

A typical implementation of dependent, but separate compilation may involve storing the
result of translating a module in a file (or file element) whose name is derived from the
name of the module. Note, however, that the name of a module is limited only by the For-
tran rules and not by the names allowed in the file system. Thus the processor may have to
provide a mapping between Fortran names and file system names.

The result of translating a module could reasonably either contain only the information textu-
ally specified in the module (with “pointers” to information originally textually specified in
other modules) or contain all information specified in the module (including copies of informa-
tion originally specified in other modules). Although the former approach would appear to
save on storage space, the latter approach can greatly simplify the logic necessary to proc-
ess a USE statement and can avoid the necessity of imposing a limit on the logical “nesting”
of modules via the USE statement.

Variables declared in a module retain their definition status on much the same basis as vari-
ables in a common block. That is, saved variables retain their definition status throughout
the execution of a program, while variables that are not saved retain their definition status
only during the execution of scoping units that reference the module. In some cases, it may
be appropriate to put a USE statement such as

USE MODULE, ONLY:

in a scoping unit in order to assure that other procedures that it references can communi-
cate through the module. In such a case, the scoping unit would not access any entities
from the module, but the variables not saved in the module would retain their definition sta-
tus throughout the execution of the scoping unit.

There is an increased potential for undetected errors in a scoping unit that uses both implicit
typing and the USE statement without an ONLY list. For example, in the program fragment

SUBROUTINE SUB

IMPLICIT INTEGER (I-N), REAL (A-H, 0-2)
USE MY_MODULE

X=F (B)

A=6 (X +HX+1D

END SUBROUTINE

X could be either an implicitly typed real variable or a variable obtained from the module
MY_MODULE and might change from one to the other because of changes in
MY_MODULE unrelated to the action performed by SUB. Logic errors resulting from this
kind of situation can be extremely difficult to locate. Thus, the use of these features
together is discouraged and the rules of Fortran allow them to be used together only if both
features have been explicitly requested.

The PUBLIC and PRIVATE attributes, which can be declared only in modules, can divide the
entities in a module into those which are actually relevant to a scoping unit referencing the
module and those that are not. This information may be used to improve the performance of
a Fortran processor. For example, it may be possible to discard much of the information on
the private entities once a module has been transiated, thus saving on both storage and the
time to search it. Similarly, it may be possible to recognize that two versions of a module

Version 103 1986 December Page C-11

SECTION NOTES X3J3/58

differ only in the private entities they contain and avoid retranslating program units that use
that module when switching from one version of the module to the other.

In addition to providing a portable means of avoiding the redundant specification of informa-

tion in multiple program units, a module provides a convenient means of “packaging” related

5 entities, such as the definitions of the representation and operations of an abstract data type.

The following example of a module defines a rather complete data abstraction for a SET

data type where the elements of each set are of type integer. The standard set operations

of UNION, INTERSECTION, and DIFFERENCE are provided. The CARD function returns the

cardinality of (number of elements in) its set argument. Two functions returning logical

10 values are included, ELEMENT and SUBSET, both of which have the operator form .IN.;

ELEMENT determines if a given scalar integer value is an element of a given set, and SUB-

SET determines if a given set is a subset of another given set. (Two sets may be checked

for equality by comparing cardinality and checking that one is a subset of the other, or
checking to see if each is a subset of the other.)

15 The transfer function SET converts a vector of integer values to the corresponding set, with
duplicate values removed. Thus, a vector of constant values can be used as set constants.
An inverse transfer function VECTOR returns the elements of a set as a vector of values in
ascending order. An assignment coercion allows assignment between sets of different sizes,
and checks to see if the receiving set data object has an adequate maximum size (returning

20 the null set if not). In this SET implementation, set data objects have a maximum size (num-
ber of elements in set) of 200.

Examples (A, B, and C are sets; X is an integer variable):
! EXAMPLE TO BE FIXED AS SPECIFIED IN 100.JLW-3

IF (CARDCA) .GT. 10) ... ! CHECK TO SEE IF A HAS MORE THAN 10 ELEMENTS

25 IF (X .IN. A .AND. .NOT. X .IN. B) ... ! CHECK FOR X AN ELEMENT OF A BUT NOT OF B

C = UNION (A, INTERSECTION (B, SET ([1 : 1001)))
I C IS THE UNION OF A AND THE
' RESULT OF B INTERSECTED WITH THE INTEGERS 1 TO 100

IF (CARD (INTERSECTION (A, SET ([2:100:21))) .GT. 0) ...
30 ! DOES A HAVE ANY EVEN
I NUMBERS IN THE RANGE 1:100?

PRINT %, VECTOR (B) I PRINT OUT THE ELEMENTS OF SET B, IN ASCENDING ORDER

MODULE INTEGER_SETS

IMPLICIT TYPE SET (A-I, U), INTEGER (X)

35 TYPE SET ! DEFINE SET. DATA TYPE
INTEGER CARDINAL_NUMBER
INTEGER ELEMENT_VALUE(200) I COULD BE ANY DATA TYPE
END TYPE SET
INTEGER FUNCTION CARD (A) I RETURNS CARDINALITY OF SET A
40 CARD = A % CARDINAL_NUMBER

END FUNCTION CARD

LOGICAL FUNCTION ELEMENT (X,A) OPERATOR (.IN.) | DETERMINES IF

Version 103 1586 December Page C-12

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

ELEMENT = .FALSE. ! ELEMENT X IS IN SET A

IF (CARD(A) .EQ. 0) RETURN

IF (ANY (A % ELEMENT_VALUE (1:CARD(A)) .EQ. X)) ELEMENT = .TRUE.
END FUNCTION ELEMENT

FUNCTION UNION (A,B) ! UNION BETWEEN SETS A AND B
N = CARD (A)
UNION = SET (A % ELEMENT_VALUE(1:N))
DO J=1, CARD (B)
IF (LNOT. B % ELEMENT_VALUE(J) .IN. A) THEN
N = N+
UNION % ELEMENT_VALUE(N) = B % ELEMENT_VALUE (J)
END IF
END DO
UNION % CARDINAL_NUMBER = N
END FUNCTION UNION

FUNCTION DIFFERENCE (A,B) ! DIFFEREMCE OF SETS A AND B
DIFFERENCE = SET ([1:01)
DO J=1, CARD(A)
X = A % ELEMENT_VALUE(J)
IF (.NOT. (X .IN. B)) DIFFERENCE = UNION (DIFFERENCE, SET (X))
END DO
END FUNCTION DIFFERENCE

FUNCTION INTERSECTION (A,B) | INTERSECTION OF SETS A AND B
INTERSECTION = DIFFERENCE (A, DIFFERENCE (A, B))
END FUNCTION INTERSECTION

LOGICAL FUNCTION SUBSET (A,B) OPERATOR (.IN.) ! DETERMINES IF SET A IS
LOGICAL L (SIZE(A % ELEMENT_VALUE)) ! A SUBSET OF SET B
SUBSET = CARD (A) .LE. CARD (B)! OVERLOADS .IN. OPERATION
IF (.NOT. SUBSET) RETURN
SUBSET = ALL (A % ELEMENT_VALUE (1 : CARD (A)) .IN. B)

END FUNCTION SUBSET

TYPE SET FUNCTION SET(V) ! TRANSFER FUNCTION BETWEEN A
INTEGER V(:) ! CORRESPONDING SET OF ELEMENTS
SET % CARDINAL_NUMBER = 0 ! REMOVING DUPLICATE VALUES

DO J=1,SIZE(V)
IF (.NOT. V(J).IN.SET) THEN
SET % CARDINAL_NUMBER = SET % CARDINAL_NUMBER + 1
SET % ELEMENT_VALUE (SET % CARDINAL NUMBER) = V(J)
END IF
END DO
END FUNCTION SET

FUNCTION VECTOR (A) ! TRANSFER THE VALUES OF SET A
INTEGER VECTOR(:) ! INTO A VECTOR OF ASCENDING ORDER
INTEGER I
ALLOCATE (VECTOR(CARD(A)))

VECTOR = A % ELEMENT_VALUE (1:CARD(A))
DO I=1,CARD(A)-1
DO 4=1,CARD(A)-1

Version 103 1986 December Page C-13

SECTION NOTES X3J3/S8

5

10

15

20

25

30

35

40

45

IF (VECTOR(J+1) .LT. VECTOR(J) THEN
K = VECTOR(J); VECTOR(J) = VECTOR(J+1); VECTOR(J+1) = K
END IF
END DO
END DO
END FUNCTION VECTOR

SUBROUTINE SET_ASSIGNMENT_COERCION (A,B) ASSIGNMENT

A = SET(); N = CARD(B)

IF (SIZE (A % ELEMENT_VALUE) .GE. N) A = SET (B % ELEMENT_VALUE(1:N))
END SUBROUTINE SET_ASSIGNMENT_COERCION

END MODULE INTEGER SETS

C.7i2 Section 12 Not2s. Of the various types of procedures described in this section,
only external procedures have global names. An implementation may wish to assign global
names to other entities in the Fortran program such as internal procedures, intrinsic proce-
dures, procedures implementing intrinsic operators, procedures implementing input/output
operations, etc. If this is done, it is the responsibility of the processor to insure that none of
these names conflict with any of the names of the external procedures or other globally
named entities in a standard-conforming program. For example, this might be done by
including in each such added name a character that is not allowed in a standard-conforming
name.

There is a potential portability problem in a scoping unit that references an external proce-
dure without declaring it in either an EXTERNAL statement or a procedure interface block.
On a different processor, the name of that procedure may be the name of a nonstandard
intrinsic procedure and the processor would be permitted to interpret those procedure refer-
ences as references to that intrinsic procedure. (On that processor, the program would also
be viewed as not conforming to the standard because of the references to the nonstandard
intrinsic procedure.) Declaration in an EXTERNAL statement or a procedure interface block
causes the references to be to the external procedure regardiess of the availability of an
intrinsic procedure with the same name. Note that declaration of the type of a procedure is
not enough to make it external, even if the type is inconsistent with the type of the result of
an intrinsic of the same name.

A processor is not required to provide any means other than Fortran for defining external
procedures. Among the means that might be supported are the machine assembly lan-
guage, other high level languages, the Fortran language extended with nonstandard fea-
tures, and the Fortran language as supported by another Fortran processor (for example, a
previously existing Fortran 77 processor).

Procedures defined by means other than Fortran are considered external procedures
because their definitions are not contained within a Fortran program unit and because they
are referenced using global names. The use of the term external should not be construed
as any kind of restriction on the way in which these procedures may be defined. For exam-
ple, if the means other than Fortran has its own facilities for internal and external procedures
it is permissible to use them. If the means other than Fortran can create an “internal” pro-
cedure with a global name, then it is permissible for such an “internal” procedure to be con-
sidered by Fortran to be an external procedure. The means other than Fortran for defining
external procedures, including any restrictions on the structure for organization of those pro-
cedures, are entirely processor dependent.

A Fortran processor may limit its support of procedures defined by means other than Fortran
such that these procedures may affect entities in the Fortran environment only on the same
basis as procedures written in Fortran. For example, it might prohibit the value of a local

Yersion 103 1986 December Page C-14

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

50

variable from being changed by a procedure reference unless that variable were one of the
arguments to the procedure.

In Fortran 77, the interface to an external procedure was always deduced from the form of
references to that procedure and any declarations of the procedure name in the referencing
program unit. In this standard, features such as keyword arguments and optional arguments
make it impossible to deduce sufficient information about the dummy arguments from the
nature of the actual arguments to be associated with them, and features such as array-
valued function results and allocatable function results make necessary extensions to the
declaration of a procedure which can not be done in a way that would be analogous with the
handling of such declarations in Fortran 77. Hence, mechanisms are provided through which
all the information about a procedure’s interface may be made available in a scoping unit
that references it. A procedure whose interface must be deduced as in Fortran 77 is
described as having an implicit interface. A procedure whose interface is fully known is
described as having an explicit interface.

A scoping unit is allowed to contain a procedure interface block for procedures that do not
exist in the executable program, provided the procedure described is never referenced. The
purpose of this rule is to allow implementations in which the use of a module providing pro-
cedure interface blocks describing the interface of every routine in a library would not auto-
matically cause each of those library routines to be a part of the program referencing the
module. Instead only those library procedures actually referenced would be a part of the
executable program. (In implementation terms, the mere presence of a procedure interface
block would not generate an external reference in such an implementation.)

There is a significant difference between the argument association allowed in this standard
and that supported by Fortran 77 and Fortran 66. In the latter case, actual arguments were
limited to consecutive storage units. With the exception of assumed length character
dummy arguments, the structure imposed on that sequence of storage units was always
determined in the procedure and not taken from the actual argument. Thus it was possible
to implement Fortran 66 and Fortran 77 argument association by supplying only the location
of the first storage unit (except for character arguments, where the length would also have to
be supplied). On the other hand, the standard allows both arguments which do not reside in
consecutive storage locations (for example, an array section), and dummy arguments which
assume additional structural information from the actual argument (for example, assumed-
shape dummy arguments). Thus, the mechanism to implement the argument association
allowed in this standard must be more general.

Because there are practical advantages to a processor which can support references to and
from procedures defined by a Fortran 77 processor, requirements for explicit interfaces have
been added to make it possible to determine whether a simple (Fortran 66/Fortran 77) argu-
ment association implementation mechanism is sufficient or whether the more general mech-
anism is necessary (12.3.1.1). Thus a processor can be implemented whose procedures
expect the simple mechanism to be used whenever the procedure’s interface is one which
uses only Fortran 77 features and which expects the more general mechanism otherwise (for
example, if there are assumed-shape or optional arguments). At the point of reference, the
appropriate mechanism can be determined from the interface if it is explicit and can be
assumed to be the simple mechanism if it is not. Note that if the simple mechanism is
determined to be what the procedure expects, it may be necessary for the processor to allo-
cate consecutive temporary storage the size of the actual argument, copy the actual argu-
ment to the temporary storage, reference the procedure using the temporary storage in
place of the actual argument, copy the contents of the actual argument, and deallocate tem-
porary storage.

Note that while this is the specific implementation method these rules were designed to sup-
port, it is not the only one possible. For example, on some processors, it may be possible to
implement the general argument association in such a way that the information involved in

Version 103 1986 December Page C-15

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

Fortran 77 argument association may be found in the same places and the “extra” informa-
tion is placed so it does not disturb a procedure expecting only Fortran 77 argument associa-
tion. With such an implementation, argument association could be translated without regard
to whether the interface is explicit or implicit. Alternatively, it would be possible to disallow
discontiguous arguments when calling procedures defined by the Fortran 77 processor and
let any copying to and from contiguous storage be done explicitly in the program. Yet
another possibility would be not to allow references to procedures defined by a Fortran 77
processor.

One special case of information being made implicitly available through argument association
is the use of dummy arguments with precision or exponent range type parameters that are
assumed. The use of these dummy arguments has been constrained such that information
is available only about the effective attributes of the actual argument, not the declared attri-
butes. In addition, there can be only one such argument in any given procedure interface.
Finally, such procedures may not be used as an actual argument. These restrictions allow
implementations in which the translation of such a procedure is a collection of procedures,
one for each possible representation of the assumed attribute dummy argument, where the
representation of the actual argument in a procedure reference is used to determine which
procedure in the collection is actually referenced.

Argument intent specifications serve several purposes in addition to documenting the
intended use of dummy arguments. A processor can check whether an intent IN dummy
argument is used in a way that could redefine it. A slightly more sophisticated processor
could check to see whether an intent OUT dummy argument could possibly be referenced
before it is defined. If the procedure’s interface is explicit, the processor can also verify that
actual arguments corresponding to intent OUT or INOUT dummy arguments are definable. A
more sophisticated processor could use this information to optimize the translation of the ref-
erencing scoping unit by taking advantage of the fact that actual arguments corresponding to
intent IN dummy arguments will not be changed and that any prior value of an actual argu-
ment corresponding to an intent OUT dummy argument will not be referenced and can thus
be discarded.

Note that intent OUT means that the value of the argument after invoking the procedure is
entirely the result of executing that procedure. If there is any possibility that an argument
should retain its current value rather than being redefined, then the intent should be INOUT
rather than OUT, even if there is no explicit reference to the value of the dummy argument.

Note also that intent INOUT is not equivalent to the default. The argument corresponding to
an intent INOUT dummy argument must always be definable, while an argument correspond-
ing to a dummy argument with default intent need be definable only if the dummy argument
is actually redefined.

The restrictions on entities associated with dummy arguments are intended to allow a proc-
essor to translate a procedure on the assumption that each dummy argument is distinct from
any other entity accessible in the procedure. This allows a variety of optimizations in the
translation of the procedure, including implementations of argument association in which the
value of the actual argument is maintained in a register or in local storage.

This standard does not allow internal procedures to be used as actual arguments, in part to
simplify the problem of insuring that internal procedures with recursive hosts access entities
from the correct instance of the host. If, as an extension, a processor allows internal proce-
dures to be used as actual arguments, the correct instance in this case is the instance in
which the procedure is supplied as an actual argument, even if the corresponding dummy
argument is eventually invoked from a different instance.

Version 103 1986 December Page C-16

SECTION NOTES X3J3/S8

10

16

20

25

30

35

40

C.13 Section 13 Notes.

C.13.1 Summary of Features. This section is a summary of the principal array features.

C.13.1.1 Whole Array Expressions and Assignments. An important extension is that
whole array expressions and assignments will be permitted. For example, the statement

A=B+C * SIN (D)

where A, B, C, and D are arrays of the same shape, is permitted. It is interpreted element-
by-element; that is, the sine function is taken on each element of D, each result is multiplied
by the corresponding element of C, added to the corresponding element of B, and assigned
to the corresponding element of A. Functions, including user-written functions, may be array
valued and may overload scalar versions having the same name. All arrays in an expression
or across an assignment must “conform”; that is, have exactly the same “rank” (number of
dimensions) and “shape” (set of lengths in each dimension), but scalars may be included
freely and these are interpreted as being broadcast to a conforming array. Expressions are
evaluated before any assignment takes place.

C.13.1.2 Array Sections. Whenever whole arrays may be used, it is also possible to use
rectangular slices called “sections”. For example:

AC:, 1:N, 2, 3:1:-1)

consists of a subarray containing the whole of the first dimension, positions 1 to N of the
second dimension, position 2 of the third dimension and positions 1 to 3 in reverse order for
the fourth dimension. This is an artificial example chosen to illustrate the different forms. Of
course, the most common use is to select a row or column of an array, for example:

A G,)

C.13.1.3 WHERE Statement. The WHERE statement applies a conforming logical array as
a mask on the individual operations in the expression and in the assignment. For example:

WHERE (A .GT. 0) B = LOG (A)

takes the logarithm only for positive components of A and makes assignments only in these
positions.

The WHERE statement also has a block form (WHERE construct).

C.13.1.4 Automatic and Allocatable Arrays. A major advance for writing modular soft-
ware will be the presence of AUTOMATIC arrays, created on entry to a subprogram and
destroyed on return, and ALLOCATABLE arrays whose rank is fixed but whose actual size
and lifetime is fully under the programmer’s control through explicit ALLOCATE and DEAL-
LOCATE statements. The declarations

SUBROUTINE X (N, A, B)
REAL WORK (N, N), HEAP (:, :)

are associated with an automatic array WORK and an allocatable array HEAP. Note that a
stack is an adequate storage mechanism for the implementation of automatic arrays, but a
heap will be needed for allocatable arrays.

C.13.1.5 Array Constructors. Arrays, and in particular array constants, may be con-
structed with array constructors exemplified by:
(1.0, 3.0, 7.21

which is an array of size 3,

Version 103 1986 December Page C-17

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

{1001.3,2.71, 7.11

which has size 21 and contains [1.3,2.7] repeated 10 times followed by 7.1, and
{1:N]

which contains the integers 1, 2, ..., N. Only rank-one arrays may be constructed in this

way, but higher dimensional arrays may be made from them by means of the intrinsic func-
tion RESHAPE.

C.13.1.6 Intrinsic Functions. All of the Fortran 77 intrinsic functions and all of the scalar
intrinsic functions that have been added to the language have been extended to be
applicable to arrays. The function is applied element-by-element to produce an array of the
same shape. In addition, the following array intrinsics have been added, many of which
return array-valued results.

C.13.1.5.1 Vector and Matrix Multlply Functions.

DOTPRODUCT (VECTOR A, VECTOR B) Dot product of two arrays
MATMUL (MATRIX A, MATRIX-B) Matrix multiplication

C.13.1.6.2 Array Reduction Functions.

ALL (ARRAY, DIM) True if all values are true
ANY (ARRAY, DIM) True if any value is true
COUNT (ARRAY, DIM) Number of true elements in an array.

MAXVAL (ARRAY, DIM, MASK) Maximum value in an array
MINVAL (ARRAY, DIM, MASK) Minimum value in an array
PRODUCT (ARRAY, DIM, MASK) Product of array elements

SUM (ARRAY, DIM, MASK) Sum of array elements

C.13.1.6.3 Array Inquiry Functions.

ALLOCATED (ARRAY) Space allocation
LBOUND (ARRAY, DIM) Lower dimension bounds of an array
DSHAPE (SOURCE) Declared shape of an array or scalar

DSIZE (ARRAY, DIM) Declared total number of array elements
DUBOUND (ARRAY, DIM) Declared upper dimension bounds of an array
ELBOUND (ARRAY, DIM) Effective lower dimension bounds of an array
ESHAPE (SOURCE) - Effective shape of an array or scalar

ESIZE (ARRAY, DIM) Effective total number of array elements
EUBOUND (ARRAY, DIM) Effective upper dimension bounds of an array

C.13.1.6.4 Array Construction Functions.

MERGE (TSOURCE, FSOURCE, MASK) Merge under mask

PACK (ARRAY, MASK, VECTOR) Pack array into a vector under a mask
REPLICATE (ARRAY, DIM, MCOPIES) Replicates an array by increasing a dimension
RESHAPE (MOLD, SOURCE, PAD, ORDER) Reshape an array

SPREAD (SOURCE, DIM, NCOPIES) Replicates an array by adding a dimerision
UNPACK (VECTOR, MASK, FIELD) Unpack a vector into an array under a mask

C.13.1.6.5 Array Manipulation Functions.

CSHIFT (ARRAY, DIM, SHIFT) Circular shift
EOSHIFT (ARRAY, DIM, SHIFT, BOUNDARY) End-off shift
TRANSPOSE (MATRIX) Transpose of matrix

Version 103 1986 December Page C-18

SECTION NOTES X3J3/s8

10

15

20

25

30

35

C.13.2 Examples. The array features have the potential to simplify the way that almost any
array-using program is conceived and written. Many algorithms involving arrays can now be
written conveniently as a series of computations with whole arrays.

C.13.2.1 Unconditional Array Computations. At the simplest level statements such as A
= B + C or S= SUM (A) can take the place of entire DO loops. The loops were required
to do array addition or to sum all the elements of an array.

Further examples of unconditional operations on arrays that are simple to write are:

matrix mulitiply P = MATMUL (@, R)
largest array element L = MAXVAL (P)
factorial N F = PRODUCT ([2:NDD

N

The Fourier sum F = Y a; x cosx; may also be computed without writing a DO loop if one
=1

makes use of the element-by-element definition of array expressions as described in Section

7. Thus, we can write

F =SUM (A * COS (X)).

The successive stages of calculation of F would then involve the arrays:

A = [A(D, ..., A(N)]
X = XM, ..., X(N]
CoOS(X) = [COS(X(1)), ..., COSCX(N))]
AXCOS(X> = [A(1) * COSCX(1)), ..., ACN) * COS(X(N))]

The final scalar result is obtained simply by summing the elements of the last of these
arrays. Thus, the processor'is dealing with arrays at every step of the calculation.

C.13.2.2 Conditional Array Computations. Suppose we wish to compute the Fourier sum
in the above example, but to include only those terms a(i) cos x(i) that satisfy the condition
that the coefficient a(/) is less than 0.01 in absolute value. More precisely, we are now
interested in evaluating the canditional Fourier sum

CF= Y ax cosy;
|a’| < 0.01

where the index runs from 1 to N as before.

This can be done using the MASK parameter of the SUM function, which restricts the sum-
mation of the elements of the array A * COS(X) to those elements that correspond to true
elements of MASK. Clearly, the logical expression required as the mask is ABS(A) .LT.
0.01. Note that the stages of evaluation of this expression are:

A
ABS (A)
ABS(A) .LT. 0.01

(A, ..., A(N)]
[ABS(A(1)), ..., ABS(A(ND)]
[ABS(A(1) .LT. 0.01, ..., ABSCA(N)) .LT. 0.01]

The conditional Fourier sum we arrive at is:
CF = SUM (A = COS (X), MASK = ABS (A) .LT. 0.01)
If the mask is all false, the value of CF is zero.

Version 103 1986 December Page C-19

SECTION NOTES X3J3/88

10

15

20

25

30

35

40

The use of a mask to define a subset of an array is crucial to the action of the WHERE
statement. Thus for example, to set an entire array to zero, we may write simply A = 0; but
to set only the negative elements to zero, we need to write the conditional assignment

WHERE (A .LT. 0 A =0

The WHERE statement complements ordinary array assignment by providing array assign-
ment to any subset of an array that can be restricted by a logical expression.

In the Ising model described below, the WHERE statement predominates in use over the
ordinary array assignment statement.

C.13.2.3 A Simple Program: The !sing #iodel. The Ising model is a well-known Monte
Carlo simulation in 3-dimensional Euclidean space which is useful in certain physical studies.
We will consider in some detail how this might be programmed. The model may be
described in terms of a logical array of shape N by N by N. Each gridpoint is a single logi-
cal variable which is to be interpreted as either an up-spin (true) or a down-spin (false).

The Ising model operates by passing through many successive states. The transition to the
next state is governed by a local probabilistic process. At each transition, all gridpoints
change state simultaneously. Every spin either flips to its opposite state or not according to
a rule that depends only on the states of its 6 nearest neighbors in the surrounding grid.
The neighbors of gridpoints on the boundary faces of the model cube are defined by assum-
ing cubic periodicity. In effect, this extends the grid periodically by replicating it in all direc-
tions throughout space.

The rule states that a spin is flipped to its opposite parity for certain at points where a mere
3 or fewer of the 6 nearest neighbors currently have the same parity as it does. Also, the
flip is executed only with probability P(4), P(5), or P(6) if as many as 4, 5, or 6 of them have
the same parity as it does. (The rule seems to promote neighborhood alignments that may
presumably lead to equilibrium in the long run).

C.13.2.3.1 Problems To Be Solved. Some of the programming problems that we will
need to solve in order to translate the Ising model into Fortran statements using entire
arrays are:

(1) Counting nearest neighbors that have the same spin;
(2) Providing an array-valued function to return an array of random numbers; and
(3) Determining which gridpoints are to be flipped.

C.13.2.3.2 Soluticns in Fortran. The arrays needed are:

LOGICAL ISING (N, N, N>, FLIPS (N, N, N)
INTEGER ONES (N, N, ND, COUNT (N, N, N
REAL THRESHOLD (N, N, N)

The array-valued function needed is:

FUNCTION RAND (N, N, N)
REAL RAND(N, N, N)

The transition probabilities may be passed across in the array
REAL P(6)

The first task is to count the number of nearest neighbors of each gridpoint g that have the
same spin as g.

Assuming that ISING is given to us, the statements

Version 103 1986 December Page C-20

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

ONES = O
WHERE (ISING) ONES = 1

make the array ONES into an exact analog of ISING in which 1 stands for an up-spin and 0
for a down-spin.

The next array we construct, COUNT, will record for every gridpoint of ISING the number of
spins to be found among the 6 nearest neighbors of that gridpoint. COUNT will be com-
puted by adding together 6 arrays, one for each of the 6 relative positions in which a nearest
neighbor is found. Each of the 6 arrays is obtained from the ONES array by shifting the
ONES array one place circularly along one of its dimensions. This use of circular shifting
imparts the cubic periodicity.

COUNT = CSHIFT(ONES, DIM = 1, SHIFT = -1) &
+CSHIFT(ONES, DIM = 1, SHIFT = 1) &
+CSHIFT(ONES, DIM = 2, SHIFT = -1) &
+CSHIFT(ONES, DIM = 2, SHIFT = 1) &
+CSHIFT(ONES, DIM = 3, SHIFT = -1) &
+CSHIFT(ONES, DIM = 3, SHIFT = 1)

At this point, COUNT contains the count of nearest neighbor up-spins even at the gridpoints
where the Ising model has a down-spin. But we want a count of down-spins at those
gridpoints, so we correct COUNT at the down (false) points of ISING by writing:

WHERE (.NOT. ISING) COUNT = 6 - COUNT

Our object now is to use these counts of what may be called the “like-minded nearest neigh-
bors” to decide which gridpoints are to be flipped. This decision will be recorded as the true
elements of an array FLIP. The decision to flip will be based on the use of uniformly distri-
buted random numbers from the interval 0 < p < 1. These will be provided at each
gridpoint by the array-valued function RAND. The flip will occur at a given point if and only if
the random number at that point is less than a certain threshold value. In particular, by
making the threshold value equal to 1 at the points where there are 3 or fewer like-minded
nearest neighbors, we guarantee that a flip occurs at those points (because p is always less
than 1). Similarly, the threshold values corresponding to counts of 4, 5, and 6 are set to
P(4), P(5), and P(6) in order to achieve the desired probabilities of a flip at those points (P(4),
P(5), and P(6) are input parameters in the range 0 to 1).

The thresholds are established by the statements:
THRESHOLD = 1

WHERE (COUNT .EQ. 4) THRESHOLD = P(4)
WHERE (COUNT .EQ. 5) THRESHOLD = P(5)
WHERE (COUNT .EQ. 6) THRESHOLD = P(6)

and the spins that are to be flipped are located by the statement:
FLIPS = RAND (N) .LE. THRESHOLD

All that remains to complete one transition to the next state of the ISING model is to reverse
the spins in ISING wherever FLIPS is true:

WHERE (FLIPS) ISING = .NOT. ISING

C.13.2.3.3 The Complete Fortran Subroutine. The complete code, enclosed in a subrou-
tine that performs a sequence of transitions, is as follows:

SUBROUTINE TRANSITION (N, ISING, ITERATIONS, P)

LOGICAL ISING (N, N, N), FLIPS (N, N, N)
INTEGER ONES (N, N, N), COUNT (N, N, N)

Version 103 1986 December Page C-21

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

REAL THRESHOLD (N, N, N), P (6)

] This interface block is needed to specify
! that RAND is array-valued.
INTERFACE
FUNCTION RAND (N)
REAL RAND (N, N, ND
END INTERFACE

DO ITER = 1, ITERATIONS

ONES = O

WHERE (ISING) ONES =1

COUNT = CSHIFT (ONES, 1, -1) + CSHIFT (ONES, 1, 1) &
+CSHIFT (ONES, 2, -1) + CSHIFT (ONES, 2, 1) &
+CSHIFT (ONES, 3, -1) + CSHIFT (ONES, 3, 1)

WHERE (.NOT. ISING) COUNT = 6 - COUNT

THRESHOLD = 1

WHERE (COUNT .EQ. &) THRESHOLD = P(4)
WHERE (COUNT .EQ. 5) THRESHOLD = P(5)
WHERE (COUNT .EQ. 6) THRESHOLD = P(6)

FLIPS = RAND (N) .LE. THRESHOLD
WHERE (FLIPS) ISING = .NOT. ISING
END DO
END

C.13.2.3.4 Reduction of Storage. The array ISING could be removed (at some loss of
clarity) by representing the model in ONES all the time. The array FLIPS can be avoided by
combining the two statements that use it as:

WHERE (RAND (N) .LE. THRESHOLD) ISING = .NOT. ISING

but an extra temporary array would probably be needed. Thus, the scope for saving storage
while performing whole array operations is limited. If N is small, this will not matter and the
use of whole array operations is likely to lead to good execution speed. If N is large, stor-
age may be very important and adequate efficiency will probably be available by performing
the operations plane by plane. The resulting code is not as elegant, but all the arrays
except ISING will have size of order N2 instead of N3.

C.13.3 FORmula TRANSslation and Array Processing. Many mathematical formulas can
be transiated directly into Fortran by use of the array processing features.

We assume the following array declarations:
REAL X (N, A (M, ND

Some examples of mathematical formulas and corresponding Fortran expressions follow.

C.13.3.1 A Sum of Products. The expression
N
z

M
ITa;
j=1i=1
can be formed using the Fortran expression
SUM (PRODUCT (A, DIM=1))

The argument DIM=1 means that the product is to be computed down each column of A. If
A had the value

Version 103 1986 December Page C-22

SECTION NOTES X3J3/58

15

20

25

30

35

the result of this expression is AD + BE + CF.

C.13.3.2 A Product of Sums. The expression

M N
I

=1j=1

]

can be formed using the Fortran expression
PRODUCT (SUM (A, DIM = 2))

The argument DIM = 2 means that the sum is to be computed along each row of A. If A

had the value
A BC
0 pEF

the result of this expression is (A+B+C)(D+E +F).

C.13.3.3 Addition of Selected Elements. The expression

XX

x> 0.1
can be formed using the Fortran expression
SUM (X, MASK = X .GT. 0.1)

The mask locates the elements where the array of rank one is greater than 0.1. If X has the
value {0.0, 0.1, 0.2, 0.3, 0.2, 0.1, 0.0}, the result of this expression is 0.7.

C.13.4 Variance from the Mean. The expression

N

2
Y. (Xi — Xmean)
i=1

can be formed using the Fortran statements

XMEAN = SUM (X) / ESIZE (X)
VAR = SUM ((X — XMEAN) ** 2)

Thus, VAR is the sum of the squared residuals.

C.13.5 Vector Norms: Infinity-Norm and One-Norm. The infinity norm of vector X =
(X(1), ..., X(N)) is defined as the largest of the numbers ABS (X(1), ..., ABS (X(N)) and there-
fore has the value MAXVAL (ABS (X)).

The one-norm of vector X is defined as the sum of the numbers ABS (X(1), ..., ABS (X(N))
and therefore has the value SUM (ABS (X)).

C.13.6 Matrix Norms: Infinity-Norm and One-Norm. The infinity norm of the matrix A =
(A (I, J)) is the largest row-sum of the matrix (ABS (A (I, J)) and therefore has the value
MAXVAL (SUM (ABS (A), DIM = 2)).

The one-norm of the matrix A = (A (I, J)) is the largest column-sum of the matrix (ABS (A (I,
J)) and therefore has the value MAXVAL (SUM (ABS (a), DIM = 1)).

Version 103 1986 December Page C-23

SECTION NOTES X3J3/S8

10

15

20

25

30

35

C.13.7 Logical Queries. The intrinsic functions allow quite complicated questions about
tabular data to be answered without use of loops or conditional constructs. Consider, for
example, the questions asked below about a simple tabulation of students’ test scores.

Suppose the rectangular table T (M, N) contains the test scores of M students who have
taken N different tests. T is an integer matrix with entries in the range 0 to 100.

Example: the scores on 4 tests made by 3 students held as the table
85 76 90 60
T = |714550 80
66 45 21 55
Question: What is each student’s top score?
Answer: MAXVAL (T, DIM = 2); in the example: [90, 80, 66].
Question: What is the average of all the scores?
Answer: SUM (T) 7 ESIZE (T); in the example: 62.
Question: How many of the scores in the table are above average?

Answer: ABOVE = T .GT. SUM (T) 7 ESIZE (T); N = COUNT (ABOVE); in the example:
ABOVE is the logical array (t = true, . = false):

and COUNT (ABOVE) is 6.
Question: What was the lowest score in the above-average group of scores?

Answer: MINVAL (T, MASK = ABOVE), where ABOVE is as defined previously; in the exam-
ple: 66.

Question: Was there a student whose scores were all above average?

Answer: With ABOVE as previously defined the answer is yes or rio according as the value
of the expression ANY (ALL (ABOVE, DIM = 2)) is true or false; in the example the answer
is no. .

C.13.8 Parallel Computations. The most straightforward kind of paralle! processing is to
do the same thing at the same time to many operands. Matrix addition is a good example of
this very simple form of parallel processing. Thus, the array assignment A = B + C
specifies that corresponding elements of the identically-shaped arrays B and C be added
together in parallel and that the resulting sums be assigned in parallel to the array A.

The “process” being done “in parallel” in the example of matrix addition is of course the
process of addition. And the array feature that so successfully implements matrix addition as
a parallel process is the element-by-element evaluation of array expressions.

These observations lead us to look to element-by-element computation as a means of imple-
menting other simple parallel processing algorithms.

C.13.9 Examples of Element-by-Element Computation.

Version 103 1986 Decenmiber Page C-24

SECTION NOTES ' X3J3/S8

C.13.9.1 Polynomials. Several polynomials of the same degree may be evaluated at the
same point by arranging their coefficients as the rows of a matrix and applying Horner’s
method for polynomial evaluation to the columns of the matrix so formed.

This procedure is illustrated by the code to evaluate the three cubic polynomials:

in parallel at the point t = X and to place the resulting vector of numbers [P(X), Q(X), R(X)]
in the real array RESULT (3).

10 | The code to compute RESULT is just the one statement
RESULT =M (:, 1) + X * (M (:, 2 +X* (M, 3 +X+*M (>,)
where M represents the matrix M (3, 4) with value

Pty =1 + 2t — 3t2 + 4¢3

Q(t) = 2 — 3t + 412 — 5¢°

R(t) = 3 + 4t — 5t% + 613

1 2 -3 4
2 -3 4 -5
3 4 -5 6

C.14 Section 14 Notes. There are no Section 14 Notes.

Version 103 5 1986 December Page C-25

APPENDIX D SYNTAX RULES

1 INTRODUCTION

2 FORTRAN TERMS AND CONCEPTS

R201 executable-program Is program-unit
[program-unit |...

Constraint: An executable-program must contain exactly one main-program program-unit.

R202 program-unit is main-program
or external-subprogram
or module
or block-data

R203 main-program Is [program-stmt |
[specification-part |
[execution-part |
[internal-procedure-part |
end-program-stmt

R204 external-subprogram is procedure-heading
| specification-part |
[execution-part |
[internal-subprogram-part |
procedure-ending

R205 procedure-heading is function-stmt
or subroutine-stmt

R206 procedure-ending is' end-function-stmt
or end-subroutine-stmt

Constraint: In an external-subprogram, module-subprogram, or internal-subprogram, the
procedure-ending must be end-function-stmt if the procedure-heading is a
function-stmt and must be end-subroutine-stmt if the procedure-heading is
subroutine-stmt.

R207 module is module-stmt
[specification-part]
[module-subprogram-part]...
end-module-stmt

R208 block-data is block-data-stmt
[specification-part]
end-block-data-stmt

Constraint: A block-data specification-part may contain only IMPLICIT, PARAMETER, INTE-
GER, REAL, DOUBLE PRECISION, COMPLEX, CHARACTER, LOGICAL, COM-
MON, DIMENSION, EQUIVALENCE, DATA, and SAVE statements.

Version 103 1986 December Page D-1

SYNTAX RULES

R209 specification-part

R210 implicit-part

R211 simt-function-part

R212 implicit-part-stmt

R213 declaration-construct

R214 stmt-function-part-stmt

R215 execution-part

R216 execution-part-construct

R217 internal-subprogram-part

R218 internal-subprogram

R219 module-subprogram-part

R220 module-subprogram

R221 specification-stmt

Version 103

is [use-stmt]...
[implicit-part]

[declaration-construct]...

[stmi-function-part]

is [implicit-part-stmt 1...
implicit-stmt

is stmt-function-stmt

[stmt-function-part-stmt |...

or data-stmt

[stmt-function-part-stmt |...

is implicit-stmt
or parameter-stmt
or format-stmt

or entry-stmt

is derived-type-def

or interface-block

or type-declaration-stmt
or specification-stmt

or parameter-stmt

or format-stmt

or entry-stmt

is format-stmt

or data-stmt

or entry-stmt

or stmt-function-stmt

is executable-construct

[execution-part-construct }...

is executable-construct
or format-stmt

or data-stmt

or entry-stmt

is contains-stmt
[internal-subprogram 1...

is procedure-heading
[specification-part]
[execution-part |
procedure-ending

is contains-stmt
[module-subprogram]

is procedure-heading
[specification-part]
[execution-part]
procedure-ending

is access-stmt
or exponent-letter-stmt
or external-stmt

1986 December

X3J3/S8

Page D-2

FORTRAN TERMS AND CONCEPTS SYNTAX RULES

or data-stmt

or intent-stmt

or intrinsic-stmt

OF namelist-stmt

or optional-stmt

or range-stmt

or save-stmt

or common-stmt
or dimension-stmt
or equivalence-stmt

Constraint: An intent-stmt or optional-stmt may appear only in the specification-part of a
subprogram(2.2.1) because they apply only to dummy arguments.

Constraint: An access-stmt may appear only in the scoping unit of a module.

R222 executable-construct is action-stmt
or case-construct
or do-construct
or if-construct
or where-construct

R223 action-stmt is allocate-stmt
or assignment-stmt
or backspace-simt
or call-stmt
or close-stmt
or computed-goto-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or endfile-stmt
or exit-stmt
or goto-stmt
or identify-stmt
or if-stmt
or inquire-stmt
or open-stmt
or print-stmt

" or read-stmt
or return-stmt
or rewind-stmt
or set-range-simt
or stop-simt
or where-stmt
or write-stmt
or arithmetic-if-stmt
or assign-stmt
or assigned-goto-stmt
or pause-stmt

Constraint: An entry-stmt may appear only in an external-subprogram or module-
subprogram.. An entry-stmt must not appear in a construct.

Version 103 - 1986 December Page D-3

SYMTAX RULES

Constraint: A return-stmt may appear only in a subprogram.

3 CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM

R301 character is alphanumeric-character
or special-character
R302 alphanumeric-character is letter
or digit
or underscore
R303 underscore is __
R304 name is letter [alphanumeric-character |...

Constraint: The maximum length of a name is 31 characters.

R305 constant is literal-constant
or named-constant

R306 literal-constant is int-literal-constant
or real-literal-constant
or complex-literal-constant
or logical-literal-constant
or char-literal-constant

R307 named-constant is name

R308 int-constant is constant
Constraint: int-constant must be of type integer.
R309 char-constant is constant
Constraint: char-constant must be of type character.

R310 intrinsic-operator is power-op
or mult-op
or add-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R311 power-op is **

R312 muilt-op is *
or /
R313 add-op is +
or —
R314 concat-op is //
R315 rel-op is .EQ.

or .NE.
or .LT.

Version 103 1986 December

X3J3/S8

Page D-4

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM

R316 not-op
R317 and-op
R318 or-op

R319 equiv-op
R320 defined-operator
R321 defined-unary-op

R322 defined-binary-op

R323 overloaded-intrinsic-op

or .LE.
or .GT.
or .GE.
or ==
or <>
or <

or <=
or >

or >=

is .NOT.
is .AND.
is .OR.

is .EQV.
or .NEQV.

is defined-unary-op
or defined-binary-op
or overloaded-intrinsic-op

is . lefter [letter
is . letter | letter]... .

is intrinsic-operator

Constraint: A defined-unary-op and a defined-binary-op must not contain more than 31 char-
acters and must not be the same as any intrinsic-operator or logical-constant.

R324 [abel

is digit [digit [digit [digit [digit]]11

Constraint: At least one digit in the label must be nonzero.

4 INTRINSIC AND DERIVED DATA TYPES

R401 signed-int-literal-constant
R402 int-literal-constant
R403 sign

R404 signed-real-literal-constant

R405 real-literal-constant

R406 significand

R407 exponent
R408 exponent-letter

R409 exponent-letter-stmt

Version 103

is [sign] int-literal-constant
is digit [digit]...

is +

or —

is " [sign | real-literal-constant

is significand [exponent-letter exponent]
or int-literal-constant exponent-letter exponent

is int-literal-constant . | int-literal-constant]
or . int-literal-constant

is signed-int-literal-constant
is E

orD

or defined-exponent-letter

is EXPONENT LETTER [precision-selector |

1986 December Page D-5

SYNTAX RULES

SYNTAX RULES X3J3/58

B defined-exponent-letter
R410 defined-exponent-letter is letter

Constraint: A defined-exponent-letter must be a letter other than E, D, or H.

R411 complex-literal-constant is (real-part, imag-part)

R412 real-part is signed-int-literal-constant

or signed-real-literal-constant

R413 imag-part is signed-int-literal-constant

or signed-real-literal-constant

R414 char-constant is ' [character]..."'

or ” [character]... *

R415 logical-constant is .TRUE.

or .FALSE.

R416 derived-type-def is derived-type-stmt
[PRIVATE]
component-def-stmt
[component-def-stmt]...
end-type-stmt

R417 derived-type-stmt is [access-spec | TYPE type-name | (type-param-name-list) |

Constraint: A name must not occur more than once in a type-param-name-list.

Constraint: If either PRECISION or EXPONENT-RANGE occurs in a type-param-name-list,
both must occur.

R418 end-type-stmt is END TYPE [type-name |

Constraint: A derived type type-name must not be the same as any intrinsic type-name nor
the same as any accessible derived type-name.

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as
that in the corresponding derived-type-stmt.

R419 component-def-stmt is type-spec [[, ARRAY (explicit-shape-spec-list) ... : | B
M component-decl-list

Constraint: A type-spec in a component-def-stmt must not contain a type-param-value that is
an asterisk.

Constraint: Each bound in the explicit-shape-spec (5.1.2.4.1) must be a nonprecision type-
parameter expression.

Constraint: An access-spec or a PRIVATE statement within the definition is permitted only
if the type definition is within a module.

R420 component-decl is component-name | (explicit-shape-spec-list) |
R421 structure-constructor is type-name [(type-param-spec-list) | (expr-list)

Constraint: The type-param-spec option must be supplied if and only if the referenced type
definition includes type parameters.

R422 array-constructor is [array-constructor-value-list |
or (/ array-constructor-value-list /)

R423 array-constructor-value is scalar-expr
or rank-1-expr

Version 103 1986 December Page D-6

INTRINSIC AND DERIVED DATA TYPES SYNTAX RULES

or scalar-int-expr : scalar-int-expr | : scalar-int-expr |
or [int-constant-expr | array-constructor

R424 rank-1-expr is expr

Constraint: rank-1-expr must have rank one.

5 DATA OBJECT DECLARATIONS AND SPECIFICATIONS

R501 type-declaration-stmt is type-spec [[, attr-spec]... ::] object-decl-list

R502 type-spec is INTEGER
or REAL [precision-selector |
or DOUBLE PRECISION
or COMPLEX [precision-selector]
or CHARACTER | length-selector]
or LOGICAL
or TYPE (type-name [(type-param-spec-list)])

R503 type-param-spec is [lype-param-name =] lype-param-value
R504 type-param-value is specification-expr

or *
R505 attr-spec is value-spec

or access-spec

or ALIAS

or ALLOCATABLE

or ARRAY (array-spec)

or INTENT (intent-spec)

or OPTIONAL

or RANGE [/ range-list-name / |
or SAVE

R506 object-dec! is object-name [(array-spec)| M
B [* char-length] [= constant-expr |

Constraint: No attr-spec may appear more than once in a given type-declaration-stmt.

Constraint: The object-name may be the name of a data object, an external function, an
intrinsic function, or a statement function.

Constraint: The = constant-expr must appear if and only if the statement contains a value-
spec attribute (5.1.2.1, 7.1.6.1).

Constraint: The * char-length option is permitted only if the lype-spec is CHARACTER.

Constraint: The ALLOCATABLE and RANGE attributes may be used only when declaring
array objects.

Constraint: An array must not have both the ALLOCATABLE and the ALIAS attribute.
Constraint: The ALIAS attribute may be specified with type and array attributes only.

Constraint: An array declared with an ALIAS attribute must be specified with a deferred-
shape-spec.

Constraint: The value, accessibility, ALIAS, and SAVE attributes must not be specified for
dummy arguments.

Version 103 1986 December Page D-7

SYNTAX RULES X3J3/58

Constraint: The type-param-value for a precision type parameter must be a specification
expression in which no primary is a reference to a variable except as the argu-
ment of the EFFECTIVE__PRECISION function or an asterisk. The type-param-
value for an exponent range type parameter must be a specification expression
in which no primary is a reference to a variable except as the argument of the
EFFECTIVE_EXPONENT__RANGE function or an asterisk.

R507 precision-selector is (type-param-value &
B [, [EXPONENT_RANGE = | type-param-value 1)
or (PRECISION = type-param-value B
® [, EXPONENT_RANGE = type-param-value |)
or (EXPONENT_RANGE = type-param-value ®
M [, PRECISION = type-param-value])

Constraint: The type-param-value for a precision type parameter must be a specification
expression in which no primary is a reference to a variable except as the argu-
ment of the EFFECTIVE__PRECISION function or an asterisk. The type-param-
value for an exponent range type parameter must be a specification expression
in which no primary is a reference to a variable except as the argument of the
EFFECTIVE__EXPONENT__RANGE function or an asterisk.

R508 length-selector is ([LEN =] type-param-value)
or * char-length [,]
R509 char-length is (type-param-value)
or scalar-int-constant
R510 value-spec is PARAMETER
or DATA
R511 access-spec is PUBLIC
or PRIVATE
R512 intent-spec is IN
or OUT
or INOUT
R513 array-spec is explicit-shape-spec-list

or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec

R514 explicit-shape-spec is [lower-bound : | upper-bound
R515 lower-bound is scalar-int-expr
R516 upper-bound is scalar-int-expr

Constraint: An explicit shape array whose bounds depend on the values of nonconstant
expressions must be either a dummy argument or a local array of a procedure.

Constraint: The bounds in an explicit-shape array declaration must be specification expres-
sions (7.1.6.3).

R517 assumed-shape-spec is [lower-bound] :
R518 deferred-shape-spec is :
Constraint: assumed-size-spec must not be included in an ARRAY attribute.

Constraint: The value to be returned by an array-valued function must not be declared as
an assumed-size array.

Version 103 1986 December Page D-8

DATA OBJECT DECLARATIONS AND SPECIFICATIONS SYNTAX RULES

R519 intent-stmt is INTENT (intent-spec) [:: | dummy-arg-name-list

Constraint: An intent-stmt may occur only in the scoping unit of a subprogram or an inter-
face block.

R520 optional-stmt is OPTIONAL { ::] dummy-arg-name-list

Constraint: An optional-stmt may occur only in the scoping unit of a subprogram or an inter-
face block.

R521 access-stmt is access-spec [[::] use-name-list |

Constraint: An access-stmt may appear only in the scoping unit of a module and only one
accessibility statement with an omitted object name list is permitted in a scop-
ing unit.)

Constraint: Each use-name must be the name of a variable, procedure, type, constant,
range list, or namelist group.
R522 save-stmt is SAVE [[::] saved-object-list]

R523 saved-object is object-name
or / common-block-name /

Constraint: An object name must not be a dummy argument name, a procedure name, a
function result name, an automatic array name, an alias name, or the name of
an object in a common block. Its type parameters must be constant.

Constraint: If a SAVE statement with an omitted saved object list occurs in a scoping unit,
no other occurrence of the SAVE attribute or SAVE statement is permitted in
the same scoping unit.

& [, array-name (array-spec)} |...

Constraint: In a DIMENSION statement, only explicit shape and assumed-size array-specs
are permitted.

or DATA (data-value-def-list)
R524 data-stmt-init is data-stmt-object-list / data-stmt-value-list /

R525 data-stmt-object is object-name
or array-element
or data-implied-do
R526 data-stmt-value is [data-stmt-repeat * | data-stmt-constant

R527 data-simt-constant is constant
or signed-int-literal-constant
or signed-real-literal-constant

R528 data-stmt-repeat is scalar-int-constant
R529 data-implied-do is (data-i-do-object-list, data-i-do-variable = B
W scalar-int-expr, scalar-int-expr |, scalar-int-expr 1)
R530 data-i-do-object is array-element
or data-implied-do
R531 data-i-do-variable is scalar-int-variable
or data-init-implied-do = data-init-implied-do-value
R532 data-init-implied-do is (data-init-implied-do-object , data-init-implied-do-control)
R533 data-init-implied-do-object is array-element
or data-init-implied-do

Version 103 1986 December Page D-9

SYNTAX RULES X3J3/s8

R534 data-init-implied-do-control is data-i-do-variable = B
B scalar-int-expr , scalar-int-expr [, scalar-int-expr]

R535 data-init-implied-do-value is array-constructor
Constraint: data-i-do-variable must be a named variable.

Constraint: The data statement repeat factor must be positive. If the data statement repeat
factor is @ named constant, it must have been declared previously in the scop-
ing unit or made accessible by a USE statement.

Constraint: A variable whose name is included in a data-stmt-object-list or a data-i-do-
object-list must not be of a derived type, a structure component, a dummy argu-
ment, made accessible by a USE statement, in a named common block unless
the DATA statement is in a BLOCK DATA program unit, in a blank common
block, or a function name. An array whose name is included in either of the
above object lists must not be an automatic array, an allocatable array, or a
zero-sized array.

Constraint: Neither the name of variable in data-value-def (R534) nor the name of array-
element in data-init-implied-do-object (R536) can be accessible names of the
whole or part of dummy arguments, procedures, function results, automatic or
allocatable arrays, alias objects, or objects in a common block.

Constraint: The only variables that may appear in subscripts of the array-element in a data-
init-implied-do-object (R536) are DO variables from some level of the data-init-
implied-do. Each such DO variable must appear in some subscript of the array-
element.

Constraint: Each data-init-implied-do-control must conform to the rules of the DO construct
(8.1.4.1). The DO variable must be an integer. The only variables that may
appear in scalar-int-expr are DO variables from an outer data-init-implied-do-
control.

Constraint: A variable, or part of a variable, must not be initialized more than once.

Constraint: The size of the array-constructor must be equal to the number of elements ref-
erenced by the data-init-implied-do-controls.

Constraint: Each element of the array constructor must be a scalar constant expression.
R536 parameter-simt is PARAMETER (named-constant-def-list)
R537 named-constant-def is named-constant-name = constant-expr

R538 range-stmt

&

RANGE [/ range-list-name / | array-name-list

R539 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE
R540 implicit-spec is type-spec (letter-spec-list)
R541 letter-spec is letter | — letter]
R542 namelist-stmt is NAMELIST / namelist-group-name / namelist-group-object-list ®
W [[,]/ namelist-group-name / namelist-group-object-list |...
R543 namelist-group-object is variable-name

Constraint: namelist-group-name must not be the same name as any variable within the cur-
rent scoping unit.

Constraint: A namelist-group-object must not be an array dummy argument with nonconstant
bounds, an array element or section, a structure component, a structure with

Version 103 1986 December Page D-10

DATA OBJECT DECLARATIONS AND SPECIFICATIONS SYNTAX RULES

assumed parameters, an allocatable array, or a substring.

Constraint: If a namelist-group-name has the PUBLIC attribute, no item in the namelist-
group-object-list may have the PRIVATE attribute.

R544 equivalence-stmt is EQUIVALENCE equivalence-set-list
R545 equivalence-set is (equivalence-object , equivalence-object-list)
R546 equivalence-object is object-name

or array-element
or substring

Constraint: object-name must be a scalar variable name or an array variable name.

Constraint: An equivalence-object must not be the name of a dummy argument, an object of
derived type, a structure component, an alias object, an allocatable array, an
automatic array, an object of real or double precision real type unless of default
real type, an object of complex type unless of default complex type, an array of
zero size, or a function name.

Constraint: Within an equivalence-set, if one equivalence-object is of type character, all must
be of type character.

Constraint: Each subscript or substring range expression in an equivalence-object must be
an integer constant expression.

R547 common-stmt is COMMON [/ [common-block-name | /] B
B common-block-object-list &
W {[,]/[common-block-name] s/ B
B common-block-object-list]...

R548 common-block-object is object-name [(explicit-shape-spec-list)]

Constraint: object-name must be a scalar-variable-name or an array-variable-name. Only
one appearance of a given object-name is permitted in all common-
block-object-lists within a scoping unit.

Constraint: A common-block-object must not be the name of a dummy argument, an object
of derived type, a structure component, an alias object, an allocatable array, an
automatic array, an object of real or double precision real type unless of default
real type, an object of complex type unless of default complex type, an array of
zero size, or a function name.

Constraint: Each bound in the explicit-shape-spec must be an integer constant expression.

6 USE OF DATA OBJECTS

R601 variable is scalar-variable-name
or array-variable-name
or array-element
or array-section
or structure-component
or substring

R602 Jlogical-variable is variable
Constraint: logical-variable must be of type logical.
R603 char-variable is variable

Version 103 1986 December Page D-11

SYNTAX RULES X3J3/58

Constraint: char-variable must be of type character.

R604 int-variable is variable

Constraint: int-variable must be of type integer.

R605 substring is parent-string (substring-range)

R606 parent-string is scalar-variable-name
or array-element
or scalar-structure-component
or scalar-constant

R607 substring-range is [scalar-int-expr] : [scalar-int-expr |
Constraint: parent-string must be of type character.
R608 structure-component is parent-structure % component-name | array-selector |

R609 parent-structure is scalar-variable-name
or array-variable-name
or array-element
or array-section
or structure-component
or named-constant

Constraint: parent-structure must be of derived type.

Constraint: An array-selector may appear only if the component specified by comporient-
name is an array.

A610 array-selector is (subscript-list)
or (section-subscript-list)

R611 allocate-stmt is ALLOCATE (array-allocation-list &
B [, STAT = stat-variable])

R612 stat-variable is scalar-int-variable

Constraint: The stat-variable must not be allocated within the ALLOCATE statement in
which it appears.

R613 array-allocation is array-name (explicit-shape-spec-list)
Constraint: array-name must be the name of an allocatable array.

Constraint: A bound in an array-allocation explicit-shape-spec must not be an expression
involving as a primary an array inquiry function whose argument is any other
array in the same ALLOCATE statement.

Constraint: The number of explicit-shape-specs in an array-allocation explicit-shape-spec-list
must be the same as the declared rank of the array.

R614 deallocate-stmt is DEALLOCATE (array-name-list [, STAT = stat-variable])

Constraint: The stat-variable must not be deallocated within the same DEALLOCATE state-
ment in which it appears.

R615 array-element is parent-array (subscript-list)

Constraint: The number of subscripts must equal the declared rank of the array.

R616 array-section is parent-array (section-subscript-list) [(substring-range) |
R617 parent-array is array-variable-name

Version 103 1986 December Page D-12

USE OF DATA OBJECTS

Constraint: At least one section-subscript must be a subscript-triplet.

Constraint: The number of section-subscripts must equal the declared rank of the array.

R618 subscript is scalar-int-expr

R619 section-subscript is subscript

or subscript-triplet

R620 subscript-triplet is [subscript] : [subscript] [: stride]

R621 stride is scalar-int-expr

R622 set-range-stmt is SET RANGE ([effective-range-list |) array-name-list

or SET RANGE ([effective-range-list |) / range-list-name /
R623 effective-range is explicit-shape-spec
or [fower-bound | : | upper-bound]

Constraint: In an effective-range with two bounds, the value of one bound must not depend
on the value of the other bound.

Constraint: The number of effective ranges in an effective-range-list must equal the rank of
the arrays being ranged.

Constraint: All arrays being ranged must have the same rank and declared lower bounds in
corresponding dimensions.

Constraint: An array that is a member of a range list must not appear in an array-name-list
of a SET RANGE statement.

R624 identify-stmt is IDENTIFY (alias-name = parent)

or IDENTIFY (alias-element = parent-element , ®
® alias-range-spec-list)

R625 alias-element is alias-name (subscript-name-list)

R626 parent-element is parent-name (subscript-mapping) B

B [% component-name [{ subscript-list)]]...

R627 subscript-mapping .is subscript-list

R628 alias-range-spec is subscript-name = subscript . subscript

Constraint: The alias and parent objects must conform in type, rank, and type parameters.

Constraint: Each subscript in a subscript-mapping must be in a canonical form in which
each of the alias-element subscript-names appears at most once, and each sub-
script must be linear in each of the alias-element subscript-names.

Constraint: The alias object must have the ALIAS attribute and must not have the SAVE
attribute.

Constraint: The number of subscript-names in an alias-element and the number of alias-
range-specs must equal the rank of the alias.

Constraint: Each subscript-name in the subscript-name-list must be identical to the
subscript-name in the corresponding alias-range-spec. The subscript-names in
both lists must appear in the same order. A subscript-name must not appear
more than once in each list.

Constraint: A subscript in an alias-range-spec must not depend on any other expression in
the same IDENTIFY statement.

Version 103 1986 December Page D-13

or array-constant-name

SYNTAX RULES

EXPRESSIONS AND ASSIGNMENT X3J3/88

7 EXPRESSIONS AND ASSIGNMENT

R701 primary

R702 level-1-expr
R321 defined-unary-op
R703 mult-operand
R704 add-operand
R705 [level-2-expr
R311 power-op
R312 muit-op

R313 add-op

R706 level-3-expr
R314 concat-op
R707 level-4-expr
R315 rel-op

R708 and-operand
R709 or-operand
R710 equiv-operand
R711 level-5-expr
R316 not-op

R317 and-op

R318 or-op

R319 equiv-op
Version 103

is constant

or variable

or array-constructor

or structure-constructor
or function-reference
or (expr)

is [defined-unary-op] primary

is . fetter [letter |... .

is level-1-expr | power-op mult-operand |
is [add-operand mult-op | muit-operand

is | add-op } add-operand
or level-2-expr add-op add-operand

is **
*
or /
+

or —

is [level-3-expr concat-op | level-2-expr
is //

is [level-3-expr rel-op | level-3-expr

is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or <>
or <

or <=
or >

or >=

is [not-op | level-4-expr

is [or-operand and-op | and-operand

is [equiv-operand or-op | or-operand

is [level-5-expr equiv-op | equiv-operand
is .NOT.

is .AND.

is .OR.

is .EQV.

1986 December Page D-14

EXPRESSIONS AND ASSIGNMENT

or .NEQV.
R712 expr is [expr defined-binary-op | level-5-expr
R322 defined-binary-op is . letter [letter]... .
R713 logical-expr is expr

Constraint: /logical-expr must be type logical.
R714 char-expr is expr
Constraint: char-expr must be type character.
R715 int-expr is expr
Constraint: int-expr must be type integer.
R716 numeric-expr is expr

Constraint: numeric-expr must be of type integer, real or complex.

R717 constant-expr is expr

R718 char-constant-expr is char-expr

R719 int-constant-expr is int-expr

R720 logical-constant-expr is logical-expr

R721 specification-expr is scalar-int-expr

R722 assignment-stmt is variable = expr

R723 where-stmt is' WHERE (mask-expr) assignment-stmt
R724 where-construct is where-construct-stmt

| assignment-stmt ...
| elsewhere-stmt

[assignment-stmt]... |
end-where-stmt

R725 where-construct-stmt is WHERE (mask-expr)
R726 mask-expr is logical-expr

R727 elsewhere-stmt is ELSEWHERE

R728 end-where-stmt is END WHERE

SYNTAX RULES

Constraint: In each assignment-stmt, the mask-expr and the variable being defined must be

arrays of the same effective shape.

8 EXECUTION CONTROL

R801 block is [execution-part-construct }...

R802 if-construct is if-then-stmt
block
[else-if-stmt
block ...
[else-stmt
block]
end-if-stmt

Version 103 1986 December

Page D-15

SYNTAX RULES X3J3/88

R803 if-then-stmt is [if-construct-name :] IF (scalar-logical-expr) THEN
R804 else-if-stmt is ELSE IF (scalar-logical-expr) THEN

R805 else-stmt is ELSE

R806 end-if-stmt is END IF [if-construct-name]

Constraint: If an if-construct-name is present, the same name must be specified on both
the if-then-stmt and the corresponding end-if-stmt.

R807 if-stmt is IF (scalar-logical-expr) action-stmt

Constraint: The action-stmt in the if-stmt must not be an if-stmt.

R808 case-construct is select-case-stmt
[case-stmt
block 1...
end-select-stmt
R809 select-case-stmt is ‘[select-construct-name : | SELECT CASE (case-expr)
R810 case-simt is CASE case-selector
R811 end-select-stmt is END SELECT [select-construct-name |

Constraint: If a select-construct-name is present, the same name must be specified on both
the select-case-stmt and the corresponding end-select-stmt.

R812 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R813 case-selector is (case-value-range-ist)
or DEFAULT

Constraint: Only one DEFAULT case-selector may appear in any given case-construct.

R814 case-value-range is case-value
or [case-value] : [case-value]

R815 case-value is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr

Constraint: For a given CASE construct, each case-value must be of the same type as
case-expr. For character type, length differences are allowed.

Constraint: A case-value-range using a colon (i.e., the second form) must not be used if
case-expr is of type logical.

R816 do-construct is do-stmt

do-body

do-termination
R817 do-stmt is [do-construct-name : | DO [label | [[,] loop-control]
R818 loop-control is do-variable = scalar-numeric-expr, B

B scalar-numeric-expr [, scalar-numeric-expr |
or (scalar-int-expr TIMES)

R819 do-variable is scalar-variable

Constraint: The do-variable must be a scalar integer or real named variable.

Version 103 1986 December Page D-16

EXECUTION CONTROL SYNTAX RULES

Constraint: Each scalar-numeric-expr in loop-control must be of type integer or real.
R820 do-body is [execution-part-construct 1...

R821 do-termination is end-do-stmt
or continue-stmt
or do-term-stmt
or do-construct

RB22 do-term-stmt is action-stmt

Constraint: If the /abel is omitted in a do-stmt, the corresbonding do-termination must be an
end-do-stmt.

Constraint: If a /abel appears in the do-stmt and the corresponding do-termination is not a
do-construct, the do-termination must be identified with that label.

Constraint: If the do-termination is a continue-stmt

Constraint: A do-term-stmt must not be a continue-stmt, goto-stmt, return-stmt, stop-stmt,
exit-stmt, cycle-stmt, arithmetic-if-stimt, assigned-goto-stmt, computed-goto-stmt,
nor an if-stmt that causes a transfer of control.

Constraint: If the do-termination is a do-construct, both of the corresponding do-stmts must
specify the same label.

Constraint: If a do-termination is a do-construct, the do-termination of that do-construct must
not be an end-do-stmt.

R823 end-do-stmt is END DO [do-construct-name]

Constraint: If a do-construct-name is used on the do-stmt, the corresponding do-termination
must be an end-do-stmt that uses the same do-construct-name. If a do-
construct-name does not appear on the do-stmt, a do-construct-name must not
appear on the corresponding do-termination.

R824 exit-stmt is EXIT [do-construct-name]
R825 cycle-stmt is CYCLE [do-construct-name]

Constraint: An exit-stmt or a cycle-stmt must be within the range of one or more do-
constructs.

Constraint: An exit-stmt or cycle-stmt using a do-consfruct-name must be within the range
of the do-construct that has that name.

R826 goto-stmt is GO TO label

Constraint: label must be the statement label of a branch-target that appears in the same
scoping unit as the goto-stmt.

R827 computed-goto-stmt is GO TO (label-list) | ,] scalar-int-expr

Constraint: Each /abel in label-list must be the statement label of a branch target that
appears in the same scoping unit as the computed-goto-simt.

R828 assign-stmt is ASSIGN /abe! TO scalar-int-variable
Constraint: /abel must be the statement label of a branch target or a format-stmt.
R829 assigned-goto-stmt is GO TO scalar-int-variable [[,] (label-list)]

Constraint: Each /abel in labellist must be the statement label of a branch target that
appears in the same scoping unit as the assigned-goto-stmt.

R830 arithmetic-if-stmt is IF (scalar-numeric-expr) label, label, label

Version 103 1986 December Page D-17

SYNTAX RULES : X3J3/S8

Constraint: Each /abel must be the label of a branch target that appears in the same scop-
ing unit as the arithmetic-if-stmt.

Constraint: The scalar-numeric-expr must not be of type complex.

R831 continue-stmt is CONTINUE
R832 stop-stmt is STOP [access-code |
R833 access-code is scalar-char-constant

or digit | digit [digit [digit [digit]1]]1]

R834 pause-stmt is PAUSE [access-code]

9 INPUT/CUTPUT STATEMENTS

R901 jo-unit is external-file-unit
or *
or internal-file-unit
R902 external-file-unit is scalar-int-expr
R903 internal-file-unit is char-variable
R904 open-stmt is OPEN (connect-spec-list)
R905 connect-spec is [UNIT =] external-file-unit

or |IOSTAT = scalar-int-variable
or ERR= label

or FILE = file-name-expr

or STATUS = scalar-char-expr
or ACCESS = scalar-char-expr
or FORM = scalar-char-expr
or RECL = scalar-int-expr

or BLANK = scalar-char-expr
or POSITION = scalar-char-expr
or ACTION = scalar-char-expr
or DELIM = scalar-char-expr
or PAD = scalar-char-expr

R906 file-name-expr is scalar-char-expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the connect-spec-list.

Constraint: Each specifier must not appear more than once in a given open-stmt; an
external-file-unit must be specified.

Constraint: If the STATUS= specifier has the value OLD or NEW, the FILE= specifier
must be present.

Constraint: If the STATUS = specifier is SCRATCH, the FILE = specifier must be absent.
R907 close-stmt is CLOSE (close-spec-list)

R908 close-spec is [UNIT =] external-file-unit
or IOSTAT = scalar-int-variable
or ERR = /label

Version 103 1986 December Page D-18

INPUT/QUTPUT STATEMENTS SYNTAX RULES

or STATUS = scalar-char-expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the close-spec-list.

Constraint: A given specifier must not appear more than once in a given close-stmt; the
unit specifier must appear.

R909 read-stmt is READ (io-control-spec-list) [input-item-list |
or READ format [, input-item-list]

R910 write-stmt is WRITE (io-control-spec-list) | output-item-list]

R911 print-stmt is PRINT format [, output-item-list |

R912 io-control-spec is [UNIT=] jo-unit

or [FMT =] format

or [NML =] namelist-group-name
or REC = scalar-int-expr

or PROMPT = scalar-char-expr
or IOSTAT = scalar-int-variable
or ERR= label

or END = /abel

or NULLS = scalar-int-variable

or VALUES = scalar-int-variable

Constraint: An io-control-spec-list must contain exactly one jo-unit and may contain at most
one of each of the other specifiers.

Constraint; An END=, a NULLS=, or a PROMPT = specifier must not appear in a write-
stmt or print-stmt.

Constraint: A namelist-group-name must not be present if an input-item-list or an output-
item-list is present in the data transfer statement.

Constraint: An jo-control-spec-list must not contain both a format and a namelist-group-
name.

Constraint; If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the control information list.

Constraint: |If the optional characters FMT = are omitted from the format specifier, the for-
mat specifier must be the second item in the control information list and the first
item must be the unit specifier without the optional characters UNIT =.

Constraint: If the optional characters NML= are omitted from the namelist specifier, the
namelist specifier must be the second item in the control information list and
the first item must be the unit specifier without the optional characters UNIT=.

Constraint: If the unit specifier specifies an internal file, the io-control-spec-list must not con-
tain a REC = specifier.

R913 format is char-expr

or label

or *

or scalar-int-variable
R914 input-item is variable

or io-implied-do
R915 output-item is expr

Version 103 1986 December Page D-19

SYNTAX RULES X3J3/S8

or io-implied-do
R916 io-implied-do is (io-implied-do-object-list , io-implied-do-control)
R917 io-implied-do-object is input-item

or output-item

R918 io-implied-do-control is do-variable = scalar-numeric-expr , i
W scalar-numeric-expr [, scalar-numeric-expr |

Constraint: The do-variable must be scalar of type integer, real, or double precision.

Constraint: In an input-item-list, an io-implied-do-object must be an input-item. In an output-
item-list, an io-implied-do-object must be an output-item.

Constraint: An input-item must not appear as, nor be associated with, the do-variable of any
io-implied-do that contains the input-item.

Constraint: The do-variable of an io-implied-do that is contained within another io-implied-do
must not appear as, nor be associated with, the do-variable of the containing
io-implied-do.

R919 backspace-stmt is BACKSPACE external-file-unit

or BACKSPACE (position-spec-list)
R920 endfile-stmt is ENDFILE external-file-unit

or ENDFILE (position-spec-list)
R921 rewind-stmt is. REWIND external-file-unit

or REWIND (position-spec-list)

Constraint: BACKSPACE, ENDFILE, and REWIND apply only to external files connected for
sequential access.

R922 position-spec is [UNIT =] external-file-unit
or IOSTAT = scalar-int-variable
or ERR = /abel

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the position-spec-list.

Constraint: A position-spec-list must contain exactly one external-file-unit and may contain at
most one of each of the other specifiers.

R923 inquire-stmt is INQUIRE (inquire-spec-list) [output-item-ist]

R924 inquire-spec is FILE = file-name-expr
or UNIT = external-file-unit
or IOSTAT = scalar-int-variable
or ERR = /abel
or EXIST = scalar-logical-variable
or OPENED = scalar-logical-variable
or NUMBER = scalar-int-variable
or NAMED = scalar-logical-variable
or NAME = scalar-char-variable
or ACCESS = scalar-char-variable
or SEQUENTIAL = scalar-char-variable
or DIRECT = scalar-char-variable
or FORM = scalar-char-variable
or FORMATTED = scalar-char-variable

Version 103 1986 December Page D-20

INPUT/OUTPUT STATEMENTS

SYNTAX RULES

or UNFORMATTED = scalar-char-variable
or RECL = scalar-int-variable

or NEXTREC = scalar-int-variable

or BLANK = scalar-char-variable

or POSITION = scalar-char-variable

or ACTION = scalar-char-variable

or DELIM = scalar-char-variable

or PAD = scalar-char-variable

or IOLENGTH = scalar-int-variable

Constraint: In the inquire by unit form of the INQUIRE statement, if the optional characters
UNIT= are omitted from the unit specifier, the unit specifier must be the first
item in the inquire-spec-list.

Constraint: The IOLENGTH= specifier and the output-item-list must both appear if either

appears.

10

R1001 format-stmt

R1002 format-specification

INPUT/OUTPUT EDITING

is FORMAT format-specification

is ([format-item-list |)

Constraint: The format-stmt must be labeled.

Constraint: The comma used to separate format-items in a format-item-list may be omitted

as follows:
R1003 format-item

R1004 r

is [r] data-edit-desc
or control-edit-desc

or char-string-edit-desc
or [r] (format-item-list)

is int-literal-constant

Constraint: r must be positive. It is called a

R1005 data-edit-desc

R1006 w
R1007 m
R1008 d
R1009 e

is lw[.m]

or Fw.d
orEw.d{Ee]
orENw.d[Ee]
orGw.d[Ee]
orLw

or A[w]
orDw.d

is int-literal-constant
is int-literal-constant
is int-literal-constant

is’ int-literal-constant

Constraint: w and e must be positive and d and m must be zero or positive.

Constraint: The value of m, d, and ¢ may be restricted further by the value of w.

R1010 control-edit-desc

Version 103

is position-edit-desc

1986 December Page D-21

SYNTAX RULES X3J3/58

or[r]/

or:

or sign-edit-desc

or kP

or blank-interp-edit-desc

R1011 k is signed-int-literal-constant

R1012 position-edit-desc is Tn
or TL n
or TR n
ornX

R1013 n is int-literal-constant

Constraint: n must be positive.

R1014 sign-edit-desc is S
or SP
or SS
R1015 blank-interp-edit-desc is BN
or BZ
R1016 char-string-edit-desc is char-literal-constant

or ¢ H character | character |...
R1017 ¢ is int-literal-constant

Constraint: ¢ must be positive.

11 PROGRAWM UNITS

R203 main-program is [program-stmt]
[specification-part]
[execution-part]
[internal-procedure-part |
end-program-stmt

R1101 program-stmt is PROGRAM program-name
R1102 end-program-stmt is END [PROGRAM [program-name |} |

Constraint: The program-name may be included in the end-program-stmt only if the optional
program-stmt is used and, if included, must be identical to the program-name
specified in the program-stmt.

R207 module is module-stmt
| specification-part]
[module-subprogram-part |
end-module-stmt

R1103 module-stmt is MODULE module-name
R1104 end-module-stmt is END [MODULE [module-name]]

Constraint: If the module-name is specified in the end-moduie-stmt, it must be identical to
the module-name specified in the module-stmt.

Version 103 1986 December Page D-22

PROGRAM UNITS SYNTAX RULES

Constraint: A module specification-part must not contain an entry-stmt, format-stmt, intent-
stmt, INTENT attribute, optional-stmt, or OPTIONAL attribute.

R1105 use-stmt is USE module-name [, rename-list |

or USE module-name , ONLY : | only-list]
R1106 rename is use-name = > local-name
R1107 only is use-name | = > local-name |

Constraint: Each use-name must be the name of a variable, procedure, type, constant,
range list, or namelist group.

R208 block-data is block-data-stmt
R1108 block-data-stmt is BLOCK DATA [block-data-name |
R1109 end-block-data-stmt is END [BLOCK DATA [block-data-name] |

Constraint: The block-data-name may be included in the end-block-data-stmt only if it was
provided in the block-data-stmt and, if included, must be identical to the block-
data-name in the block-data-stmt.

Constraint: A block-data specification-part may contain only IMPLICIT, PARAMETER, INTE-
GER, REAL, DOUBLE PRECISION, COMPLEX, CHARACTER, LOGICAL, COM-
MON, DIMENSION, EQUIVALENCE, DATA, and SAVE statements.

12 PROCEDURES

R1201 interface-block is interface-stmt
interface-header
[use-stmt]...
[implicit-part]
[declaration-construct]...
end-interface-stmt

R1202 interface-stmt is INTERFACE
R1203 end-interface-stmt is END INTERFACE
R1204 interface-header is function-stmt
or subroutine-stmt
R1205 external-stmt is EXTERNAL external-name-list

Constraint: Each external-name must be the name of an external procedure, a dummy
argument, or a block data program unit.

R1206 intrinsic-stmt is INTRINSIC intrinsic-procedure-name-list

R1207 function-reference is function-name (| actual-arg-spec-list])

Constraint: The actual-arg-spec-list for a function reference must not contain an alt-return-
spec.

R1208 call-stmt is CALL subroutine-name | (| actual-arg-spec-ist |) |

R1209 actual-arg-spec is [keyword =] actual-arg

R1210 keyword is dummy-arg-name

R1211 actual-arg is expr

Version 103 1986 December Page D-23

SYNTAX RULES X3.J3/S8

or variable
or procedure-name
or alt-return-spec

R1212 alt-return-spec is * label

Constraint: The keyword may be omitted from an actual-arg-spec only if the keyword has
been omitted from each preceding actual-arg-spec in the argument list.

Constraint: Each keyword must be the name of a dummy argument in the interface of the

procedure.
R204 external-subprogram is procedure-heading
[specification-part]
[:execution-part]
[internal-subprogram-part |
procedure-ending
R205 procedure-heading is function-stmt
or subroutine-stmt
R206 procedure-ending is end-function-stmt
or end-subroutine-stmt
R1213 function-stmt is [prefix]| FUNCTION function-name &
B ([dummy-arg-name-list |) [suffix]
R1214 prefix is type-spec [RECURSIVE]
or RECURSIVE [type-spec]
R1215 suffix is RESULT (result-name) [OPERATOR (defined-operator) |
or OPERATOR (defined-operator) [RESULT (result-name)]
R1216 end-function-stmt is END [FUNCTION [function-name |]

Constraint: FUNCTION must be present on the end-function-stmt of an internal or module
function.

Constraint: An internal function must not contain an ENTRY statement.

Constraint: If function-name is supplied on the end-function-stmt, it must agree with the
function-name on the function-stmt.

R204 external-subprogram is procedure-heading
[specification-part]
[execution-part |
[internal-subprogram-part |
procedure-ending

R205 procedure-heading is function-stmt
or subroutine-stmt
R206 procedure-ending is end-function-stmt
or end-subroutine-stmt
R1217 subroutine-stmt is [RECURSIVE] SUBROUTINE subroutine-name M
B [(dummy-arg-list)] [ASSIGNMENT]
R1218 dummy-arg is dummy-arg-name
or *
R1219 end-subroutine-stmt is END [SUBROUTINE [subroutine-name | |

Version 103 1986 December Page D-24

PROCEDURES SYNTAX RULES

Constraint: SUBROUTINE must be present on the END statement of an internal or module
subroutine.

Constraint: An internal subroutine must not contain an ENTRY statement.

Constraint: If subroutine-name is present on the end-subroutine-stmt, it must agree with the
subroutine-name on the subroutine-stmt.

R1220 entry-stmt is ENTRY entry-name [([dummy-arg-list])]

Constraint; A dummy-arg may be an alternate return indicator only if the ENTRY statement
is contained in a subroutine subprogram.

R1221 return-stmt is RETURN / scalar-int-expr |

Constraint: The return-stmt must be contained in the scoping unit of a function or subrou-
tine subprogram.

Constraint: The scalar-int-expr is allowed only in the scoping unit of a subroutine subpro-
gram.

R1222 contains-stmt is CONTAINS

Constraint: The expr may be composed only of constants (literal and named), references to
scalar variables and array elements, references to functions, and intrinsic opera-
tors. If a reference to another statement function appears in expr, its definition
must have been provided earlier in the scoping unit.

Constraint: The function-name and each dummy-arg-name must be specified, explicitly or
implicitly, to be scalar data objects.

13 INTRINSIC PROCEDURES

14 SCOPE, ASSOCIATION, AND DEFINITION

Version 103 1986 December Page D-25

APPENDIXE PERMUTED

11.3.3.7 Data

10.9.1.2

9.2.1.2 File

9.2.1.2.1 Sequential
9.2.1.2.2 Direct

Statement 9.6.1.7
Statement 9.3.4.3

5.1.2.2

5.2.3

Statement 9.6.1.17
Statement 9.3.4.8

8.1.4.3

12.41

147.1.3

5.1.27

6.2.6.1

51243

11.3.3.4 Global

6.2.2 The

/Arguments Associated with
14.8.1 Variablés That Are
6.2.7 Summary of Array Name
14.7.1.1

12.4.1 Actual

Function 13.3

Function 13.9.1

12.2.1 Characteristics of Dummy
Characteristics of Asterisk Dummy
on Entities Associated with Dummy
13.7.1 The Shape of Array
13.7.2 Mask

14.1.2.6 Keyword
Elemental Intrinsic Function
Alternate Return/ 12.4.1.3
Data Objects 12.4.1.1
Procedures 12.4.1.2
12.5.2.8 Restrictions on Dummy
8.25

2442

5.1.2.4.1 Explicit Shape
5.1.2.4.2 Assumed-Shape
5.1.2.4.3 Allocatable
5.1.2.4.4 Assumed-Size
13.7.1 The Shape of
General Form of the Masked
7.5.2 Masked

7.5.2.2 Interpretation of Masked
5.1.2.4

6.2.11

13.7.8

13.9.12

5.56.1.3 Array Names and
6.24.1

6.2.4

Functions 13.9.14

13.7.5

13.9.11

13.7

13.7.7

13.9.13

6.2.7 Summary of

Names 5.5.1.3

6.2.1.2 Declared and Effective
13.7.4

13.9.10

6.2.4 Array Elements and
6.2.4.3

11.3.3.4 Global Allocatable
6.2

6.2.1 Whole

Statement 8.2.4

8.2.4 ASSIGN and

Version 103

INDEX FOR HEADINGS

ACCESS = Specifier in the INQUIRE
ACCESS = Specifier in the OPEN ...
Accessibility Attributec.ccceeneeeeee.
Accessibility Statementsccccurnne
ACTION = Specifier in the INQUIRE
ACTION = Specifier in the OPEN
Active and Inactive DO Constructs ...
Actual Argument Listeeevreneennes

Alias Association ...
ALIAS Attribute ..
Alias Restrictions ..
Allocatable Array ...
Allocatable Arrays
ALLOCATE Statementccccceeccnrverennes

Always Definedcouuenee
Appearances
Argument Association ..
Argument Listoveiiinenee
Argument Presence Inquiry ...
Argument Presence Inquiry ...
Arguments ...ecccieresessirnnanns
Arguments 12.2.1.3ceveeee
Arguments 12.56.2.9 Restrictions .
Argumentsco.icevveciinnirreninie
Arguments ...
Argumentsoiieecinncenneinenes
Arguments and Results 13.2
Arguments Associated Withcceeeiceesirineennieneens
Arguments Associated with Dummy
Arguments Associated with Dummy
Arguments Not Present
Arithmetic IF Statement ..
LV £ .
Array ..
Array ..
Array ..
AITAY .ivieeeisersosanes

Array Arguments
Array Assignment 7.5.2.1 ...
Array Assignment*[em]WHERE .
Array Assignmentsicieene.
ARRAY Attributeooveinnnees
Array Constants and Variablescounee.
Array Construction FUNCtionscceeeen..
Array Construction Functions .
Array Element Names
Array Elements
Array Elements and Array Sections ...
Array Geometric Locationc.c.ccceeees
Array Inquiry Functions ...
Array Inquiry Functions ...
Array Intrinsic Functions
Array Manipulation Functions .
Array Manipulation Functions
Array Name Appearances
Array Names and Array Element .
Array Rangecererssmeesnees
Array Reduction FUNCHIONS .covvveriiniemasccnnuenns
Array Reduction FUnctionscccoummesarascnanne
Array Sectionscceceeee.
Array Sections ..,

ASSIGN and Assigned GO TO
Assigned GO TO Statement ..

1986 December

Page E-1

PERMUTED INDEX FOR HEADINGS

12.4.5 Elemental

7 EXPRESSIONS AND

75

General Form of the Masked Array
7.5.1.4 |Intrinsic

751

7.5.1.2 Intrinsic

7.5.1.3 Defined
Interpretation of Defined

14.6 Scope of the

7.5.2 Masked Array
Interpretation of Intrinsic
Interpretation of Masked Array
Indicators 12.4.1.3 Arguments
/Restrictions on Entities
Objects 12.4.1.1 Arguments
12.4.1.2 Arguments

12.4.1.4 Sequence

14.7

14.7.1 Name

14.7.1.1 Argument

14.7.1.2 Use

14.7.1.3 Alias

14.7.2 Storage

256

5.5.1.1 Equivalence

5.5.2.3 Common

14 SCOPE,

14.7.2.3

5.5 Storage

14.7.2.2

1.5.2

5.1.24.2

5.1.244

12.2.1.3 Characteristics of
5.1.2.1 Value
5.1.2.1.1 PARAMETER
5.1.2.1.2 DATA

5.1.2.2 Accessibility

5.1.2.3 INTENT

5.1.2.4 ARRAY

5.1.2.5 SAVE

5.1.2.6 OPTIONAL

5.1.2.7 ALIAS

5.1.2.8 RANGE

Statements 5.2

6.1.1 Type-Specifier

5.1.2

9.5.1

Events That Cause Variables to
Events That Cause Variables to
7.3.2

between Named Common and
Statement 2.6.1.15

Statement 9.3.4.6

10.9.1.5

12.3.2.1 Procedure Interface
2.2.4.4 Procedure Interface
5.5.2.2 Size of a Common
8.1.1.3 Execution of a

i1.4

5.5.2.1 Common

11.3.3.1 Identical Common
14.1.2.1 Common

Executable Constructs Containing
8.1.1 Rules Governing

8.1.1.1 Executable Constructs in

8.1.1.2 Control Flow in
10.6.6

9.4.1.6 Error

9.4.1.7 End of File

8.2

10.6.6 BN and

8.1.3

8.1.3.1 Form of the
8.1.3.2 Execution of a
8.1.3.3 Examples of

Version 103

ASSIGNMENt ..ocoiiiiiiai i srrenemnrrnerirens e
ASSIGNMENT
Assignment
Assignment 7.5.2.1 ...ccvverenens
Assignment Conformance Rules ..
Assignment Statement
Assignment Statement ...
Assignment Statement
Assignment Statements 7.5.1.6
Assignment Symbolccee.
Assignment*[em]WHERE ..
Assignments 7.5.1.5
Assignments 7.5.2.2
Associated with Alternate Return
Associated with Dummy Arguments
Associated with Dummy Data
Associated with Dummy Procedures
ASSOCIAtION .eeveviirirrerenmasinmreerane
Association ..
Association
Association ...
Association ..
Association ..
Association ..
Association ..
Association ..
ASSOCIAtION .vveriiirioimmmnaseransrrnnens
ASSOCIATION, AND DEFINITION ..
Association of Data Objects
Association of Data Objects
Association of Storage Sequences
Assumed Syntax Rulesc.......
Assumed-Shape Array ...
Assumed-Size Array
Asterisk Dummy Arguments ..
AttribUte ...vcvereiiiieiierer e
Attribute ...
Attribute ...
Attribute ...
Attribute ...
Attribute ...
Attribute ...
Attribute ...
Attribute ...
Attribute
Attribute Specificationccveeesmcrirarierarinnan
Attributes ...
Attributes
BACKSPACE Statement .
Become 14.8.5
Become Defined 14.8.4 ...
Binary Defined Operation
Blank Common /Differences
BLANK = Specifier in the INQUIRE.
BLANK= Specifier in the OPEN
Blanks ...ccceceiiciiinnennrnnrinaiena
Block ...
Block ...
Block
BIOCK «ecvuvivrnrennensainieneenanes

Block Data Program Units
Block Storage Sequencec.......
Blocks .uceiiiiecenneans

BlockSusee

BN and BZ Editing
Branchccceeene.
Branch
Branching ...
BZ Editing
CASE Construct .
CASE Construct .
CASE Construct
CASE CONSITUCES ...ecvvceernirsrureresssnansssnenseesasssessesanernns

1986 December

X3J3/58

Page E-2

PERMUTED INDEX FOR HEADINGS

14.8.5 Events That

14.8.4 Events That

5.1.15

13.4 Numeric, Mathematical,
Descriptor 10.7.1

10.5.3

10.1.2

13.4.3

13.9.4

-3.1.5

13.4.4

13.9.5

7.1.7.4 Evaluation of the
7.2.2

5.5.1.2 Equivalence of

3.1 Fortran

10.7

4.3.21

1.5.3 Syntax Conventions and
Arguments 12.2.1.3
Arguments 12.2.1

Objects 12.2.1.1
Procedures 12.2.1.2
Results 12.2.2

12.2

3.1.4 Special

SOURCE FORM 3
Definition 12.1.2 Procedure
12.1.1 Procedure

12.1 Procedure

9.35 The

9.3.5.1 STATUS= Specifier in the
3.1.6

10.6.3

3.3.1.1

between Named Common and Blank
Differences between Named
5.56.2,5 Restrictions on
5.5.2.3

6522 Size ofa

5.5.2.1

11.3.3.1 Identical

14.1.2.1

5.5.2

5.1.1.4

10.5.1.3

7.21.2

4313

14.1.2.4

6.1.2 Structure

8.2.3

4.1 The

2 FORTRAN TERMS AND
2.2 Program Unit

2.3 Execution

2.4 Data

9.4.2.1 Error and End-of-File
Intrinsic Operations 7.1.5
1.4

7.5.1.4 Intrinsic Assignment
9.3 File

9.3.2

2.43.3

10.7.1 Character

7.1.6.1

3.23

412

6.2.1.1 Array

812 IF

8.1.2.1 Form of the IF
8.1.2.2 Execution of an IF
8.1.3 CASE

8.1.3.1 Form of the CASE
8.1.3.2 Execution of a CASE
8.1.4.1 Farm of the DO
8.1.4.2 Range of a DO
8.1.4.4 Execution ¢f a DO

Version 103

Cause Variables to BECOMEcveeiivrercrvirrerissecssrnsenaes
Cause Varlables to Become Defined ...
CHARACTERooviiieerrarnnencvarerennerens
Character, and Derived-Type/ ...
Character Constant Edit
Character EJItingccvumvereerneres
Character Format Specification
Character Functionsccceeeves
Character Functions ..
Character Graphicsccoessrerees
CHARACTER Inquiry FUNCHON aeceuvicrinrremmmsmsonsrareereesaans
Character Inquiry FUNCHONS .ucuvceveeerernreecesiienconmnrennnnes
Character Intrinsic Operationccccinrcreccrsnvvmresnenes
Character Intrinsic Operationcccciencciecinsncinsrenesnanenns
Character Objects
Character Setcceueciecererenennnnnes
Character String Edit Descriptors .
Character TYPE wvvecoriiicieecmcmenacnnn
Characteristicsc...ueeuserenssrennens
Characteristics of Asterisk Dummy
Characteristics of Dummy
Characteristics of Dummy Datacc...eeuuureee
Characteristics of DUMMY ..c..eueieeernrermmnanmns
Characteristics of Function
Characteristics of Procedures ...
Characterscceevencmecnreeennees
CHARACTERS, LEXICAL TOKENS, Al
Classification by Means of ...cc.cccuvuee
Classification by Reference ...
Classificationsc...cceeeieeensine
CLOSE Statement ..
CLOSE Statement ..
Collating Sequence
Colon Editing ...
Commentary
Common 5.5.2.4 Differences
Common and Blank Common 5.5.2.4
Common and Equivalence ..
Common Association
Common BIocKu.eeeevrrnsaniens
Common Block Storage Sequence
Common BIOCKS ...cc.eeesieeeseernens
Common Blocks
COMMON Statement
COMPLEX
Complex Editing
Complex Exponentiation ..
Complex TYPe ..ovvrereeennes
Components ...
Components w..vensrrescanmsenen
Computed GO TO Statement .
Concept of Type
CONCEPTS ..
Concepts ..
Concepts ..
CoNncepls ===
Conditionseeirreecieernsirenesneenanernnin..
Conformability Rules for
Conformancece...
Conformance Rules ..
Connectionccccairnrrnmnnanns
Connection of a File to a Unit
Constant .c...evcrmsennsiinancnnnnn
Constant Edit Descriptor .
Constant Expression
Constantscusesecnnns
Constantscivasersrenes
Constants and Variables .
Construct ...eeeiiveenennes
Construct ..
CONSITUCT wvimeeieeicarinrei s secemaanaenns
CONSIIUCE vivvsrresnssarieremamnssnererenenennienens
Construct ..
Construct ..
Construct «.uiecviemenmeannenns
Construct «..oeverreesssinrenees -
CONSLIUCT wevveeremeeerirrrrreeeraramntaenassmmsnmnnaneenesserenenssennne

1986 December

X3J3/S8

Page E-3

PERMUTED INDEX FOR HEADINGS

13.7.6 Array

13.9.12 Array

Values 4.4.3

8.1.2.3 Examples of IF

8.1.3.3 Examples of CASE
8.1.4.3 Active and Inactive DO
8.1.4.5 Examples of DO

8.1 Executable

8.1.1.1 Executable

8.1 Executable Constructs

12527

3.3.1.3 Statement
8.3

10.4 Positioning by Format
8 EXECUTION
8.1.4 lteration
10.6

8.1.1.2

9.41

154 Text

1.5.3 Syntax
9.4.1.8 Nulls

9.4.1.9 Values

8.1.4.4.2 The Execution
81443

10.5.1.2.2 E and

11.3.3.2 Global

Models for Integer and Real
11.3.3.7

51212

2.4

10.5

243

2.4.3.1

SPECIFICATIONS 5
Characteristics of Dummy
Arguments Associated with Dummy
14.7.2.3 Association of

6.6 Storage Association of

6 USE OF

11.4 Biock

5.2.6

11.3.3.3

9.2.1.3.1 File Position Prior to
9.2.1.3.2 File Position After
9.4.3.1 Direction of

9.43.4

9.4.3.4.1 Unformatted
98.4.3.4.2 Formatted

94.2

Statement 9.4.3 Execution of a
9.4

241

13.4.5 Derived

Shape of a Primary 7.1.4.1
Shape of an Expression 7.1.4
Shape of the Result of/ 7.1.4.2
4 INTRINSIC AND DERIVED
4.3 Intrinsic

242

13.8.1

6.2.3 The

2.5.3

5.1 Type

5 DATA OBJECT

Range 6.2.1.2

14.8.1 Variables That Are Always
Variables That Are Initially
That Cause Variables to Become
7.51.3

7.5.1.6 Interpretation of
12.5.2 Procedures

7.1.7.7 Evaluation of a

7.3.1 Unary

7.3.2 Binary

7.1.3

7.3 Interpretation of

Version 103

Construction FUNCHONSccceriiiimieiemninicesissnrsrisresnenes
Construction Functions
Construction of Derived-Type
CONSITUCES 1vvrememsnssessrssnsnsrinns
Constructs .
Constructs .
Constructs «cevieiiiceniisenennens
Constructs Containing Blocks .
Constructs in BIOCKS .i.ecviserees
Containing Blacks
CONTAINS Statement
Continuationcusseereanss
CONTINUE Statement .
(721117 I,
CONTROL .
Control .occiieeireeiimiereeas
Control Edit Descriptors ..
Control Flow in Blocks
Control Information List
Conventionsceccvereeunneas
Conventions and Characteristics
CoUNt evrrrerrmmnsrssssrssnssnrnennen
Count .
(377 -
Cycle Interruption ..
D Editing «.vcveeeinnaen
Data ...ccoeeeun
Data 13.6.1
Data Abstraction
DATA Attribute ...
Data Concepts
Data Edit Descriptors
Data ENntity ..ccvceiiemsiieminiieiis e
DatajObjectrrmrnrrrrrrrrr T T
DATA OBJECT DECLARATIONS AND
Data Objects 12.2.1.1 .ccovvrevrmanrens
Data Objects 12.4.1.1
Data ObJOCtS .cvrerrrsacrsmreessnirmmaasinnsensonsans
Data Objects
DATA OBJECTS ...
Data Program Units ..
DATA Statement ...
Data Structures ..
Data Transfer
Data Transfer .
Data Transfer .
Data Transfer .
Data Transfer .
Data Transfercccceessmeemssesensens
Data Transfer Input/Output List
Data Transfer input/Output
Data Transfer Statementsccocereneceracencnns
Data TYPe .uieeeimrccnsiiimnmnasenineaimeninanicransnes
Data Type Inquiry Functions
Data Type, Type Parameters, and ..
Data Type, Type Parameters, and ..
Data Type, Type Parameters, and ..
DATA TYPES ..coceviiimreninnnaninnnens
Data Types

Data Value ...cocnrrerersnsnasene

Date and Time Subroutines
DEALLOCATE Statement ..
Declarationcccevermuiaeanens

Declaration Statementsccccieirinceciansanins
DECLARATIONS AND SPECIFICATIONS ...
Declared and Effective Arraycoccccvemennns
Defined

Defined Assignment Statement ..
Defined Assignment Statements .
Defined by Subprograms

Defined Operation
Defined Operation ...
Defined Operation ...
Defined Operations 5
Defined Operationscueceeeessssimesisinminnesiiseisnansassenne

1986 Deceimber

X3J3/S8

Page E-4

PERMUTED INDEX FOR HEADINGS

Classification by Means of
12.5 Procedure

12.5.1 Intrinsic Procedure
14 SCOPE, ASSOCIATION, AND
254

4.4.1 Derived-Type
Variables 14.8

Other Than Fortran 12.5.3
1.6.1 Nature of
Deprecated Features 1.6
Statement 9.6.1.18
Statement 9.3.4.9

3.26

1.6 Deleted, Obsolescent, and
Functions 13.4.5

4 INTRINSIC AND

. 2442

4.4.1.1 Type Parameters of
5.1.1.7

4.4

4.4.1.2 Equivalence of
441

Mathematical, Character, and
4.4.4

4.4.2

4.4.3 Construction of
10.7.1 Character Constant Edit
10.2.1 Edit

10.5 Data Edit

10.6 Control Edit

10.7 Character String Edit
2.5.1 Name and

and Blank Common 5.5.2.4
3.1.2

5.25

9.21.2.2

Statement 9.6.1.9

' '9.4.3.1

7.2.1.1 Integer

51.1.3

10.5.1.2 Real and

4.3.1.2 Real and

12.2.1 Characteristics of
Characteristics of Asterisk
on Entities Associated with
12.5.2.8 Restrictions on
12.2.1.1 Characteristics of
Arguments Associated with
12.1.23

12.2.1.2 Characteristics of
Arguments Associated with
10.5.1.2.2

10.7.1 Character Constant
10.2.1

10.5 Data

10.6 Control

10.7 Character String

10 INPUT/OUTPUT
10.5.1 Numeric

10.5.1.1 integer

Real and Double Precision
10.5.1.21 F

10.51.22 Eand D
10.5.1.2.3 EN

10.5.1.24 G

10.5.1.3 Complex

10.5.2 Logical

10.5.3 Character

10.6.1 Position

10.6.1.1 T, TL, and TR
10.6.1.2 X

10.6.2 Slash

10.6.3 Colon

10.6.4 S, SP, and SS
10.6.5 P

10.6.6 BN and BZ

10.72 H

Version 103

Definition 12.1.2 Procedure ...
Definition
Definition ...

DEFINITION ..ocvreieierieisreenimnssnssssnsesssannnmmecaeeenns
Definition
Definition
Definition and Undefinition of
Definition of Procedures by Means
Deleted Featuresceceverineees
Deleted, Obsolescent, and
DELIM = Specifier in the INQUIRE
DELIM = Specifier in the OPEN .
Delimiters ..oevieemersscesnsssoranens
Deprecated Features
Derived Data Type Inquiry
DERIVED DATA TYPES ...
Derived Typecccceerrrrennn
Derived Type ...
Derived TYPB iireeiremmresmsssensrserersmemnmenasnsnns
Derived TYPES ..uieescsrrnessarannacs
Derived Typescccceeses
Derived-Type Definition
Derived-Type Functions /Numeric, ..
Derived-Type Operations
Derived-Type Values
Derived-Type Values
Descriptor ..
Descriptars
Descriptors ...
Descriptors ...
Descriptors ...
Designatorcccverrerecsrmnesssiensasssarannacns
Differences between Named Common ...
Digts e

DIRECT = Specifier in the INQUIRE ...
Direction of Data Transferc.c..
DiVISION cevvensinnemrearirnnennans
DOUBLE PRECISION ...
Double Precision Editing ..
Double Precision Real Type

Dummy Argumentsceeeeees

Dummy Arguments 12.2.1.3

Dummy Arguments /ReStrictionscccccccrerrenrsmeesnsrensenne
Dummy Arguments NOt Presentccccccceeermeremnessmrerseens
Dummy Data Objects ..uccereessnssinn

Dummy Data Objects 12.4.1.1

Dummy Proceduresccccversrmrsrensesssnisanaanen

Dummy Procedurescceessieensrirmsmnmensmsmnnnen

Dummy Procedures 12.4.1.2

E and D Editing

Edit Descriptor
Edit Descriptors ..
Edit Descriptors ..
Edit Descriptors ..
Edit Descriptors ..
EDITINGccccnnns
Editing ...
Editingcooneenrens
Editing 10.5.1.2 .
Editing ...eeeeeeennees =
Editingrrrrrrrr T
Editing ...
Editing ...
Editing ceeeiiimmsessiisiermieiniimmininsrecanineseeninmasnnanses
[=e 1111 T T
Editing «veemsvscrerniimmnesmscasmnnmnmaernrnanas

Editing «oeeeerricinnrrmecssacnmmimsssmnnnana

Editing ...
Editing ...
Editing ...
Editing ...
Editing ...
Editing ...
Editing ... e
EdItiNG «iovevereciinrennmmcmmmenmmninmni s issnsenennseres s venannsan

1986 December

X3J3/S8

Page E-5

PERMUTED INDEX FOR HEADINGS

10.9.2.1 Namelist Output
6.2.1.2 Declared and
12521

5.5.1.3 Array Names and Array
12.4.5

12.4.3

Arguments and Results 13.2
6.2.4.1 Array

6.2.4 Array

10.5.1.2.3

9.4.1.7

2.3.3 The

9.5.2

9.4.2.1 Error and

14.1.1 Global

14.1.2 Local

14.1.3 Statement
Types and Values to Objects and
12.6.2.9 Restrictions on
2.4.3 Data

12.5.2.5

Restrictions on Common and
5.5.1.1

5.5.1.2

4.4.1.2

5.5.1

5.5.1.4 Restrictions on
9.4.2.1

9.4.1.6

9433

71.7.7

Operations 7.1.7.6
Operations 7.1.7.3
7174

71.7

Intrinsic Operations 7.1.7.5
Intrinsic Operation 7.1.7.4
Become 14.8.5

Become Defined 14.8.4
8.1.3.3

8.1.45

8.1.2.3

11.3.3

1.3.2

Blocks 8.1

8.1.1.1

11.1.2 Main Program
2.22

Statements 2.3.1
Statement 9.6.1.2
9.2.1.1 File

9.3.1 Unit

Methods 10.1

12.3.1.1

12.3.1 Implicit and
5.1.24.1

14.3 Scope of

7.2.1.2 Complex

71

7.1.1.2 Level1

7.1.1.3 Level-2

7.1.1.4 Level-3

7.1.1.5 Level-4

7.1.1.6 Level-5

7.1.6 Kinds of

7

11.3.3.6 Operator

9.2.1

14.4 Scope of
Procedures 12.1.2.2
2.2.41

12.3.2.2

10.5.1.2.1

10.6.5.1 Scale
Obsolescent, and Deprecated
1.6.1 Nature of Deleted

Version 103

Editing
Effective Array Rangeccccviemaninsinnmmnionim.
Effects of Intent on Subprograms .
Element Namesccccocveineeninae
Elemental Assignment eanean
Elemental Function Reference ..
Elemental Intrinsic Function
Elementsccccveirmceraninanniee
Elements and Array Sections .
EN Editing «eccveerunnncreuncormensons
End of File Branch .
END Statement ...
Endfile Record
ENDFILE Statement
End-of-File Conditions
Entitiesccciccneiinannn
Entities ..
Entities ..
Entities 4.2 R
Entities Associated with Dummy/
[4111 4 N
ENTRY Statement .
Equivalence 5.5.2.5
Equivalence Association
Equivalence of Character Objects
Equivalence of Derived Types .
EQUIVALENCE Statement
EQUIVALENCE Statements
Error and End-of-File Conditions
Error Branchuuee
Establishing a Format
Evaluation of a Defined Operation ..
Evaluation of Logical INtrinsic .iccovcviimaimsesimcsimesineaiisea
Evaluation of Numeric INtrinSic «...uveseeermeiiimmmenssrisiesenen
Evaluation of Operands

Evaluation of Operations
Evaluation of Relational ..
Evaluation of the Character
Events That Cause Variables to ..
Events That Cause Variables to ..
Examples of CASE Constructs
Examples of DO Constructs
Examples of IF Constructs
Examples of Modules
EXCIUSIONS ..vciveenirmimeiriniranirean
Executable Constructs Containing
Executable Constructs in Blocks ..
Executable Partc.cccoiiiiiciriiiniiiniieseeniin e,
Executable Programc..cccssereresssimmnoninesssessses,
Executable /Nonexecutable
EXIST= Specifier in the INQUIRE ..
Existenceccccciiciiiiiiieenes
EXIiStence ...cvveirencseeenonenans
Explicit Format Specification .
Explicit Interface
Explicit Interfaces
Explicit Shape Array ...
Exponent Letters
Exponentiation ..
Expressions .
Expressions .
Expressions .
EXPressionscicecicieeenionniimnniiniimeranansnso e
EXPrBSSiONS .ouireieieusrmsesssrmssrrsirimsnresiarsnarssasesssssnssesnsnns
Expressions ...
EXPressions ...uuieseveresssrsscsrsensssrennnes
EXPRESSIONS AND ASSIGNMENT
EXtensionscccccoieesarceesrneniesiinnnin
External Files
External Input/Output Units
External, Internal, and Module ...
External Procedurec....cc...

Features 1.6 Deleted, .
FOAUIOS .incirerisaisisnsinnessonsmmiinimnnniiserenininansismssnnaanss

1986 December

X3J3/S8

Page E-6

PERMUTED INDEX FOR HEADINGS

1.6.2 Nature of Obsolescent
10.2.2

9.21.2

9.4.1.7 End of

Transfer 9.2.1.3.1

9.5

9.2.2.1 Internal

9.2.2.2 Internal

Statement 9.6.1.1
Statement 9.3.4.1

9.3.2 Connection of a

9.2

9.2.1 External

9.2.2 Internal

3.3.2

Functions 13.6.3

Functions 13.9.8

8.1.1.2 Control

LEXICAL TOKENS, AND SOURCE
3.3 Source

3.3.1 Free Source

3.3.2 Fixed Source

7.5.1.1 General

10.2

714

7.1.1.7 General

8.1.3.1

- 8.1.4.1

8.1.2.1

Assignment 7.5.2.1 General
Statement 9.6.1.10
Statement 9.3.4.4

Between Input/Output List and
9.4.3.3 Establishing a

10.4 Positioning by

10.2 Form of a

10.1.2 Character

10.1 Explicit

9.4.1.1

10.1.1

9.4.34.2

8.11

9.4.4 Printing of

INQUIRE Statement 9.6.1.11
N 10.8 List-Directed
10.9 Namelist

9.4.3.5 List-Directed
9.4.3.6 Namelist

of Procedures by Means Other Than
3.4

2

,3.31

12.5.4 Statement

13.3 Argument Presence Inquiry
13.4.4 CHARACTER Inquiry
13.5 Transfer

13.9.1 Argument Presence Inquiry
13.9.7 Transfer

13.2 Elemental Intrinsic
12.4.2

12.4.3 Elemental

Items 9.7 Restrictions on
12.2.2 Characteristics of
14.1.2.2

12.5.2.2

12.1.2.4 Statement

13.1 Intrinsic

Table of Specific Intrinsic
Character, and Derived-Type
13.4.1 Numeric

13.4.2 Mathematical

13.4.3 Character

Version 103

FRAUIBS ...ccviviirinncisisrnessseirannisarsnsessansnianssnesnsonsnnnnres
Fields
File Access ..
File Branch
File Connection ...
File Existence ..
Fite Inquiry
File POSItIONcciemmeneireemennnermnennnns N
File Position After Data Transferc.courvisiinescessceneene
File Position Prior to Data
File Positioning Statements ..
File Propertiesccsiieseesassimasanirmsnansssaassnnenaens 0
File Restrictionsccccecorseremnnne
FILE= Specifier in the INQUIRE
FILE= Specifier in the OPEN ...
File to a Unit
Files ..veies
Files ...
Filos .ivevinainsaan

Fixed Source Formccec.us
Floating Point Manipulation
Floating-point Manipulation .

Fiow in BIOCKS ..c.icsvierrmniiivirmmnrmncsiermacunananinn
FORM 3 CHARACTERS, ..cccorercnierecmmnemsosnnennan
FOrmM wenivceiiraiinonirsacsennannes

Form ..
Form ..
FOrM ciiiierenencnrensmeniommnenssan
Form of a Format Item List .
Form of an Expression
Form of an Expression
Form of the CASE Construct ..
Form of the DO Construct ..
Form of the IF CONStrUCt ...coevrreeencriirimmmrmnssineercrnnnasenes
Form of the Masked Arraycccevrreminicrnesnnsnnensnnnnnn
FORM= Specifier in the INQUIRE .
FORM = Specifier in the OPEN
Format 10.3 INteractionccccecermeasnirnessrnsennsrnnnecsesananes
[0 T .1 | Y
Format Control ...
Format Item List

Format Specification ...c....eeeeiiinenanees
Format Specification Methods
Format Specifier ...cc.oescererens
FORMAT Statement
Formaited Data Transfer .
Formatted Record
Formatted Records ...
FORMATTED = Specifier in thecccciimeersiriacicinercncern.
FOrMatting wecerersemammnrissenssneerneenneerscssanerarinmninansnmannnnns
Formatting ...
Formatting ...
Formatting «.cocviemiriciieniiiciiniiire e
Fortran 12.5.3 Definitioncccvviiieiicmieneciannne
Fortran Character Setccouneennnes
FORTRAN TERMS AND CONCEPTS .
Free Source FOrmcicevecmseaemnesiennane
FUNEtioncovevveiimeiiniimei e e
Function ...
Function ...
Function ...
Function ...
FUNCtion ..ce.eveiieeersanimsanienrenanes
Function Arguments and Results .
Function Reference .
Function Referencec.cueu
Function References and List
Function Results
Function Results
Function Subprogram
Functionscersesennns
Functions
Functions 13.11 .coceviiiiecinncienanes
Functions /Numeric, Mathematical,
Functions
Functions

FUNCUONS 1euvurierennisenmnresiermmssinressssensssnrasnssesnennannseenaens

1986 December

X3J3/s8

Page E-7

PERMUTED INDEX FOR HEADINGS

13.4.5 Derived Data Type Inquiry
Numeric Manipulation and Inquiry
13.6.2 Numeric Inquiry

Floating Point Manipulation

13.7 Array Intrinsic

Vector and Matrix Multiplication
13.7.4 Array Reduction

13.7.5 Array Inquiry

13.7.6 Array Construction
13.7.7 Array Manipulation

13.9 Tables of Generic Intrinsic
13.9.10 Array Reduction
13.9.11 Array Inquiry

13.9.12 Array Construction
13.9.13 Array Manipulation
13.9.14 Array Geometric Location
13.9.2 Numeric

13.9.3 Mathematical

13.9.4 Character

13.9.5 Character Inquiry

13.9.6 Numeric Inquiry
Floating-point Manipulation
Vector and Matrix Multiply

25

10.5.1.2.4

7511

711.7

Assignment 7.5.2.1

13.9 Tables of

13.9.14 Array

11.3.34

11.3.3.2

14.1.1

8.1.1 Rules

3.1.5 Character

10.9.1.3 Namelist

10.9.1.1 Namelist

10.7.2

8.1.4.3 Active and

1.3.1

Associated with Alternate Return
9.4.1 Control

14.8.2 Variables That Are

14.8.3 Variables That Are
8.1.4.4.1 Loop

10.8.1 List-Directed

10.8.1 Namelist

10.9.1.2 Acceptable Namelist

10

9.4.2 Data Transfer

10.3 Interaction Between
Execution of a Data Transfer

9

9.8 Restriction on

9.4.15

14.4 Scope of External

9.6.1.1 FILE= Specifier in the
9.6.1.10 FORM = Specifier in the
FORMATTED = Specifier in the
UNFORMATTED = Specifier in the
9.6.1.13 RECL= Specifier in the
NEXTREC = Specifier in the
9.6.1.15 BLANK= Specifier in the
POSITION = Specifier in the
ACTION = Specifier in the
9.6.1.18 DELIM= Specifier in the
9.6.1.19 PAD= Specifier in the
9.6.1.2 EXIST= Specifier in the
IOLENGTH = Specifier in the

Version 103

FUnctions ...cccacvieerinescseconseensn P
Functions 13.6 ..
Functions
Functions 13.6.3
Functionsceeeees
Functions 13.7.3
Functions
Functions
Functions
Functions
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions «.cuveeecises
Functions 13.9.8
Functions 13.9.9

Fundamental Terms seessaees S
G Editing
General Formc.ceeueeee

General Form of an Expression
General Form of the Masked Arrayccceceeneees
Generic Intrinsic Functionscocoemmninnaniens
Geometric Location Functions
Global Aliocatable Arrays
Global Dataccueeennenn
Global Entities ...
Governing Blocks
Graphics ..c.oeeeiineennn.
Group Object List Items .
Group Object Names ..
H Editing wueeeeeirennenens
High Level Syntax
Identical Common Blocks ..
IDENTIFY Statement
Identifying a Unit ...c.vcivevrmnnnnnn
Implicit and Expliclt Interfaces
Implicit Interface
Implicit Interface Specification ..
IMPLICIT Statement
Inactive DO Constructs ..
INCIUSIONS ...vceviamiiiecirneearsaaesaas
Indicators 12.4.1.3 Arguments
Information Listc.ccceiimnrenn
Initially Defined
Initially Undefined .
initiation
Input
Input

Input Valuesc.cvereeennnans
INPUT/OQUTPUT EDITING . .
Input/Output List .ciuvessasenanssnies D TT YL LT AT
Input/Output List and FOrmatcccecovncrmmeremeermansrecan
Input/Qutput Statement 9.4.3 ...
INPUT/OUTPUT STATEMENTS .
Input/Output Statements
Input/Output Status
Input/Output Units ...
INQUIRE Statement ...
INQUIRE Statement ...
INQUIRE Statement
INQUIRE Statement
INQUIRE Statementccces.
iINQUIRE Statement
INQUIRE Statementc.eueee
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement ...

INQUIRE Statement
INQUIRE Statement 9.6.1.20 ...cccciscirsresereesinmmmimnnnnanes

1986 December

X3J3/58

Page E-8

PERMUTED INDEX FOR HEADINGS

9.6.1.3 OPENED= Specitier in the
9.6.1.4 NUMBER= Specifier in the
9.6.1.5 NAMED= Spacifier in the
9.6.1.6 NAME= Specifier in the
9.6.1.7 ACCESS= Speciffier in the
SEQUENTIAL = Specifier in the
9.6.1.9 DIRECT= Specifier in the
9.6 File

13.3 Argument Presence
13.4.4 CHARACTER

13.9.1 Argument Presence
13.4.5 Derived Data Type

13.6 Numeric Manipulation and
13.6.2 Numeric

13.7.5 Array

13.9.11 Array

13.8.5 Character

13.9.6 Numeric

9.6.1

9.6.1.21 Restrictions on
12.5.2.4

5.1.1.1

13.6.1 Modeils for

7.21.1

10.5.1.1

43.1.1

7.1.7.2

5.1.23

12.5.2.1 Effects of

5.2.1

List and Format 10.3

12.3 Procedure

12.3.1.1 Explicit

12.3.1.2 Implicit

Specification of the Procedure
12.3.2.1 Procedure

2.2.4.4 Procedure

12.3.2.4 Implicit

12.3.1 Implicit and Explicit
i2.1.2.2 External,

9.2.2.1

9222

922

2243

11.1.3 Main Program
Assignment Statements 7.5.1.6
Operations 7.3

Assignments 7.5.1.5
Operations 7.2

Assignments 7.5.2.2

B.1.4.4.3 Cycle

257

4

Rules 7.5.1.4

7.5.1.2

7.5.1.5 Interpretation of

4.3

Results 13.2 Elemental

13.1

13.11 Table of Specific

13.7 Array

13.9 Tables of Generic
Evaluation of the Character
7.2.2 Character

7.1.2

7.1.5 Conformability Rules for
7.1.7.3 Evaluation of Numeric
7.1.7.5 Evaluation of Relational
7.1.7.6 Evaluation of Logical
7.2 Interpretation of

7.21 Numeric

7.2.3 Relational

7.2.4 Logical

12.5.1

12.1.2.1

13

13.12 Specifications of the

Version 103

INQUIRE Statement SwesassaTee D
INQUIRE Statement
INQUIRE Statement
INQUIRE Staternent ..
INQUIRE Statement
INQUIRE Statement 9.6.1.8 ..
INQUIRE Statement .. -
INQUIRY oiciiiiinissisisssiemnssassnensenmsnsnntesneecseersesssasasmnrnnns
Inquiry FUNCHONc.ossvnssusisnssensnssnmeennes
INQuUiry FUNCHON .ivviveiciisscessasssnnsemerenenermnensnmasseessanssrans
INQUIiry FUNCHION ivveiiiciisresisacsmnsenanrenecsineesmersmnassssnsanes
InQUiry FUNCHIONS 1rereeeeessianscrrrmmmmmaesensssssniresressssnnnannas
Inquiry Functions
Inquiry Functions
Inquiry Functions
INQUIrY FUNCHONS .uuveuneesnmrisnaiimmmmmneeerersersssssesanannssnsennes
INQUIry FUNCHONS ...viiccsnesiammmmmmmnncncimmiiiinarivnnssnnsensisenne
Inquiry Functions
Inquiry Specifiers ...
Inquiry Specifiersueee -
Instances of @ SUDPrOGramiciceeererecssicrisesersmsersnerares
INTEGER ...cevvvncirenrernnees
Integer and Real Data
Integer Division
Integer Editingc.coveviieciiiscnnnmcemmrncennissssorensssnssmmesnnes
[Lg) o 1= G I o OO
Integrity of Parenthesescciveciereeecereriaiirerersacsnimnnnnes
INTENT AHIDULE ..oeoervrenassisssemmrenammennsnnsnscesneernnesrassnnans
Intent on SubpProgramscoceccsemmsretriinisiinsessessnaensese
INTENT Statementc.ovemmirememmmmeeeneessinsmensnnasesaes
Interaction Between Input/Qutput .
LG5 - T S
Interface ...
Interface
Interface 12.3.2
Interface Block
Interface Block
Interface Specification
1T 1o T
Internal, and Module Proceduresccceeermmssmanssnenns
Internal File Propertiesccuisiecrsrcccsmtnmmenvesrrsnersesnaes
Internal File ReStrictionscivevicvecissecnnnceneierierersersormnes
Internal Files ..ciuiiviiiiiieiesmaniimmenmininir e vcrsvasereeneses
Internal Procedurecccsrmeeessecssnsennan
Internal Proceduresceeeccrsissssmsessanceniseeereinessssenns
Interpretation of Definedccccvenmemmrniiniiiniscansenseeees
Interpretation of Definedieceecireiecrcassrenirrmveerneesnnnans
Interpretation of INFINSIC «iuvcireernmcnrnracsrserermnrrenrsenrerannens
Interpretation of INtrNSIC ..uvvivesirisiinnssimrenineiiinnciincensnenns
Interpretation of Masked Arraycccosmeimimnrreecennerenneees
L1 (= TV« T U
LT =
INTRINSIC AND DERIVED DATA TYPESccorererrennens
Intrinsic Assignment Conformancecuueeveeresireceserenes
Intrinsic Assignment Statementcciviiinierereereecernenes
Intrinsic Assignmentsccceveens
Intrinsic Data Typesco.w..
Intrinsic Function Arguments and ..ccueeceeeeriererrermseennesen
INNSIC FUNCHONS wecireeisarmmnmisicisisnsssnnnscneceniennsverasnnens
INtANSIC FUNCHONS .eieveiiinermnisimeisscasssncnmsninnnnessrensensnesns
Intrinsic Functions .
Intrinsic Functions
Intrinsic Operation 7.1.7.4
Intrinsic Operationc.c.evens
Intringic Operations .. .
Intrinsic OpPerationseceeerrrmmesnimnsnninrrneeeeeensnens
Intrinsic OPerationscicceeeeerrmmrenmessirssessussernssassesees
Intrinsic OPerationscccccvirineinivssnsssnnnnmessasssssnnens
Intrinsic Operations ..
Intrinsic Operations ..
Intrinsic Operations ..
Intrinsic Operations ..
Intrinsic Operations
Intrinsic Procedure Definition ...c.iicecicesescernrieeivincrnnnenee
Intrinsic Procedurescceeermissiimsssssenesenesesvassanasnenes
INTRINSIC PROCEDUREScooccereeiemmremmeinnsccnneeenens
INtrINSIC Procedurescciceureeecemsesensscerarinesseensmvasrerans

1986 December

X3J3/S8

Page E-9

PERMUTED INDEX FOR HEADINGS

12.3.2.3

13.10 Table of

13.8

2.4.1.1

1

INQUIRE Statement 9.6.1.20
10.2 Form of a Format
Namelist Group Object List
on Function References and List
8.1.4

2.5.2

14.1.2.6

3.2.1

7.1.6

14.2 Scope of

3.2.5 Statement

8.2.1 Statement

14.3 Scope of Exponent
3.1.1

2.1 High

7112

7.1.1.3

7.1.1.4

7115

71.1.6

3 CHARACTERS,
11.3.3.5 Procedure

10.2 Form of a Format item
12.4.1 Actual Argument
9.4.1 Control Information
9.4.2 Data Transfer Input/Output
Interaction Between Input/Output
10.9.1.3 Namelist Group Object
on Function References and
10.8

9435

10.8.1

10.8.2

14.1.2

13.9.14 Array Geometric
5.1.1.6

10.5.2

7.1.7.6 Evaluation of

724

43.2.2

8.1.4.4.1

8.14.44

3.2

1.1

223

11.1.2

11.1.3

11.14

Functions 13.6 Numeric
13.6.3 Floating Point

13.7.7 Array

13.9.13 Array

13.9.8 Floating-point

13.7.2

7.5.2.1 General Form of the
7.5.2

7.5.2.2 Interpretation of
Derived-Type/ 13.4 Numeric,
13.4.2

13.9.3

13.7.3 Vector and

13.9.9 Vector and
Procedure Classification by
Definition of Procedures by
Explicit Format Specification
13.6.1

2.2.5

2242

12.1.2.2 External, internal, and
11.3.1

11.3

11.3.3 Examples of

Version 103

INTRINSIC Statement
Intrinsic SUbroUtingS ..c..cucvereimeciimesireninacirarinnnienann,
Intrinsic Subroutines
Intrinsic Type ..c.....
INTRODUCTION ..
IOLENGTH = Specifier in the ...
Item List .oveeiieiiiinniecniinaens .
ftems 10.9.1.3 .vieeericnne
ltems 9.7 Restrictions ...
lteration Contral
Keywordcccormencneennn
Keyword Arguments ...
Keywords ...ccocusiienneess
Kinds of Expressions ..
[I=107-1 -
Labels ..
Labels ..
Letters ..
Letters

Level Syntaxccusee
Level-1 Expressions ...
Level-2 Expressions ...
Level-3 Expressions ...
Level-4 Expressions ...
Level-5 Expressions ...
LEXICAL TOKENS, AND SOURCE FORM
Librarios .ccoivecerrecireiermniinincennneinan
List ...e..

List ...
List ...
leist .semeevrmn, v
List and Format 10.3
List tems ...ccoveerenmnensnnes
List ltems 9.7 Restrictions
List-Directed Formatting
List-Directed FOrmattingccocecrrsmmmsssismienerensarnneinencaas
List-Directed Input ...
List-Directed Output .
Local Entities ..c.ueers
Location Functions ..
LOGICAL ...covevvrnrnes
Logical Editing
Logical Intrinsic Operations ..
Logical Intrinsic Operations ..
Logical Typeccocemeuieenns
Loop Initiation ...
Loop Termination .
Low-Level Syntax .
Main Program ...
Main Programescecesimecsnennnas .
Main Program Executable Partcccceeiiieiiiicncrecennnenne
Main Program Internal Proceduresciccovericrmsierenseennnns
Main Program Specifications

Manipulation and Inquiry
Manipulation FUnctions ...cccucceseesescsiasisesnnnas
Manipulation FUNctionsc.c...ccrsvrreeersrennnnn
Manipulation Functions
Manipulation Functions .
Mask Arguments
Masked Array Assignmentcccccoecerees
Masked Array Assignment*[em]WHERE .
Masked Array Assignmentsciniieens
Mathematical, Character, and .
Mathematical Functions
Mathematicai Functions
Matrix Multiplication Functions
Matrix Muitiply Functions
Means of Definition 12.1.2 -
Means Other Than Fortran 12.5.3 ..cccocviiinisienenemecrennnns
Methods 10.1 ..cceiiieciiierinnecmnnnnnes
Models for Integer and Real Data .
Module .ccovreniiinrameni e
Module Procedure ..
Module Procedures ...
Module Reference
Modules

1986 December

X3J3/S8

Page E-10

PERMUTED INDEX FOR HEADINGS

1.7

13.7.3 Vector and Matrix

13.9.9 Vector and Matrix

251

6.2.7 Summary of Array

14.7.1

Statement 9.6.1.6

5.5.2.4 Differences between
Statement 9.6.1.5

109

9.4.36

10.9.1.3

10.9.1.1

10.9.1

10.9.1.2 Acceptable

10.9.2

10.9.2.1

10.9.2.2

9.4.1.2

54

10.8.1.1 Namelist Group Object
12.5.5 Overloading

14.1 Scope of

3.2.2

Array Names and Array Element
5.5.1.3 Array

1.6.1

1.6.2

Statement 9.6.1.14

432

6.2.4.4 Triplet

1.5

10.8.1.1

10.9.1.4

9.4.1.8

9.4.1.3 Record

Statement 9.6.1.4

13.8.2 Random

10.5.1

13.4.1

13.9.2

13.6.2

13.9.6

7.1.7.3 Evaluation of

7.21

Functions 13.6

and Derived-Type Functions 13.4
4.31

2.4.3.1 Data

SPECIFICATIONS 5 DATA
10.9.1.3 Namelist Group
10.9.1.1 Namelist Group
Characteristics of Dummy Data
Associated with Dummy Data
14.7.2.3 Association of Data

5.5 Storage Association of Data
5.5.1.2 Equivalence of Character
6 USE OF DATA

/of Types and Values to
Features 1.6 Deleted,

1.6.2 Nature of

) 9.3.4 The

9.3.4.1 FILE= Specifier in the
9.34.10 PAD= Specifier in the
9.3.4.2 STATUS= Spacifier in the
9.3.4.3 ACCESS= Specifier in the
9.3.4.4 FORM= Specifier in the
9.3.4.5 RECL= Specifier in the
9.3.4.6 BLANK= Specifier in the
POSITION = Specifier in the
9.3.4.8 ACTION= Specifier in the
9.3.49 DELIM= Specifier in the
Statement 9.6.1.3

7.1.7.1 Evaluation of

and Shape of the Result of an
of the Character Intrinsic

7.1.7.7 Evaluation of a Defined

Version 103

MOGUIES «vererersareraassansnnnsirnesanaiinsensasnsnnesssnsnnernesensasans
Multiplication Functions ...
Multiply Functions
Name and Designator ..
Name Appearancesc..c.c..
Name Associationcc.ceeiseeenes
NAME = Specifier in the INQUIRE ..
Named Common and Blank Common
NAMED = Specifier in the INQUIRE ..
Namelist Formattingc..ccceeeee
Namelist Formattingcu
Namelist Group Object List ltems
Namelist Group Object Names ..
Namelist Input ..c.cocovervemenes
Namelist Input Values ..
Namelist QUIPUL evceuriiinieeseniimmiiineinemmrmnimernscsrninnennnes
Namelist Output EdItingc.ccoersincnrimimsicmrneernrenaensnnnens
Namelist Output Records
Namelist Specifier
NAMELIST Statementccocceirmrenseanienas
Names ...ccoovci i
Names ..
Names ..
Names ..
Names 5.5.1.3 ...ccciimmiesnssmsenannne
Names and Array Element Names
Nature of Deleted Features
Nature of Obsolescent Features
NEXTREC = Specifier in the INQUIRE ..
Nonnumeric TYPes ...c.cccccrvrrermnrrranans
Notationcccoimeiimiieiireinaans
Notation Used in This Standard ...
Null Values ...cc.cecoivevieiimneiinesns
Null Values
Nulls Count ..c.oivereniniireisenninesimneesnens
NUMDEP riveeiisinnrennisranssenssassmsrcennessine
NUMBER= Specifier in the INQUIRE
Numberscccoiciiireieciennisnasnnneas
Numeric Editing .
Numeric Functions
Numeric Functionscc..
Numeric Inquiry Functions
Numeric Inquiry Functions
Numeric Intrinsic Operations
Numeric Intrinsic Operations
Numeric Manipulation and Inquiry ...
Numeric, Mathematical, Character, .
Numeric TYPeS ...c.cumsrsesirnssanaarss
(8] 1= L
OBJECT DECLARATIONS ANDcooeeeneee
Object List femSs ...ucviivecsmeeanarcinnininnininnn.
Object Names
Objects 12.2.1.1 ..veeverreee
QObjects 12.4.1.1 Arguments ..
Objects
Obijects .
Obijects
OBJECTS ..oerveerinensnnn
Objects and Entitiesc.c...
Obsolescent, and Deprecated
Obsolescent Features
QOPEN Statement
OPEN Statement
OPEN Statement
OPEN Statementc.c.ocosviiinecssseiesescennnnnnne.
OPEN Statementccccorecirmmimrmsiemnoncannnes
OPEN Statement
OPEN Statement
OPEN Statement
OPEN Statement 9.3.4.7 .
OPEN Statement
OPEN Statementc.ceceensereensensonanies
OPENED = Specifier in the INQUIRE ...
Operandscccccessrrencssrnnmensnrnsmsennnsin
Operation /Type, Type Parametars, .
Operation 7.1.7.4 Evaluationcocecoiimmiennseenceerensarirnnes
Operation ... e e e

1986 December

X3J3/S8

Page E-11

PERMUTED INDEX FOR HEADINGS

7.2.2 Character Intrinsic
7.3.1 Unary Defined

7.3.2 Binary Defined

413

4.4.4 Derived-Type

7.1.2 Intrinsic

7.1.3 Defined

Rules for Intrinsic

7.1.7 Evaluation of
Evaluation of Numeric Intrinsic
of Relational Intrinsic
Evaluation of Logical Intrinsic
7.2 Interpretation of Intrinsic
7.2.1 Numeric Intrinsic
7.2.3 Relational Intrinsic
7.2.4 Logical Intrinsic

7.3 Interpretation of Defined
258

11.3.3.6

14.5 Scope of

3.24

7.4 Precedence of

5.1.26

5.2.2

2.3.2 Statement

6.2.4.2 Subscript

10.8.2 List-Directed

10.9.2 Namelist

10.9.2.1 Namelist

10.9.2.2 Namelist

14.1.2.3 Procedure

12.5.5

10.6.5

Statement 9.6.1.19
Statement 9.3.4.10

5.1.2.1.1

527

14.1.2.5 Type

Primary 7.1.4.1 Data Type, Type
7.1.4 Data Type, Type
Result/ 7.1.4.2 Data Type, Type
4411 Type

7.1.7.2 Integrity of

11.1.2 Main Program Executable
8.5

13.6.3 Floating

9.2.1.3 File

9.2.1.3.2 File

10.6.1

9.2.1.3.1 File

INQUIRE Statement 9.6.1.16
Statement 9.3.4.7

5.1.1.3 DOUBLE

10.5.1.2 Real and Double
4.3.1.2 Real and Double
9.3.3

13.3 Argument

13.9.1 Argument

on Dummy Arguments Not

71.1.1

Type Parameters, and Shape of a
94.4

9.2.1.3.1 File Position

2.2.4

2.2.41 External

2.24.2 Module

2.2.4.3 Internal
of Definition 12.1.2

Reference 12.1.1
1241

12.5

12.5.1 Intrinsic
12.3

12.3.2 Specification of the

Version 103

-Operations 7.1.7.5 Evaluation .

(074 T=T £ o NS
Operation
Operation
Operations ..
Operations
Operations
Operations ...ciecirerrcemerirenannes
Operations 7.1.5 Conformability .
Operationseecerrmseseranrarens
Operations 7.1.7.3 ...cceeeeenn

Operations 7.1.7.6 .uecireeeens
Operations
Operations
Operations
Operations
Operations
Operator
Operator Extensions
Operators ..uuesese.
Operators
Operators
OPTIONAL Attribute ...
OPTIONAL Statement .
Order
Order Value
Output
Output
Output EdItingccoicrmeammmmmmnssmsessmssarmmensmsesinessinannn.
Qutput Records ..
Overloading
Overloading Namescccceeeneee
P Editing .covrerirmeeennasinaninsniessiicnaces
PAD= Specifier in the INQUIRE .
PAD = Specifier in the OPEN ..
PARAMETER Attribute
PARAMETER Statement ...
Parametersc.coessmsseennes
Parameters, and Shape of a .
Parameters, and Shape of an/ .
Parameters, and Shape of the .
Parameters of Derived Type .
Parentheses ..c.cuueiesieeienees
Partcccccvenirrnnninnne
PAUSE Statementcoeu.
Point Manipulation Functions
POSItION wivveecseninniiirniiiaransenesesemscirinneessennannnes

Position EAiting ..e..osiceraninnnn
Pasition Prior to Data Transfer .
POSITION = Specifier in the
POSITION= Specifier in the OPE
Positioning by Format Control
Positioning Statemenits
Precedence of Operators ..
PRECISIONcovviininnaen
Precision Editing
Precision Real Type ...
Preconnectiona...
Presence Inquiry Function .
Presence Inguiry Function
Present 12.5.2.8 Restrictions
Primary ..c.covvermmecinnmnenncinneninn.
Primary 7.1.4.1 Data Type,
Printing of Formatted Records
Prior to Data Transfer
Procedurecc.....
Procedure ..
Procedure ..
Procedure ...eceeerssesessaissnessemennncsnnnns
Procedure Classification by Means ...
Procedure Classification by ...
Procedure Classifications ..
Procedure Definition ...
Procedure Definition ...
Pracedure Interface
Procedure Interface

[FETTTTTI

1986 December

X3J3/58

Page E-12

PERMUTED INDEX FOR HEADINGS

12.3.2.1

2.2.4.4

11.3.3.5

14.1.23

124

11.1.3 Main Program Internal
11.2

12

12.1.2.1 Intrinsic

External, Internal, and Module
12.1.2.3 Dummy

12.2 Characteristics of
Characteristics of Dummy
Arguments Associated with Dummy
13 INTRINSIC
Specifications of the Intrinsic
Fortran 12.5.3 Definition of
12.5.2

1.2

9.4.1.4

9.2.2.1 Internal File

11

13.8.2

Declared and Effective Array
5.1.2.8

8.1.4.2

5.2.8

6.2.5 The SET

5.11.2

105.1.2

Type 4.3.1.2

13.6.1 Models for Integer and
Real and Double Precision
Statement 9.6.1.13
Statement 9.3.4.5

9.1.1 Formatted

9.1.2 Unformatted

9.1.3 Endfile

¢ 9.4.1.3

10.9.2.2 Namslist Qutput

9.1

9.4.4 Printing of Formatted
13.7.4 Array

13.9.10 Array

11.3.1 Module

Procedure Classification by
12.4 Procedure

12.4.2 Function

12.4.3 Elemental Function
12.4.4 Subroutine

255

9.7 Restrictions on Function
7.1.7.5 Evaluation of

7.23

to Objects and Entities 4.2
Statements 9.8

6.2.6.1 Alias

9.2.2.2 Internal File
Equivglence 5.5.2.5

Not Present 12.5.2.8
Associated with Dummy/ 12.5.2.9
Statements 5.5.1.4
References and List ltems 9.7
Specifiers 9.6.1.21

Type Parameters, and Shape of the
Characteristics of Function
Intrinsic Function Arguments and
14.1.2.2 Function

Associated with Alternate
12.5.2.6

9.5.3

1.5.1 Syntax

1.5.2 Assumed Syntax
Intrinsic Assignment Conformance
7.1.5 Conformability

8.1.1

10.6.4

Version 103

Procedure Interface Block
Procedure Interface Block ...

Procedure Libraries
Procedure Overloadingcc.varsvcsseienimmaneen.n,
Procedure Referencec.cccuiimavcrmainninnecirmnerseneene
Procedurescaueee

Procedures ..
PROCEDURES ...
Procedurescc.c.oue:
Procedures 12.1.2.2
Proceduresc..oeane
Procedurescuieee
Procedures 12.2.1.2 .
Procedures 12.4.1.2 . -
PROCEDURES ..ocuviirinamisecsirmsmecsmmmmasssssnaesneesmassrnenanns
Procedures 13.12cceceessmimsensimimmmnssnsseseisssanssnnenene
Procedures by Means Other Than ...
Procedures Defined by Subprograms ..

PrOCESSON ..vveriociinanteramssarasnenisessnnmosianssnncnsnasrasssnencsnnss
Prompt Specifier
Propertiesccciiiccneninninn e
PUrposeeeeene

Random Numbers ..

Range 6.21.2
RANGE Attribute
Range of a DO Construct ...
RANGE Statement .
RANGE Statement

Real and Double Precision Editing
Real and Double Precision Real
Real Data erestrnsenaanain
Real Type 4.3.1.2 ..cccoiimeniennnane
RECL= Specifier in the INQUIRE ..
RECL= Specifier in the OPEN ...
Recordcciosanimminireninnan
Record ..
Recordeeees
Record Number .
Recordsc.eauses
Records ...
Recordsocivvennnae
Reduction Functions .
Reduction Functions .
Referencec..cvcciireaane
Reference 12.1.1
Reference
Reference ...
Reference
Reference
Referanceccuniiienssenans
References and List items
Relational Intrinsic Operations ..
Retational Intrinsic Operations
Relationship of Types and Values
Restriction on Input/Qutput
R@SHriCtiONS .uieeiiecreinmesnsnascminnsmmiresnianacrresinssnnssness
Restrictionsevivrieeeniieeenas
Restrictions on Common and
Restrictions on Dummy Arguments ...
Restrictions on Entities
Restrictions on EQUIVALENCE
Restrictions on Function
Restrictions on Inquiry
Result of an Operation /TYPe, .cccimieianiiimmieimimnneaisn.
Results 12.2.2cocciveneinannan

Results 13.2 Elemental
Results ...
Return Indicators /Arguments .
RETURN Statement
REWIND Statement .
Rules ...
Rules

Rules 7.5.1.4 ..covcviivanennes
Rules for Intrinsic Operations ..
Rules Governing Blocks .
S, SP, and S8 Editing ...eevurerenmsmmrarairrmmmmesisierssnsosnmesness

1986 December

X3J3/S8

Page E-13

PERMUTED INDEX FOR HEADINGS

1.3

DEFINITION 14

14.3

Units 14.4

14.2

14.1

14.5

14.6

2.2.1

6.2.4 Array Elements and Array
6.2.4.3 Array

3.3.1.2 Statement

14.7.2.1 Storage

2.3.4 Execution

3.1.6 Collating

5.5.2.1 Common Block Storage
124.1.4

14.7.2.2 Association of Storage
9.2.1.21

INQUIRE Statement 9.6.1.8

3.1 Fortran Character

411

6.2.5 The

5.1.2.4.1 Explicit

Data Type, Type Parameters, and
Data Type, Type Parameters, and
13.7.1 The

/Data Type, Type Parameters, and
5522

10.6.2

CHARACTERS, LEXICAL TOKENS, AND
33

3.3.1 Free

3.3.2 Fixed

10.6.4 S,

3.1.4

13.11 Table of

10.1.2 Character Format
12.3.2.4 Implicit Interface
7.1.6.3

10.1 Explicit Format

Interface 12.3.2

5.2 Attribute

11.1.1 Main Program

5 DATA OBJECT DECLARATIONS AND
Procedures 13.12

9.4.1.1 Format

9.4.1.2 Namelist

9.4.1.4 Prompt

9.3.5.1 STATUS=

Statement 9.6.1.1 FILE=
Statement 9.6.1.10 FORM =
Statement 9.6.1.11 FORMATTED =
Statement 9.6.1.12 UNFORMATTED =
Statement 9.6.1.13 RECL=
Statement 9.6.1.14 NEXTREC =
Statement 9.6.1.15 BLANK=
Statement 9.6.1.16 POSITION =
Statement 9.6.1.17 ACTION=
Statement 9.6.1.18 DELIM=
Statement 9.6.1.19 PAD=
Statement 9.6.1.2 EXIST=
Statement 9.6.1.20 IOLENGTH =
Statement 9.6.1.3 OPENED=
Statement 9.6.1.4 NUMBER=
Statement 9.6.1.5 NAMED=
Statement 9.6.1.6 NAME =
Statement 9.6.1.7 ACCESS=
Statement 9.6.1.8 SEQUENTIAL =
Statement 9.6.1.9 DIRECT =
9.34.1 FILE=

9.3.4.10 PAD=

Version 103

SAVE AHrbBULE .eeeiieresseissmmsmeninissmuosiesnranens .
SAVE Statement
Scalar
Scalars
Scale Factor .
[T 1= YRR
SCOPE, ASSOCIATION, ANDcccoimmrmecicinierenssnrenn e
Scope of Exponent Letters
Scope of External Input/Qutput .
Scope of Labelsc..c.covvenenee
Scope of Names
Scope of Operatorsccceeees
Scope of the Assignment Symbol .
Scoping Unit ..uveasiiinsceieninscisenieosenesanseneenen.
SECHIoNS] FmrETT TS T R e
Sections ...
Separation ..
Sequence ...
Sequence ...
Sequence ...
Sequence ...covreerierinn
Sequence Association ..
Sequencesue..
Sequential Access
SEQUENTIAL = Specifier in the
Set viiirnninnenn
Set of Valuescuueses
SET RANGE Statement
Shape AITaY ...ccccirreriirmcnicmiiinniinnirn e eracrmessons
Shape of a Primary 7.1.4.1 i cvinacnecens
Shape of an Expression 7.1.4 .
Shape of Array Arguments ...
Shape of the Result of an/ ...
Size of a Common Block ...
Slash Editingc....
SOURCE FORM 3
Source Form
Source Form ..
Source Form
SP, and SS Editing
Special Charactersccccuaeies
Specific Intrinsic Functions ...
Specification
Specification
Specification EXpressioncc..cccoiveeviccvrvcrrnnirnrennmmn
Specification Methodsc.ccec.0.
Specification of the Procedure .
Specification Statements
Specificationsvcveeeriirsrecianermaascienesc e
SPECIFICATIONS ..cocoivevirsanens
Specifications of the Intrinsic ...
SPeCifier .cicirmressiersarssnnnsnn
Specifier ..
SpeCifier ..c.iveereccisrenisenienmmsinnne
Specifier in the CLOSE Statement ..
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIREc..ovvvrenrireserenniienneane..
Specifier in the INQUIREc.vveeiiiieineremnnnnninninnean.
Specifier in the INQUIRE

Specifier in the INQUIRE

Specifier in the INQUIREcoucivciiinieraines

Specifier in the INQUIREcccovennreasinnnnes

Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE ..
Specifier in the INQUIRE
Specifier in the OPEN Statement .
Spacifier in the OPEN Statementccceeveueiirirnisneesnns

1986 December

X3J3/S8

Page E-14

PERMUTED iNDEX FOR HEADINGS

9.3.4.2 STATUS=

9.3.4.3 ACCESS=

9.3.4.4 FORM=

9.3.45 RECL=

9.3.4.6 BLANK=

9.3.4.7 POSITION=

9.3.4.8 ACTION =

9.3.49 DELIM=

9.6.1 Inquiry

9.6.1.21 Restrictions on Inquiry
10.6.4 8, SP, and

1.5 Notation Used in This
2.3.1 Executable/Nonexecutable
5.1 Type Declaration

5.2 Attribute Specification
5.2.3 Accessibility
Restrictions on EQUIVALENCE
of Defined Assignment

9 INPUT/OUTPUT

9.4 Data Transfer

9.5 File Positioning

9.8 Restriction on Input/Output
9.4.1.5 Input/Output
Statement 9.3.5.1

Statement 9.3.4.2

8.4

245

14.7.2

Objects 5.5

14.7.2.1

5.5.2.1 Common Block
14.7.2.2 Association of

10.7 Character

6.1.2

11.3.3.3 Data

2432

12.5.2.2 Function

12.6.2.3 Subroutine

12.5.2.4 Insiances of a

12.56.2 Procedures Defined by
12.5.2.1 Effects of Intent on
12.4.4

12.5.2.3

13.10 Table of Infrinsic

13.8 Intrinsic

13.8.1 Date and Time

6.24.2

6.1.1

6.2.7

14.6 Scope of the Assignment
2.1 High Level

3.2 Low-Level
Characteristics 1.5.3
1.5.1

1.5.2 Assumed
10.6.1.1

13.10

Functions 13.11

Functions 13.9

8.1.4.4.4 Loop

2.5 Fundamental

2 FORTRAN

154

10611 T,

3 CHARACTERS, LEXICAL
10.6.1.1 T, TL, and

File Position Prior to Data
File Position After Data
9.4.3.1 Direction of Data
9.4.3.4 Data

9.4.3.4.1 Unformatted Data
9.4.3.4.2 Formatted Data
13.5

13.8.7

9.4.2 Data

9.4.3 Execution of a Data
9.4- Data

Version 103

Specifier in the OPEN Statementccccciniiicierereneanvennas
Specifier in the OPEN Statement ...
Specifier in the OPEN Statementc.ccucimmnniincaronnas
Specifier in the OPEN Statement ...
Specifier in the OPEN Statement ...
Specifier in the OPEN Statement ...
Specifier in the OPEN Statement
Specifier in the OPEN Statement
Specifiers ...c.iverviverirmnineinnneen
Specifiers
S8 Editing ...
Standard
Statements ..
Statements ..
Statements ..
Statements

Statements 5.5.1.4
Statements /Interpretation
STATEMENTS
Statements
Statements ..
Statementscccieiireniniinricie .
Statls) ey
STATUS = Specifier in the CLOSE
STATUS = Specifier in the OPEN .
STOP Statement -......cvvrrvrrnnes
Storageceviereennens
Storage Association
Storage Association of Data ..
Storage Sequence
Storage Sequence
Storage Sequences
String Edit Descriptors ...
Structure Components ...
Structuresueeeeennines
Subobjects
SUDPIOGram ..eveerereeesimsernmeremraressssnsssersisinensenees
SUDPIOGram eviiveecemnesesinerienennusaennsesssssseneens
Subprogram
Subprograms
Subprograms
Subroutine Reference .
Subroutine Subprogram .
Subroutinescccocuinn
Subroutines ...
Subroutingscccceeeres
Subsctipt Order Value
Substrings e L, e
Summary of Array Name Appearances .
Symbol i e
Syntax
Syntaxs . S
Syntax Conventions andccocciimienincennene.
Syntax Rules
Syntax Rules
T, TL, and TR Editingcvcenirancninerranan
Tabie of Intrinsic Subroutinescceseees
Table of Specific Intrinsic
Tables of Generic Intrinsic ...
Termination
TOrMS wveirvenreniimnaninannns
TERMS AND CONCEPTS
Text Conventionseu..

TL, and TR Editingcoovenivreenns
TOKENS, AND SOURCE FORM .
TR Editing «ocovevvvenrecnercacrmnennns
Transfer 9.2.1.3.1
Transfer 9.2.1.3.2
Transfercovenes
Transfer
Transfer
Transfer
Transfer Function .
Transfer Function
Transfer Input/Output List ...
Transfer Input/Output Statement
Transfer Statementscueccciierieniimaineenmsinrnersne

1986 December

X3J3/58

Page E-15

PERMUTED INDEX FOR HEADINGS

6.2.4.4

2.4.1 Data

2.4.1.1 Intrinsic

2.4.1.2 Derived

4.1 The Concept of

4.3.1.1 Integer

Real and Double Precision Real
4.3.1.3 Complex

4.3.2.1 Character

4.3.2.2 Logical

Type Parameters of Derived
5.1.1.7 Derived

5.1

13.4.5 Derived Data

14.1.25

Primary 7.1.4.1 Data Type,
Expression 7.1.4 Data Type,
Result of an/ 7.1.4.2 Data Type,
4411

of a Primary 7.1.4.1 Data

of an Expression 7.1.4 Data
of the Result of/ 7.1.4.2 Data
7.1.6.2

4 INTRINSIC AND DERIVED DATA
4.3 Intrinsic Data

4.3.1 Numeric

4.3.2 Nonnumeric

4.4 Derived

4.4.1.2 Equivalence of Derived
Entities 4.2 Relationship of
5.1.1

7.3.1

Variables That Are Initially
14.8 Definition and

3.1.3

9.4.34.1

9.1.2

INQUIRE Statement 9.6.1.12
2.2.1 Scoping

9.3.2 Connection of a File to a
9.4.3.2 Identifying a

2.2 Program

9.3.1

11 PROGRAM

11.4 Block Data Program
Scope of External Input/Output
14.7.1.2

6

11.3.2 The

2.4.2 Data

6.2.4.2 Subscript Order
5.1.21

10.8.1.1 Null

Acceptable Namelist Input
10.9.1.4 Null

4.1.1 Set of

4.4.2 Derived-Type
Construction of Derived-Type
9.4.1.9

4.2 Relationship of Types and
244

Definition and Undefinition of
6.2.1.1 Array Constants and
14.8.1

Defined 14.8.2

Undefined 14.8.3

14.8.5 Events That Cause
14.8.4 Events That Cause
Functions 13.7.3

Functions 13.9.8

6.2.1

10.6.1.2

Version 103

TYPE ovieeirinaans

Type

Type .coceeen
Type 4.4.1.1
TYPE evrirencserennismnmnasensinnasses
Type Declaration Statements .
Type Inquiry Functions
Type Parameterscecenane
Type Parameters, and Shape of a ..
Type Parameters, and Shape of an ...
Type Parameters, and Shape of the ..
Type Parameters of Derived TYpec.cuvirevcvinnesisniiinenn
Type, Type Parameters, and Shapec.iccmvuveninneanen
Type, Type Parameters, and Shape

Type, Type Parameters, and Shape ..
Type-Parameter Expression
TYPES .oovirircrmmrisevinnes
Types ...
Types ...
Types ...
Types ...
Types
Types and Values to Objects and ...
Type-Specifier Attributes ...
Unary Defined Operation ...
Undefined 14.8.3
Undefinition of Variablesiceeiiimeieeniimeiiinniicniens
UNAErSCOTE .evvureneriirmensscimmmeiinmisnieimaninenismsansnesrnesin
Unformatied Data Transfer ...
Unformatted Recordeecisenees
UNFORMATTED = Specifier in the ...c.cceieremreiiiiimnmennnens
UNIE cerereicrreenrararma e rrneessnaes e e e ra e e an e san e bannes
Unit ...
Unit ..oovevnneee
Unit Concepts .
Unit Existance
UNITS
Units .eunen
Units 14.4

Use Association
USE OF DATA OBJECTS .
USE Statement ...cciurieseisirerssnirmeaimeremneanmen,
Value
Value -
Value Attribute
Values
Values 10.9.1.
Valuesccoveeenaees
Values ..
Values ..
Values 4.4.3
Values Countcoereseniirnnsnreennens
Values to Objects and Entities ...
Variable
Variables 14.8
Variablesccoivciiecinine
Variables That Are Always Defined ...
Variables That Are Initially ...
Variables That Are Initially ...
Variables to Become
Variables to Becoma Definedc.ccccvirinesiinencinninne
Vector and Matrix Multiplicationcceeeimniciinianannenn
Vector and Matrix Multiply

Whole Arraysceceveenunenenas
MIEditing semmerssermrmrsrerrrrsesren e e e

1986 December

X3J3/S8

Page E-16

10

15

20

25

30

35

40

APPENDIX F REMOVED EXTENSIONS

This appendix contains features that were removed from the draft standard to reduce the
size of the language. It is presented for public review and comment. Each of the features
described is a possibly valuable extension, but none received sufficient support to be
included in the standard.

The additional features are condition handling, bit data type, variant structures, array ele-
ment assignment (FORALL), vector-valued subscripts, and some additional array intrinsics.

F.1 Type Extensions.

F.1.1 Bit Data Type. Bit is a nonnumeric intrinsic type that has two values. Named
objects may be declared to be of type BIT and literal constants of type BIT are allowed.
Intrinsic operations and functions are provided for objects of this type. Bit objects may
appear in expressions and may be used to mask arrays. Bit expressions can appear in con-
trol constructs. Input and output is provided for list objects.

F.1.1.1 Bit Constant. Rule R305 for literal constants must be extended to include a bit
constant.

R601 constant is literal-constant
or named-constant

R602 literal-constant is int-constant
or real-constant
or complex-constant
or logical-constant
or char-constant
or bit-constant

F.1.1.2 Bit Operators. Rule R307 for intrinsic operators must be extended to include bit
operators.

R603 intrinsic-operator is power-op
or mult-op
or add-op
or bnot-op
or band-op
or bor-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R604 bnot-op is .BNOT.
R605 band-op is .BAND.

R606 bor-op is .BOR.
or .BXOR.

Version 103 1986 December - Page F-1

REMOVED EXTENSIONS X3J3/S8 -

10

15

20

25

30

35

40

F.1.1.3 Bit Declaration Statement. A bit object may have rank and shape. There are no
additional attributes for objects of type bit. Rule 502 must be extended to include a BIT dec-
laration.

R607 type-spec is INTEGER
or REAL [precision-selector |
or DOUBLE PRECISION
or COMPLEX [precision-selector |
or CHARACTER [length-selector]
or LOGICAL
or BIT
or TYPE (type-name [(type-param-spec-list) |)

The BIT type specifier specifies that all objects whose names are declared in this statement
are of intrinsic type bit (4.3.2.3).

An equivalence-object must not be the name of an object of bit type.
A common-block-object must not be the name of an object of bit type.

The variables or arrays whose names are included in the data-i-do-object-list must not be of
type bit.

F.1.1.4 Bit Expressions.

F.1.1.4.1 Bit Objects in Expressions. To include bit expressions, an additional category
or expressions is required.

These categories are related to the different operator precedence levels and, in general,
defined in terms of other categories. The simplest form of each expression category is a pri-
mary. The rules given below specify the syntax of an expression. For convenience, the
low-level operator construction rules, but not the constraints, have been duplicated below
from Section 3 where appropriate. See Section 3.2.4 for the constraints on defined-unary-op
(7.1.1.2) and defined-binary-op (7.1.1.7). The semantics are specified in 7.2 and 7.3.

F.1.1.4.2 Primary.

R608 primary is constant
or variable
or array-constructor
or derived-type-constructor
or function-reference

or (expr)
Examples of a primary are:
Example Syntactic Class
1.0 constant
A variable
[1.0,2.0] array-constructor
PERSON('Jones', 12) derived-type-constructor
FX, YD function-reference
(5+T) (expr)

Version 103 1986 December Page F-2

REMOVED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

F.1.1.4.3 Level-1 Expressions. Defined unary operators have the highest operator pre-
cedence (Table 7.1). Level-1 expressions are primaries optionally operated on by defined
unary operators:

R609 Jevel-1-expr is [defined-unary-op | primary
R322 defined-unary-op is . lelter [letter
Simple examples of a level-1-expr are:

Example Syntactic Class

A primary

-INVERSE. B level-1-expr
A more complicated example of a level-1 expression is:
.INVERSE. (A + B)

F.1.1.4.4 Level-2 Expressions. Level-2 expressions are level-1 expressions optionally
involving the numeric operators power-op, mult-op, and add-op.

R610 muit-operand is level-1-expr [power-op mult-operand]
R611 add-operand is [add-operand mult-op | mult-operand
R612 level-2-expr is [add-op | add-operand

or level-2-expr add-op add-operand
R308 power-op is *=*
R309 mult-op is *

or /
R310 add-op is +

or —

Simple examples of a level-2 expression are:

Example Syntactic Class

A level-1-expr
B**x(mult-operand
D*E add-operand
F-1 level-2-expr
+ level-2-expr

A more complicated example of a level-2 expression is:
— A+ D% E+B#%x C

F.1.1.4.5 Level-3 Expressions. Level-3 expressions are level-2 expressions optionally
involving the bit operators bnot-op, band-op, and bor-op.

R613 band-operand is | bnot-op] level-2-expr

R614 b_or-operaqd is [bor-operand band-op | band-operand
R615 Jevel-3-expr is [level-3-expr bor-op | bor-operand
R311 bnot-op is .BNOT.

R312 band-op is .BAND.

R313 bor-op is .BOR.

Version 103 1986 December Page F-3

REMOVED EXTENSIONS

10

15

20

25

30

35

40

Version 103

or .BXOR.

Simple examples of a level-3 expression are:

Exampl

e

Syntactic Class

A
.BNOT.

C .BAND. D

E .BOR. F

G .BXOR. H

level-2-expr
band-operand
bor-operand
level-3-expr
level-3-expr

A more complicated example of a level-3 expression is:

A .BXOR. B .BAND. .BNOT. C

X3J3/s8

F.1.1.4.6 Level-4 Expressions. Level-4 expressions are level-3 expressions optionally
involving the character operator concat-op.

R616 level-4-expr

R314 concat-op is //

Simple examples of a level-4 expression are:

Example

is [level-4-expr concat-op | level-3-expr

Syntactic Class

A

B//C
A more complicated example of a level-4 expression is:

X //Y // 'ABCD'

level-3-expr
level-4-expr

F.1.1.4.7 Level-5 Expressions. Level-5 expressions are level-4 expressions optionally

involving the relational operators rel-op.
R617 level-5-expr

or
or
or
or
or
or
or
or
or
or
or

Simple examples of a level-5 expression are:

<>
<
< =
>
> =

Example

is [level-4-expr rel-op | level-4-expr

R315 rel-op is .EQ.
.NE.
.LT.
.LE.
.GT.
.GE.

Syntactic Class

A
B .EQ
D<E

.C

level-4-expr
level-5-expr
level-5-expr

A more complicated example of a level-5 expression is:

1986 December

Page F-4

REMOVED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

45

(A +B) .NE. C

F.1.1.4.8 Level-6 Expressions. Level-6 expressions are level-5 expressions optionally
involving the logical operators not-op, and-op, or-op, and equiv-op.

R618 and-operand is [not-op] level-5-expr
R619 or-operand is [or-operand and-op | and—dperand
R620 equiv-operand is [equiv-operand or-op | or-operand
R621 Jevel-6-expr ' is [level-6-expr equiv-op] equiv-operand
R316 not-op is .NOT.
R317 and-op is .AND.
R318 or-op is .OR.
R319 equiv-op ; is .EQV.
or .NEQV.

Simple examples of a level-6 expression are:

Example Syntactic Class

A level-5-expr

.NOT. B and-operand

C .AND. D or-operand

E .OR. F equiv-operand

G .EQV. H level-6-expr

S .NEQV. T Jlevel-6-expr

A more complicated example of a level-6 expression is:
A .AND. B .EQV. .NOT. C

A bit intrinsic operation, character intrinsic operation, relational intrinsic operation, and
logical intrinsic operation are similarly defined in terms of a bit intrinsic operator (.BAND.,
.BOR., .BXOR., and .BNOT.), character intrinsic operator (//), relational intrinsic operator
(.EQ., .NE., .GT., .GE,, .LT., .LE.,, ==, <>, >, >=, <, and < =), and logical intrinsic
operator (.AND., .OR., .NOT., .EQV., and .NEQV.), respectively. A bit relational intrinsic
operation is a relational intrinsic operation where the operands are of type bit and the oper-
ator is .EQ., .NE., ==, 0or <>.

Table 7.1. Type of Operands ‘and Result for the Intrinsic Operation [x,] op X,. (The symbols
I, R D, Z B, C, L, and Dt stand for the types integer, real, double precision, complex, bit, char-
acter, logical, and derived-type, respectively. Where more than one type for x, is given, the
type of the result of the operation is given in the same relative position in the next column.)

Intrinsic Operator Type of Type of Type of
op X1 Xz [x4] op x»
unary +, — LR, D Z IR, D Z
binary +, —, *, /, #%* | LR, D Z LR D Z
R LR D Z R,R D2
D IR, D Z D,D,D,Z
4 IR D Z Z,2,2,Z
.BNOT. B B
.BAND., .BOR., .BXOR. B B B

Version 103 1986 December Page F-5

REMOVED EXTENSIONS

X3J3/58

// C C C
EQ, NE, ==, <> | LR, D, Z L, L L L
5 R LR D, Z L, L LL
z LR D Z LLLL
D I,R, D Z LLLL
C C L
B B L
10 Dt Same as x; L
.GT,, .GE,, .LT,, .LE. | IR, D L L L
>, >=,<, <= R I, R, D L, L L
D I, R, D L, L, L
15 C C L
.NOT. L L
.AAND., .OR., .EQV., NEQV. L L L

20 F.1.1.4.9 Evaluation of Bit Intrinsic Operations. The rules given in 7.2.2 specify the
interpretation of bit intrinsic operations. Once the interpretation of an expression has been
established in accordance with those rules, the processor-may evaluate any other expression
that is bit-wise equivalent, provided that the integrity of parentheses is not violated. For
example, for variables B1, B2, and B3 of type bit, the processor may choose to evaluate the

25 expression
B1 .BOR. B2 .BOR. B3
as
B1 .BOR. (B2 .BOR. B3)

Two expressions of type bit are bit-wise equivalent if their values are equal for all possible

30 values of their primaries.

F.1.1.4.10 Bit Intrinsic Operations. A bit operation is used to express a bit computation.
Evaluation of a bit operation produces a result of type bit, with a value of B’0’ or B'1". The
permitted data types and shapes for operands of the bit intrinsic operations are specified in
7.1.2.

35 The bit operators and their interpretation when used to form an expression are given in
Table 7.3, where x4 denotes the operand to the left of the operator and x, denotes the oper-
and to the right of the operator.

Table 7.3. Interpretation of the Bit Intrinsic Operators.
Use of
40 Operator Representing Operator Interpretation
.BNOT. Bit Negation .BNOT. x, Bit negation of x,
.BAND. Bit Conjunction Xy .BAND. x, Bit conjunction of x, and x,
.BOR. Bit Inclusive Disjunction x4, .BOR. x, Bit inclusive disjunction of x; and x,

45 .BXOR. Bit Exclusive Disjunction x; .BXOR. x; Bit exclusive disjunction of x, and x,

The values of bit intrinsic operations are shown in Table 7.4.
Table 7.4. The Values of Operations Involving Bit Intrinsic Operators
X4 Xo .BNOT. Xs x4 .BAND. x, x;.BOR.x; x;.BXOR. Xo
Version 103 1986 December Page F-6

REMOVED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

45

B’1 BT B'O’ B'1’ B’1’ B'0’
Bt B0 B'1’ B0’ B'1’ B’1’
BO B'71 B0’ B'0’ B’1’ B’1’
B'0C B0 B'1’ B0’ B0 B0’

Derived-type operands may contain bit components.

A derived-type operand x, is considered to be equal to x; if the values of all corresponding
components (including tags and selected variant components) of x; and x, are equal when
of numeric, bit, character, or derived-type or are equivalent (.EQV.) when of logical type.
Otherwise, x, is considered to be not equal to x,.

F.1.1.4.11 Precedence of Bit Operators. There is a precedence among the intrinsic and
extension operations implied by the general form in 7.1.1, which determines the order in
which the operands are combined, unless the order is changed by the use of parentheses.
This precedence order is summarized in Table 7.9.

Table 7.9. Categories of Operations and Relative Precedences.

Category
of Operation Operators Precedence
Extension defined-unary-op Highest
Numeric ok .
Numeric *or/
Numeric unary + or —
Numeric binary + or —
Bit .BNOT.
Bit .BAND.
Bit .BOR. or .BXOR.
Character //

Relational .EQ., .NE,, .LT., .LE., .GT., .GE.
==,<>, <, <=, >, >=

Logical .NOT.

Logical .AND.

Logical , .OR.

Logical .EQV. or .NEQV. :
Extension defined-binary-op Lowest

The precedence of a defined operation is that of its operator, whether it is an overloaded
intrinsic operator or an extension operator.

F.1.1.5 Array Mask Expressions of Type Bit. The value of a list array expression may be
used to mask the evaluation of expressions and assignment of values in array assignment
statements.

F.1.1.5.1 General Form of the Masked Array Assignment. A masked array assignment
is either a WHERE statement or WHERE construct.

R622 masked-array-assignment is where-stmt
or where-construct

R623 where-stmt is WHERE (array-mask-expr) array-assignment-stmt

R624 where-construct is where-construct-stmt -
[array-assignment-stmt |...
[elsewhere-stmt

Version 103 1986 December Page F-7

REMOVED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

[array-assignment-simt |... |
end-where-stmt

R625 where-construct-stmt is WHERE (array-mask-expr)
R626 array-mask-expr is logical-expr
or bit-expr
R627 elsewhere-stmt Is ELSEWHERE
R628 end-where-stmt is END WHERE

Constraint: The shape of the mask-expr and the variable being defined in each array-
assignment-stmt must be the same.

Examples of a masked array assignment are:
WHERE (TEMP > 100.0) TEMP = TEMP — REDUCE_TEMP

WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP — 5.0

END WHERE

r.1.1.5.2 Interpretaticn of Masked Array Assignments. The execution of a masked array
assignment causes the expression array-mask-expr to be evaluated. The array assignment
statements following the WHERE and ELSEWHERE keywords are executed in normal execu-
tion sequence. An array may be defined in more than one array assignment statement in a
WHERE construct. A reference to an array may appear subsequent to its definition in the
same WHERE construct.

When an array-assignment-stmt is executed in a masked-array-assignment, the expr in the
where-stmt or each expr in the array assignment statements, immediately following the
WHERE keyword, is evaluated for all elements where array-mask-expr is true (or for all
elements where array-mask-expr is false in the array assignment statements following ELSE-
WHERE), and the result is assigned to the corresponding elements of variable. For each
false value of array-mask-expr (or true value for the array assignment statements after ELSE-
WHERE) the value of the corresponding element of variable in each array assignment state-
ment immediately following the WHERE keyword is not affected, and it is as if the expres-
sion expr were not evaluated. If an array-mask-expr is of type BIT, the elements with value
B’1’ are treated as true and elements with value B’0’ are treated as false.

If a transformational function reference occurs in expr, it is evaluated without any masked
control by the array-mask-expr; that is, all of its argument expressions are fully evaluated and
the function is fully evaluated. Elements corresponding to true values in array-mask-expr
(false in the expr after ELSEWHERE) are selected for use in evaluating each expr.

In a masked array assignment, only a WHERE statement may be a branch target. Changes
to entities in array-mask-expr do not affect the execution of statements in the masked-array-
assignment. Execution of an END WHERE has no effect.

.1.1.6 Bit Exprassions in Control Constructs.

F.1.1.6.1 IF Construct. If the scalar mask expression is of type BIT, an expression with
value B’1’ is treated as true and an expression with value B’0’ is treated as false.

Version 103 1986 December Page F-8

REMOVED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

F.1.1.6.2 IF Statement. If the scalar mask expression is of type BIT, an expression with
value B’1’ is treated as true and an expression with value B'0’ is treated as false.

F.1.1.6.3 CASE Construct. A case expression may be a scalar list expression. Rule 812
must be extended.

R629 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr
or scalar-bit-expr

A corresponding case value in a case selector may be a scalar list constant expression.
Rule 815 must be extended.

R630 case-value-range is case-value
or [case-value | : [case-value]

R631 case-value = . is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr
or scalar-bit-constant-expr

If the case value range is of the form low:, :high, or :, the data type must not be bit.
F.1.1.7 Bit Input/Output Editing.

r.1.1.7.1 Bit Edit Descriptor. There is a bit edit descriptor: B. R1005 must be extended.

R632 data-edit-desc is lw[.m]

or Fw.d
orEw.d[Ee]
orENw.d[Ee]
orGw.d[Ee]
or Bw

orLw

or Ajw]
orDw.d

i

F.1.1.7.2 B Editing. The Bw edit descriptor indicates that the field occupies w positions.
The specified input/output list item must be of type bit.

The input field consists of w — 1 blanks and either a 0 or a 1, in any order. The output field
consists of w — 1 blanks followed by either a 0 or a 1. The specifiers BZ and BN have no
effect on bit editing.

|

n$*
F.1.1.7.3 List-Directed and Name-.B‘ims&e& Output. The form of the bit output constant
produced for the value B’1’ is 1. The form of the bit output constant produced for the value
B'0’ is 0.

F.1.1.8 Bit Functions. The elemental functions LBIT and BITL convert between bit and
logical type. The transformational functions IBITLR and BITLR convert between a bit array
and an integer, counting bits from left to right; IBITRL and BITRL are similar functions that
count bits from right to left.

The inquiry function MAXBITS returns the maximum size of a bit array that can be converted
to an integer.

Version 103 1986 December Page F-9

REMOVED EXTENSIONS X3J3/S8

10

14

15

20 F.141

25

30

35

F.1.1

40

Yersion 103

BITL (L) Convert from logical to bit type
BITLR (I,SIZE) Convert an integer to a bit array,
Optional SIZE counting left to right
BITRL (I,SIZE) Convert an integer to a bit array,
Optional SIZE counting right to left
IBITLR (B) Convert a bit array to an integer,
counting left to right
IBITRL (B) Convert a bit array to an integer,
counting right to left
LBIT (B) Convert from bit to logical type
MAXBITS (1) Maximum bil array length for conversion
.8.1 BITL (L).

Description. Convert logical to bit type.
Kind. Elemental function.

Argument. L must be of type logical.
Result Tyne. Bit.

fesult Value. The result has the value B’1' if L has the value .TRUE. and the value
B’0’ if L has the value .FALSE.

Example. BITL (.TRUE.) has the value B'1’.

.8.2 BITLR (|, SIZE).

Optional Argument. SIZE

Descrintion. Convert an integer to a bit array, counting left to right.

Kind. Transformational function.

Arguments.

l must be scalar and of type integer. Its value must not be negative.

SIZE (optional) must be scalar and of type integer with a positive value. If it is
omitted, it is as if it were present with the value MAXBITS (1).

Rasult Type and Shape. The result is a bit array of rank one with SIZE number of
elements.

Result Value. The result is a bit array containing the binary representation of the argu-
ment. The array element with the largest subscript value will contain the least
significant bit of the binary representation. Zero extension or truncation will take place
at the low end of the array as necessary. IBITLR (BITLR (J)) must have the value J for
any value of the integer J. BITLR (IBITLR (B), SIZE (B)) must have the value B for any
value of a bit array B for which SIZE (B) = MAXBITS (1).

Example. BITLR (5, 6) has the value [B’'0’, B'0’, B'0’, B'1’, B'0’, B'1’].
.8.3 BITRL (I, SIZE).
Optional Argument. SIZE

Description. Convert an integer to a bit array, counting right to left.

Kind. Transformational function.

1986 December Page F-10

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

Arguments.
l must be scalar and of type integer. Its value must not be negative.

SIZE (optional) must be scalar and of type integer with a positive value. If it is
omitted, it is as if it were present with the value MAXBITS (1).

Result Type and Shape. The result is a bit array of rank one with SIZE number of
elements.

Result Value. The result is a bit array containing the binary representation of the argu-
ment. The array element with the largest subscript value will contain the most
significant bit of the binary representation. Zero extension or truncation will take place
at the high end of the array as necessary. IBITRL (BITRL (J)) must have the value J
for any value of the integer J. BITRL (IBITRL (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) < MAXBITS (1).

Example. BITRL(5,6) has the value [B'1’, B'0’, B’1’, B’0, B’0’, B’0’].

F.1.1.8.4 IBITLR (B).

Description. Convert a bit array to an integer, counting left to right.
Kind. Transformational function.

Argument. B must be of type bit and rank one. Its size must satisfy the inequality
SIZE (B) < MAXBITS (1).

Result Type and Shape. Scalar integer.

Result Value. The result has value equal to the integer represented by the bits in the
array B, regarded as a bit string with the element having the largest subscript value
being the least significant bit of the result. IBITLR (BITLR (J)) must have the value J
for any value of the integer J. BITLR (IBITLR (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) < MAXBITS (1).

Example. IBITLR ([B'0’, B'1", B'0’, B'1’]) has the value 5.

F.1.1.8.5 IBITRL (B).

Description. Convert a bit array to an integer, counting right to left.
Kind. Transformational function.

Argument. B must be of type bit and rank one. Its size must satisfy the inequality
SIZE (B) = MAXBITS (1).

Result Type and Shape. Scalar integer.

Result Value. The result has value equal to the integer represented by the bits in the
array B, regarded as a bit string with the element having the largest subscript value
being the most significant bit of the result. IBITRL (BITRL (J)) must have the value J
for any value of the integer J. BITRL (IBITRL (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) = MAXBITS (1).

Example. IBITRL ([B'1’, B'0’, B'1’, B'0’]) has the value 5.

F.1.1.8.6 LBIT (B).

Description. Convert bit to logical type.
Kind. Elemental function.

Version 103 1986 December Page F-11

REMOVED EXTENSIONS X3J3/s8

10

15

20

25

30

35

40

Argument. B must be of type bit.
Result Type. Logical.

Result Yalue. The result has the value .TRUE. if B has the value B’1’ and the value
.FALSE. if B has the value B’0’.

Example. LBIT (B'1’) has the value .TRUE.

F.1.1.8.7 WMAXBITS (I).

Description. Returns the maximum size of a bit array that can be converted to a value
of type integer.

Kind. Inquiry function.

Argument. | must be of type integer.

Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the maximum size of a bit array B that
can be converted to integer using IBITLR (B) or IBITRL (B).

F.1.1.¢ Bit Mask Aigument. A MASK argument may be of type BIT. When the argument
is of type BIT, a B'1’ value is interpreted as true and a B'0’ is interpreted as false. The fol-
lowing intrinsic functions have MASK arguments that may be of type bit: ALL, ANY, COUNT,
FIRSTLOC, LASTLOC, MAXLOC, MAXVAL, MERGE, MINLOC, MINVAL, PACK, PRODUCT,
PROJECT, SUM, and UNPACK.

F.1.1.10 Bit Storage Sequenca. A bit data object has no storage sequencs.
F.1.2 Variant Structures.
F.1.2.1 Genezral Form of Variant Structures. Derived data types may contain variant

parts. Rule R416 that defines derived types must be extended.

R633 derived-type-def is derived-type-stmt
component-def-stmt
[component-def-stmt ...
[variant-part |

end-type-sitmt
R634 derived-type-stmt is [access-spec | TYPE type-name { (type-param-name-list) |
R635 end-type-stmt is END TYPE [type-name]

Constraint: A derived type type-name must not be the same as any intrinsic type-name.

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as
that in the derived-type-stmt.

R636 component-def-stmt is type-spec [[, component-attr-spec |... ::] component-decl-list
Constraint: A type-spec in a component-def-stmt must not contain a type-param-value that is
an asterisk.
R637 component-attr-spec is PRIVATE
or ARRAY (explicit-shape-spec-list)
R638 component-dec! is component-name | (explicit-shape-spec-list)]
R639 variant-part is SELECT CASE (component-name)

[case-stmt [component-def-stmt]...]...

Version 103 1986 December Page F-12

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

END SELECT

Constraint: The conponent-name must be the name of the immediately preceding compo-
nent. It must be scalar, must not lie within a variant part, and must be of type
integer, logical, bit, or character.

R811 case-stmt is CASE case-selector
R814 case-selector is (case-value-range-list)
or DEFAULT

Constraint: Only one DEFAULT case-selector may appear in any given case-construct.

R815 case-value-range is case-value
or [case-value] : | case-value |

R816 case-value Is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr

Constraint: Each case-value must be of the same type as the component-name of the
SELECT CASE statement.

A variant part specifies alternative sequences of components. Only one such sequence has
an interpretation at any given time in a structure of that type. The nonvariant component
immediately preceding the variant part of a variant derived type is the tag component. It
must be scalar and of type integer, logical, bit, or character. The value of the tag compo-
nent in a structure determines which sequence of components in the varying part is
selected. The selection follows the rules for the CASE construct (8.1.3), except that nesting
and construct names are prohibited.

An example of a variant structure is:
TYPE Geometric

REAL X,Y
REAL AREA

CHARACTER (LEN = 10) SHAPE | TAG

SELECT CASE (SHAPE) | VARIANT PART

CASE ('CIRCLE') ; REAL RADIUS

CASE ('SQUARE') ; REAL SIDE

CASE ('RECTANGLE'); REAL HEIGHT, WIDTH

CASE ('POLYGON') ; INTEGER NUM_EDGES; REAL EDGES (10)
END SELECT .
END TYPE GEOMETRIC

F.1.2.2 Comparison of Entities with Variant Parts. Two entities of the same derived type
with variant parts may be compared, even if the values of their tag components are not
equal; the result of a comparison with unequal tag components is that the objects are not
equal.

A derived-type operand x, is considered to be equal to x, if the values of all corresponding
components (including tags and selected variant components) of x; and x, are equal when
of numeric, character, or derived-type or are equivalent (.EQV.) when of logical type. Other-
wise, x, is considéred to be not equal to x».

F.1.2.3 Definition Status of Variant Structures. When any component of a structure and
any other component containing that component becomes undefined, the structure becomes
undefined. This does not imply that the undefinition of one component of a structure causes
all other components to become undefined. Redefinition or undefinition of the tag name
component also causes undefinition of components selected by all cases.

Version 103 1986 December Page F-13

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

F.1.2.4 Input/Output of Variant Structures. Input/output of variant structures is not
specified differently than that for structures with no variant parts. However, the requirement
that the format be established prior to any transfer of data (9.4.3) and the possibility of vari-
ant components may effectively prevent explicitly formatted (10.1) input to objects of derived
types containing variant components, because of the interdependence of the input/output list
and the format specification.

.2 Array Extensions.

F.2.1 Structure Arrays of Arrays Treated as Higher-Order Arrays. Array objects may be
of any intrinsic type or derived type.

An array object may be a component or a parent structure that is an element of an array. A
resulting data object has array properties if the parent or component has array properties.

If the parent has shape P and the selected component (including the array selector, if any)
has shape C, the component will be an array of shape [C, P], using the array constructor
notation from Section 4 The remaining attributes are determined by the component declara-
tion in the derived-type definition.

Example:
ARRAY_PARENT % ARRAY_FIELD!array component of array parent

The IDENTIFY statement (6.2.6) permits the mapping of arrays onto structure arrays of
arrays.

F.2.2 Vector-Valued Subscripts. A vector integer expression, used as a subscript, can
specify an array section. Rule R615 must be extended:

R615 section-subscript is subscript
or subscripl-triplet
or vector-int-expr

Constraint: A vector-int-expr section-subscript must be a rank one integer array expression.
The constraint following rule R613 also must be extended:
Constraint: At least one section-subscript must be a subscript-triplet or a vector-int-expr.

An array section is an array object designated by an array name with a section subscript
list.

Each subscript triplet and each rank-one expression in the section subscript list indicates a
sequence of subscripts.

A section subscript that is a rank-one integer expression designates a sequence of sub-
scripts that are the values of the expression; each element of the expression must be
defined. The sequence is empty if the expression is of size zero.

For example, suppose Z is a two-dimensional array of shape [5,7] and U and V are one-
dimensional arrays of shape [3] and [4], respectively. Assume the values of U and V are:

U=11,3, 2]
V=1[21,1,3]

Then Z (3, V) consists of the elements from the third row of Z in the order:
Z@3,2) Z(3,1) Z(3,1) Z(3,3)

and Z (U, 2) consists of the column elements:

Version 103 1986 December Page F-14

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

Z(1,2) Z(3,2) 2(2, 2
and Z (U, V) consists of the elements:

Z(1,2yz(1,1) 2(1,1) 2(1,3)

23,2 Z(3,1) Z(3,1) 23,3

22,2 Z2(2,1) Z{(2,1) Z2(2, 3
Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and
Z (U, V) must not be redefined as sections.

There are some restrictions on the use of vector-valued subscripts. The left-hand side of an
assignment statement (R714) must not include an array element more than once in an array
section with vector subscripts. An internal file is a character variable other than an array
section with any vector subscripts.

F.2.3 Element Array Assignment—FORALL. The element array assignment statement is
used to specify an array assignment in terms of array elements or array sections. The ele-
ment array assignment may be masked with a scalar logical or bit expression.

F.2.3.1 General Form of Element Array Assignment.

R640 forall-stmt is FORALL (forall-triplet-spec-list [,scalar-mask-expr 1) B
W forall-assignment

R641 forall-triplet-spec is subscript-name = subscript : subscript [: stride]
Constraint: subscript-name must be a scalar-name of type integer.

Constraint: A subscript or a stride in a forall-triplet-spec must not contain a reference to any
subscript-name in the forall-triplet-spec-list.

R642 forall-assignment is array-element = expr
or array-section = expr

Constraint: The array-section or array-element in a forall-assignment must reference all of
the forall-triplet-spec subscript-names.

For each subscript name in the forall-assignment, the set of permitted values is determined
on entry to the statement and is

my + (k—1) x my, where k = 1,2, ..., INT(mz - m{ + ma)/myg)

and where m,, m,, and m, are the values of the first subscript, the second subscript, and
the stride respectively in the forall-triplet-spec. If stride is missing, it is as if it were present
with a value of the integer 1. The expression stride must not have the value 0. If for some
subscript name INT((m, - my + mg)/ma) < 0, the forall-assignment is not executed.

Examples of element array assignments are:
FORALL (I =1:N, J=1:N) H(I,) =1.0/REAL (I +J - 1)

FORALL (I

1:N, J

1:N, A,) .NE.0.OD B (I, D =1.0/A(, O

F.2.3.2 Interpretation of Element Array Assignments. Execution of an element array
assignment consists of the evaluation in any order of the subscript and stride expressions in
the forall-triplet-spec-list, the evaluation of the scalar mask expression, and the evaluation of
the expr in the forall-assignment for all valid combinations of subscript names for which the
scalar mask expression is true, followed by the assignment of these values to the corre-
sponding elements of the array being assigned to. If the scalar mask expression is omitted,
it is as if it were present with value true. If the scalar mask expression is of type BIT, an
expression with value B’1’ is treated as true and an expression value B'0’ is treated as

Version 103 1986 December Page F-15

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

false.

The forall-assignment must not cause any element of the array being assigned to be
assigned a value more than once. The scope of the subscript name is the FORALL state-
ment itself. A function reference appearing in any expression in the forall-assignment must
not redefine any subscript name.

F.2.4 Intrinsic Functions. Additional array intrinsic functions are provided for array con-
struction (REPLICATE, DIAGONAL), array manipulation, and array geometric location (PROJ-
ECT).

REPLICATE constructs an array from several copies of an xctual argument by increasing the
size of one of the dimensions. DIAGONAL constructs a diagonal matrix. PROJECT extracts
the elements the lie along an edge of an array. For example, to extract from the integer
table TABLE (M, N) the vector containing the first positive number in each column, first
locate the desired elements in a logical mask FST (M, N) by:

FST = FIRSTLOC (TABLE .Gi. O, bIM = 1)
and then assign the elements to FSTC by:
FSTC = PROJECT (TABLE, FST, DIM = 1, FIELD = O)

F.2.4.1 DIAGONAL (ARRAY, FILL).
Optional Argument. FILL
DUescription. Create a diagonal matrix from its diagonal.
Kind. Transformational function.

Argurments.
ARRAY may be of any type. It must have rank one.
FILL (optional) must be of the same type and type parameters as ARRAY and

must be scalar. It may be omitted for the data types in the follow-
ing table; in this case it is as if it were present with the value
shown.

Type of ARRAY Value of FILL

Integer 0

Real 0.0
Double precision 0.0D0
Complex (0.0, 0.0)
Logical .FALSE.
Character (len) fen blanks

Result Type, Type Parameters, and Shape. The result is of the type and type param-
eters of ARRAY and it has rank two and shape [n, n] where n is the size of ARRAY.

Result Value. Element (i, i) of the result has value ARRAY (/) for 1 </j < n. All other
elements have the value FILL.

100
Example. DIAGONAL ([1, 2, 3]) has the value [0 2 0} .
003

Version 103 1986 December Page F-16

REMOVED EXTENSIONS X3J3/S8

F.2.4.2 PROJECT (ARRAY, MASK, FIELD, DIM).
Optional Argument. DIM

Description.

Select masked values from an array.

Kind. Transformational function.

5 Arguments.

ARRAY may be of any type. It must not be scalar. lts shape must be
defined.

MASK must be of type logical or bit and of the same shape as ARRAY. If
DIM is absent, MASK must have at most one true element; other-

10 wise, each section MASK (s4, ..., Spim-1, I SpIM41s «-» Sp) Must
have at most one true element.

FIELD must be of the same type and type parameters as ARRAY. It must
be scalar if DIM is absent. If DIM is present, FIELD must have
rank n —1 and shape [E (1:DIM—1), E (DIM+1:n)], where E (1:n) is

15 the shape of ARRAY.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of ARRAY.

Result Type, Type Parameters, and Shape. The result is of the type and type param-
eters of ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise, the

20 result has rank n—1 and shape [E (1:DIM—1), E (DIM+1:n)] where E (1:n) is the
shape of ARRAY.

Result Value.

Case (i):
25
Case (ii):
30
Examples.
35 Case (i):
40
Case (ii):
Version 103

The result of PROJECT (ARRAY, MASK, FIELD) is the element of ARRAY
corresponding to the true element of MASK if there is one and is FIELD
otherwise. Note that if MASK has zero size, the result has value FIELD.

If ARRAY has rank one, PROJECT (ARRAY, MASK, FIELD, DIM) has value
equal to that of PROJECT (ARRAY, MASK, FIELD). Otherwise, the value
of element (s4, ..., Spim—1> SpiM+1, ---» Sn) Of PROJECT (ARRAY, MASK,
FIELD, DIM) is equal to PROJECT (ARRAY (S1, ..., SDIM—1> :» SDIM+1s --e»
Sn), MASK (84, ..., SpiM-1,) SDIM+1s =5 Sp), FIELD (84, ..., Spim—1, SDIM+1s
..., 8p)). Note that if ARRAY (and MASK) have size zero because E (DIM)
has value zero, the result may have nonzero size with all its values coming
from FIELD.

If Vis the array [1, 2, 3, 4] and P is the mask [, ., T, .], where “T” repre-
sents .TRUE. and “.” represents .FALSE., the value of PROJECT (V,
MASK=P, FIELD=0) is the scalar 3, and the value of PROJECT (V,
MASK=V.GT.5, FIELD=99) is the scalar 99. If A is the array

[14710

258 11} and L is the array { T :},the value of PROJECT (A,
369 12 SR

MASK =L, FIELD=0) is the scalar 8.

Using the arrays of case (i), the value of PROJECT (A, L, [0, 0, 0], DIM=2)
is the array [0, 8, 0], and the value of PROJECT (A, L, [0, 0, 0, 0], DIM=1)
is the array [0, O, 8, 0].

1986 December Page F-17

1

REMOVED EXTENSIONS X3J3/S8

The first nonzero number in each co]umn of the table TABLE =

is located by the mask M = |- T T 01 A vector which
1460 T

contains those nonzero numbers can be extracted from TABLE by the

PROJECT function. Thus, the value of PROJECT (TABLE, M, [—-1, -1,

—1, —1], DIM=1) is that vector, namely [1, 2, 5, —1]. Note that M itself is
the value of FIRSTLOC (TABLE.NE.Q, DIM =1).

(=YX
WO
oo
[eXeoNo]

F.2.4.3 REPLICATE (ARRAY, DIM, HCOPIES). ‘

10

15

20

F.2.4

25

30

Description. Replicates an array by increasing a dimension.

Xind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM must be scalar and of type integer with value in the range
1 < DIM = n, where n is the rank of ARRAY.

NCOPIES must be scalar and of type integer.

Result Type, Type Parameters, and Shape. The result is an array of the same type,
type parameters, and rank as ARRAY and has shape {E (1:DIM-1), MAX (NCOPIES, 0)
* E (DIM), E (DIM + 1:n)], where the shape of ARRAY is E (1:n).

Result Value. Each element of the result has value equal to that of the corresponding
element of ARRAY obtained by subtracting from subscript DIM sufficient integral multi-
ples of E (DIM) to bring it into the range [1:E (DIM)].

Example. If A is the array [gﬂ REPLICATE (A, DIM=2, NCOPIES=3) is
[232323}

343434

.4 RANK (SOURCE).

Descripiion. Returns the rank of an array or a scalar.
Kind. Inquiry function.

Argument. SOURCE may be of any type.

Resuit Type and Shape. Integer scalar.

Result Value. The result has value zero if SOURCE is scalar and otherwise has value
equal to the rank of SOURCE.

Example. RANK ([1:N]) has the value one.

F.2.4.5 FIRSTLOC (MASK, DIN).

35

Version 103

Optional Argument. DIM

Description. Locate the leading edges of the set of true elements of a logical or bit
mask.

Kind. Transformational function.

Arguments.

1936 December Page F-18

REMOVED EXTENSIONS X3J3/58

10

15

20

MASK must be of type logical or bit. It must not be scalar. Its shape
must be defined.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM = n, where n is the rank of MASK.

Result Type and Shape. The result is an array of the same shape as MASK and of
type logical.

Result Value.

Case (i): The result of FIRSTLOC (MASK) has at most one true element. If MASK is
all false, the result is all false. If MASK contains one or more true
elements, the result has a single true element and it is in the position cor-
responding to the first true element (in subscript order value) in MASK.

Case (ii): The result of FIRSTLOC (MASK, DIM) is defined by applying FIRSTLOC to
each of the one-dimensional array sections of MASK that lie parallel to

dimension DIM. Thus, section (sq, S5, ..., SpiM—1, !, SpiM+1s --.r Sp) Of the
result has value equal to FIRSTLOC (MASK (sy, Sz, ..., Spm—1s :» SOIM+1s
s Sp)).

T

T

Examples. If MASK is) $ T |+ where “T” represents .TRUE. and “.” repre-

sents .FALSE., then

Case (): FIRSTLOC (MASK)is | * | - * | and

Case (ii): FIRSTLOC (MASK, DIM =1) is the “top-edge” T

F.2.4.6 LASTLOC (MASK, DIM).

25

30

35

Version 103

Optional Argument. - DIM

Description. Locate the trailing edges of the set of true elements of a logical or bit
mask.

Kind. Transformational function.

Arguments.
MASK must be of type logical or bit. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 = DIM < n, where n is the rank of MASK.

Result Type and Shape. The result is an array of the same shape as MASK and of

type logical???.

Result Value.

Case (i): The result of LASTLOC (MASK) has at most one true element. If MASK is
all false, the result is all false. If MASK contains one or more true

elements, the result has a single true element and it is in the position cor-
responding to the last true element (in subscript order value) in MASK.

1986 December Page F-19

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

Case (ii): The result of LASTLOC (MASK, DIM) is defined by applying LASTLOC to
each of the one-dimensional array sections of MASK that lie parallel to

dimension DIM. Thus, section (s1, S2, ..., Spim—1, 5 SDIM+1s --o» Sp) Of the
result has value equal to LASTLOC (MASK (sS4, S3, ---, SDIM—1+ *» SDIM+1s «+es
Sn))-

.. T
Examples. If MASK is | - ¥ T T |» where “T” represents .TRUE. and “.” repre-

sents .FALSE., then

Case (): LASTLOC (MASK)is | * * ° ;| and

Case (i) LASTLOC (MASK, DIM=2) is

R

F.3 Procedure Extensions.

F.3.1 Nesting of Internal Procedures. An internal procedure may host other internal pro-
cedures.

F.3.2 Internal Procedure Name as an Actual Argument. If a dummy argument is a
dummy procedure, the associated actual argument must be the name of an external, inter-
nal, dummy, or intrinsic procedure.

The actual argument name must be one for which exactly one procedure is accessible in the
invoking procedure.

The actual argument procedure must not have dummy arguments with assumed type param-
eters other than character assumed lengths.

The characteristics of the associated procedure must be the same as the characteristics of
the dummy procedure (12.2).

When a function or subroutine defined by a subprogram is invoked, an instance of that sub-
program is created. Each instance has an independent sequence of execution and an inde-
pendent set of dummy arguments and nonsaved data objects. If an internal procedure or
statement function contained in the subprogram is invoked directly from an instance of the
subprogram or a procedure having access to the entities of that instance, the created
instance of that internal procedure or statement function also has access by explicit or
implicit USE statements to the entities of that instance of the host subprogram. Similarly, if
the internal procedure is supplied as an actual argument from an instance of the subprogram
or a procedure having access to the entities of that instance, the instance of that internal
procedure created by invoking the associated dummy procedure also has access by explicit
or implicit USE statements to the entities of that instance of the host subprogram.

All other entities, including saved data objects, are common to all instances of the subpro-
gram. For example, the value of a saved data object appearing in one instance may have
been defined in a previous instance or by an INITIAL attribute or DATA statement.

Version 103 1986 December Page F-20

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

F.4 Condition Handling. This exception handling extension provides a structured way
of dealing with relatively rare, synchronous events, such as errors in input data or instability
of an algorithm near a critical point.

F.4.1 Definitions.

F.4.1.1 Condition. A condition is a named exceptional event or set of circumstances
when it is inappropriate to continue the normal execution sequence. Conditions may be
user-defined or intrinsic to the processor. A processor must be able to detect the following
intrinsic conditions:

(1) NUMERIC_ERROR. This condition occurs when the processor is unable to pro-
duce an acceptable result for an intrinsic numeric operation, either because the
result is mathematically undefined or because the processor has no adequate rep-
resentation for the result.

(2) BOUND__ERROR. This occurs when an array subscript, array sections subscript,
substring range expression, or effective range violates its bounds. This does not
include violations of the requirements derived from the size of an assume-size
array.

(3) I0_ERROR. This condition occurs when an input/output error (9.4.2.1) is encoun-
tered in an input/output statement containing no IOSTAT = or ERR = specifier. If
this condition is enabled, it may be handled as described below instead of causing
immediate termination of the executable program.

(4) END_OF__FILE. This condition occurs when an end-of-file condition (9.4.2.1) is
encountered in an input statement containing no IOSTAT= or END = specifier. If
this condition is enabled, it may be handled as described below instead of causing
immediate termination of the executable program.

(5) ALLOCATION__ERROR. This condition occurs when the processor is unable to
perform an allocation requested by an ALLOCATE statement (6.2.2)

A processor may define additional intrinsic conditions.

Conditions may be passed as actual arguments and received as dummy arguments or
dummy conditions.

F.4.1.2 Enabling. In order for an intrinsic condition to be detected automatically by the
processor, it must be enabled. User-defined conditions may be enabled, though they need
not be since they can be detected only by the user program itself. Dummy conditions must
not be enabled.

F.4.1.3 Signaling. A condition may be signaled when the associated event or circumstan-
ces are detected. Conditions may be signaled explicitly by the execution of a SIGNAL state-
ment (F.4.3.2) or, in the case of intrinsic conditions, implicitly by the processor.

F.4.1.4 Handler. Signaling a condition causes a transfer of control to a sequence of state-
ments called a condition handler.

F.4.2 Specification Statements. The exception handling facility adds one new
specification statement (CONDITION) as well as modifying an existing specification statement
(INTRINSIC).

Version 103 1986 December Page F-21

REMOVED EXTENSIONS ' X3J3/S8

10

15

20

25

30

35

40

45

F.4.2.1 CONDIVION Statement. A CONDITION statement is used to deciare a user-
defined or dummy condition.

R219 specification-stmt is access-stmt
or condition-stmt
or exponent-letter-stmt
or external-stmt
or initialize-stmt
or intent-stmt
or intrinsic-stmt
or optional-stmt
or range-stmt
or save-stmt
or common-stmt
or dimension-stmt
or equivalence-stmt

R643 condition-stmt is CONDITION [[, condition-attr-spec]... ;| B
B condition-name-list
R644 condition-attr-spec is OPTIONAL

or ENABLES (condition-name-list)
or HANDLES (condition-name-list)

Constraint: A condition-name must not be declared in more than one condition-stmt or
intrinsic-stmt (F.4.2.2) in a scoping unit.

Constraint: There must not be more than one OPTIONAL attribute, one ENABLES attribute,
and one HANDLES attribute in a condition-stmt.

Constraint: A dummy condition must not appear in either an ENABLES or a HANDLES attri-
bute specification, nor may a dummy condition be declared in a condition-stmt
which contains either of these attributes.

Constraint: The OPTIONAL attribute may appear only on a condition-stmt declaring a
dummy condition.

Each name in a CONDITION statement (other than those in an ENABLES or HANDLES attri-
bute specification) is declared to be a nonintrinsic condition. i the name also appears as a
dummy argument in the current scope, it is a dummy condition; otherwise, it is a user-
defined condition. Each condition name in an ENABLES or HANDLES attribute specification
must be declared previously in a CONDITION statement or INTRINSIC statement (F.4.2.2).

Each request to enable one of the declared conditions is also a request to enable the condi-
tions listed in the ENABLES attribute specification, if any. Each handler for one of the
declared conditions is also a handler for the conditions in the ENABLES attribute
specification, if any, except for those explicitly handled by other handlers in the same
ENABLE construct (F.4.3.1).

Each handler for one of the declared conditions is also a handler for the conditions in the
HANDLES attribute specification, if any, except for those explicitly handled by other handlers
in the same ENABLE construct.

F.4.2.2 INTRINSIC Statament. An INTRINSIC statement also may be used to specify a
name as representing an intrinsic condition (F.4.1.1).

R1209 intrinsic-name is intrinsic-procedure-name
or intrinsic-condition-name

Version 103 1986 December Page F-22

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

R645 intrinsic-condition-name is name

Each intrinsic-name must correspond to an intrinsic entity (either an intrinsic procedure or an
intrinsic condition) supported by the processor.

If an intrinsic condition name is used as an actual argument to a nonintrinsic procedure, it
must be declared in an INTRINSIC statement.

F.4.2.3 Implicit Declaration of Condition Names. !f every occurrence of a symbolic name
in a scoping unit is in an ENABLE or HANDLE statement (F.4.3.1), a SIGNAL statement
(F.4.3.2), as the CONDITION argument to the ENABLED or HANDLED intrinsic functions
(F.4.9), or as a dummy argument, the name is declared implicitly to be a condition name. If
the name does not match any of the processor-supported intrinsic condition names, it
identifies a user-defined condition; otherwise, it identifies the matching intrinsic condition.

F.4.2.4 Scope and Association of Condition Names. User-defined and intrinsic condi-
tions are two separate classes of global entities of an executable program. User-defined
conditions belong to the same class as program units, common blocks, and external proce-
dures (14.1.1). A name that identifies a user-defined condition must not be used to identify
any other global entities in this class. Intrinsic conditions belong to a second class of global
entities. Within a single scoping unit, a name that identifies an intrinsic condition must not
be used to identify any other global entities; however, in a different scoping unit it may be
used to identify a global entity of the first class.

Dummy conditions are local entities of the current scoping unit, of the class as dummy pro-
cedures (14.1.2).

Conditions may be passed as actual arguments as described in 12.4.1.

R1212 actual-arg is expr
or variable
or procedure-name
or condition-name
or alt-return-spec

If a dummy argument is a dummy condition, the associated actual argument, if any, must be
a condition. If the dummy condition has the OPTIONAL attribute and if no corresponding
actual argument is supplied when the procedure is invoked, the dummy condition must not
be signaled, nor supplied as the CONDITION argument to the intrinsic functions ENABLED
or HANDLED. It may be supplied as an actual argument corresponding to an optional
dummy condition. Then the optional dummy condition also is considered not to be associ-
ated with an actual argument.

F.4.3 Executable Constructs. The exception handling facility adds one new block con-
struct (ENABLE) and a new action statement (SIGNAL).

F.4.3.1 ENABLE Construct. The ENABLE construct is used to enable the automatic
detection of intrinsic conditions, supply handlers for conditions, and delimit a block that may
be affected by the signaling of a condition.

R219 executable-construct is action-stmt
or case-construct
or do-construct
or enable-construct
or if-construct
or where-construct

R646 enable-construct is enable-stmt

Version 103 1986 December Page F-23

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

block
[handle-stmt
block]...
end-enable-stmt
R647 enable-stmt is [enable-construct-name :] M
B ENABLE [(condition-name-list)]
R648 handle-stmt is HANDLE (condition-name-list)
or HANDLE DEFAULT
R649 end-enable-stmt is END ENABLE [enable-construct-name |

Constraint: A condition-name must not appear more than once in an enable-stmit.

Constraint: A condition-name appearing in an enable-stmt or handle-stmt must not be a
dummy condition.

Constraint: HANDLE DEFAULT may appear at most once in an enable-construct.

Constraint: If an enable-construct-name is present, the same name must be specified on
both the enablestmt and the corresponding end-enable-stmt.

The block immediately following the ENABLE statement is the ENABLE block. Each block
following a HANDLE statement is called a HANDLE block.

A condition name must not appear explicitly in more than one HANDLE statement of an
ENABLE construct. If a condition name does not appear explicitly in any HANDLE state-
ments of an ENABLE construct, it must not be implied directly or indirectly, via HANDLES or
ENABLES attributes (F.4.2.1) in the same scoping unit, by CONDITION names listed on
more than one HANDLE statement of the construct.

Both the ENABLE statement and the END ENABLE statement are branch target statements
(8.2); however, it is permissible to branch to an END ENABLE statement only from within its
ENABLE construct.

F.4.3.2 SIGNAL Statement. Any condition, including intrinsic and dummy conditions, may
be signaled explicitly be a SIGNAL statement.

R650 action-stmt is allocate-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or endfile-stmt
or exit-stmt
or forall-stmt
or goto-stmt
or identify-stmt
or if-stmt
or inquire-stmt
or open-stmt
or print-stmt
or read-stmt
or return-stmt

Version 103 1986 December Page F-24

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

or rewind-stmt

or setl-range-stmt
or signal-stmt

or stop-stmt

or where-stmt

or write-stmt

or arithmetic-if-stmt
or assign-stmt

or assigned-goto-stmt
or computed-goto-stmt
or pause-stmt

R651 signal-stmt is SIGNAL (condition-name)
or SIGNAL (*)

Constraint: SIGNAL (*) is permitted only in a HANDLE block.

F.4.4 Condition Enabling. All conditions that are enabled for the ENABLE statement itself
remain enabled throughout the ENABLE construct. Any other conditions in the condition
name list, if any, of the ENABLE statement, including those implied, either directly or indi-
rectly, by any ENABLES attributes (F.4.2.1) in the current scoping unit, are enabled only
within the ENABLE block. Enabling a condition in one procedure does not enable that con-
dition in any procedure invoked from within the ENABLE block.

F.4.5 Condition Signaling. A condition is signaled immediately if it is detected during
expression evaluation or assignment. An indeterminately signaled condition affects entities
in the innermost ENABLE block or scoping unit that contains the operation causing the sig-
nal. If circumstances are such that two independent operations could each signal a condi-
tion indeterminately in the same ENABLE block, the condition that serves as the basis for
transfer of control is processor dependent.

A condition is signaled determinately if it is detected in any other way. A determinately sig-
naled condition can affect only entities in the statement in which the condition is detected.

The intrinsic conditions, if they are enabled, are signaled implicitly by the processor when-
ever the events the represent are detected.

Execution of a SIGNAL statement determinately signals the condition indicated by the condi-
tion name that appears in the statement. If the SIGNAL statement appears in a HANDLE
block and the condition name is specified by #, the condition signaled is the condition that
caused the transfer to the block. Signaling a dummy condition is equivalent to signaling the
corresponding actual argument in the current scoping unit. A condition need not be enabled
to be signaled explicitly.

F.4.6 Execution of an ENABLE Construct. Execution of an ENABLE construct begins
with the first executable construct of the ENABLE block, and continues to the end of the
block unless a condition is signaled. If no condition is signaled anywhere within the ENABLE
block, the execution of the entire construct is complete when the execution of the ENABLE
block is complete.

F.4.6.1 Condition Handling. If a condition is signaled in an ENABLE block and the
ENABLE construct either:

(1) contains a HANDLE statement that explicitly lists the condition, or

Version 103 1986 December Page F-25

REMOVED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

(2) contains no HANDLE statement that explicitly list the condition, but does contain a
HANDLE statement which implies the condition, either directly or indirectly, via
ENABLES or HANDLES attributes in the same program unit (F.4.2.1), or

(3) contains no HANDLE statement that lists or implies the condition, but does contain
a HANDLE DEFAULT statement

the associated HANDLE block is called the handler for that condition and the ENABLE con-
struct is said to supply the handler. An ENABLE construct never supplies a handler for a
condition detected in one of its HANDLE blocks. The block following the HANDLE DEFAULT
statement is calied the default handler for that ENABLE construct. It handles all conditions
not otherwise handled in that ENABLE construct.

When a condition is signaled, control is transferred to the HANDLE block supplied by the
innermost ENABLE construct that supplies a handler for that condition. Execution of the
HANDLE block completes the execution of the ENABLE construct.

r.4.5.2 Condition Propagation. If a condition is signaled, but no handler is supplied in the
current scoping unit, the condition is propagated. A condition must not be propagated from
a main program. A condition, either intrinsic, user-defined, or dummy, is propagated from a
function or subroutine by signaling it in the invoking procedure, regardless of whether it was
enabled in that procedure. If the current procedure was invoked during expression evalua-
tion or assignment, the condition is signaled indeterminately in the invoking procedure, either
in the innermost ENABLE block or in the entire scoping unit. Otherwise, it is signaled deter-
minately in the statement invoking the current procedure.

F.4.7 Effects of Signalling on Definition. The signaling of a condition also may cause
entities to become undefined (14.8). When a condition is signaled determinately in a state-
ment, the entities affected are those whose definition status could have been affected by the
statement had no condition been signaled, with one exception: if the statement is a READ
statement with a VALUES = specifier and if the signaled condition is either IO_ERROR or
END__OF__FILE, the specified variable and, possibly, some or all of the variables in the
input/output list become defined as described in 9.4.2.1.

When a condition is signaled indeterminately in an ENABLE block, the entities affected are
those whose definition status has been affected or could have been affected by statements
in the block had no condition been signaled.

When a condition is signaled indeterminately outside any ENABLE block, the entities
affected are those whose definition status has been affected or could have been affected by
statements anywhere in the scoping unit had no condition been signaled.

F.4.7.1 Examples of EMABLE Constructs. Example 1:
I0 CHECK: ENABLE (IO ERROR, END_OF FILE)

READ (*, '(I5)') I

READ (*, '(I5)', END = 90) J

GO TO 100

90 CONTINUE

J=0

GO TO 100

HANDLE (END_OF_FILE)
WRITE (*, *) 'UNEXPECTED END-OF-FILE'
STOP

Version 103 1986 December Page F-26

REMOVED EXTENSIONS X343/S8

5

10

15

20

25

30

35

40

45

HANDLE (IO ERROR)
WRITE (8, *) 'I/O ERROR'
STOP
END ENABLE IQ_CHECK
100 CONTINUE

In this example, if an input/output error occurs in either of the READ statements or if an
end-of-file is encountered in the first READ statement, the appropriate condition will be sig-
naled determinately (thus affecting only the value of the variable in the input/output list), and
a handler will receive control, print a message, and terminate the program. However, if an
end-of-file is encountered in the second READ statement, no condition will be signaled and
control will be transferred to the statement indicated in the END = specifier.

Example 2:

ENABLE (SINGULARITY_ERROR)
ENABLE
. ! FIRST TRY THE "FAST'' ALGORITHM:
CALL FAST_INV (AMATRIX, VMATRIX, SDET, ESIZE (AMATRIX, 1))
HANDLE (SINGULARITY_ERROR)
. ! "FAST' ALGORITHM FAILED; TRY ''SLOW'' ONE:
CALL SLOW_INV (AMATRIX, VMATRIX, SDET, ESIZE (AMATRIX, 1))
END ENABLE
HANDLE (SINGULARITY_ERROR)
WRITE (*, *) 'CANNOT INVERT MATRIX'
STOP
END ENABLE
RETURN

CONTAINS
! HERE'S FAST_INV:

SUBROUTINE FAST_INV (AMAT, VMAT, DET, NMAT)
REAL AMAT (NMAT, NMAT), VMAT (NMAT, NMAT)
VMAT = 0
ENABLE (NUMERIC_ERROR)
ENABLE
DET = DETERMINANT (AMAT, NMAT)
END ENABLE

HANDLE (SINGULARITY_ERROR, NUMERIC_ERROR)
DET =0
SIGNAL (SINGULARITY_ERROR)

END ENABLE

END SUBROUTINE FAST_INV

| ASSUME SLOW_INV IS AN EXTERNAL ROUTINE
! AND HERE'S DETERMINANT:

REAL FUNCTION DETERMINANT (X, N)
INTEGER, INTENT (IN) :: N

REAL, INTENT (IN) XN, N
ENABLE (NUMERIC_ERROR)

Version 103 1986 December Page F-27

APPENDIX G INDEX

accessibility attribute 5-5 complex type 4-5

active 8-7 concatenation 4-6

alias associated 6-8 conformable 2-8

alias association 14-3 connected 9-5

alias association 14-4 constant 2-8

ALIAS attribute 5-9 constant expression 7-7
allocatable array 5-7 control edit descriptor 10-2
ALLOCATE statement 6-3 control information list 9-10
approximation methods 4-3 create a file 9-2

argument association 14-3 current record 9-3

Argument keywords 2-9 currently allocated 6-4

array 2-8 DATA attribute 5-5

array 6-3 data edit descriptor 10-2
ARRAY attribute 5-6 data entity 2-7

array constructor 4-9 data entity 4-2

array element 2-8 data object 2-7

array element ordering 6-5 data object or subobject reference 2-9
array elements 6-3 DATA statement 5-11

array intrinsic assignment statement 7-19 data transfer input statement 9-1
array section 2-8 data transfer output statements 9-1
array section 6-6 data type 2-7

assignment subroutine 12-10 data type 4-1

associated 14-6 DEALLOCATE statement 6-4
association 2-10 declaration 2-9

assumed-shape array 5-7 declared range 6-3
assumed-size array 5-8 declared shape 6-3

attributes 5-1 default complex 4-5

automatic 5-7 default real 4-4

belong 8-6 defined 2-9

blank common 5-17 defined assignment statement 7-19
block 8-1 defined binary operation 7-5
branch target statement 8-9 defined operation 7-5

Branching 8-9 defined operator 7-6

CASE construct 8-3 defined unary operation 7-5
case index 8-4 definition 2-9

character constant expression 7-8 delete a file 9-2

character context 3-4 deleted features 1-4

character intrinsic assignment statement 7-18 deprecated features 1-4
character intrinsic operation 7-5 derived type 2-7

character relational intrinsic operation 7-5 derived-type intrinsic assignment statement 7-18
character set 3-1 digits 3-1

character string 4-5 direct access input/output statement 9-12
character string edit descriptor 10-2 double precision real 4-4
character type 4-5 dummy procedure 12-1
characteristics 12-1 edit descriptor 10-2

CLOSE statement 9-9 effective range 6-3

collating sequence 3-2 effective shape 6-3

comment 3-5 element sequence 12-6
common block storage sequence 5-18 elemental 12-1

common blocks 5-17 elemental function 13-1
COMMON statement 5-17 elemental reference 12-7

Version 103 1986 December Page G-1

INDEX

endfile record 9-1

ending point 6-2

end-of-file condition 9-14
EQUIVALENCE statement 5-16
executable program 2-4
executable statements 2-5
execution cycle 8-7

exist 9-2

explicit 12-2

explicit branches 2-6

explicit shape array 5-6
exponent range parameter 4-3
exponent range type parameter 4-8
exponent-range type-parameter expression 7-8
expression 7-1

extension operation 7-6
extension operator 7-6

extent 2-8

external file 9-2

external procedure 12-1
external procedure 2-4
external subprogram 2-4

field 10-3

field width 10-3

file 9-2

file connection statements 9-1
file inquiry statement 9-1

file positioning statements 9-1
Fixed form 3-4

format control 10-3

formatted input/output statement 9-11
formatted record 9-1

Free form 3-4

function 2-4

Generic names 13-1

global entity 14-1

host 11-2

host 2-5

host scoping unit 2-4
IDENTIFY statement 6-7

IF construct 8-2

IF statement 8-2

imaginary part 4-5

implicit 12-2

IMPLICIT statement 5-14
inactive 8-7

initial point 9-3

Input statements 9-1

inquire by file 9-19

inquire by unit 9-19

inquiry function 13-1

instance 12-11

integer constant expression 7-8
INTENT attributes 5-6

Version 103

1986 December

X3J3/58

interface 12-2

internal procedure 12-1

internal procedure 2-5

internal subprogram 2-4

intrinsic 2-10

intrinsic assignment statement 7-18
intrinsic binary operation 7-4

intrinsic function 13-1

intrinsic module 1-5

intrinsic operation 7-4

intrinsic operator 7-4

intrinsic procedure 12-1

intrinsic type 2-7

intrinsic unary operation 7-4

iteration count 8-7

keyword 2-9

length 4-5

letters 3-1

list-directed input/output statement 9-11
Literal character constants 4-5

literal constant 2-8

local entity 14-1

logical constant expression 7-8
logical intrinsic assignment statement 7-18
logical intrinsic operation 7-5

logical type 4-6

loop 8-7

low-level syntax 3-2

masked array assignment 7-20
module 2-5

module procedure 12-1

module procedure 2-4

module reference 11-2

module subprogram 2-4

name association 14-3

named common blocks 5-17

named constant 2-8

named file 9-2

namelist input/output statement 9-12
NAMELIST statement 5-15

Names 3-2

name-value subsequences 10-14
next record 9-3

nonexecutable statements 2-5
nonprecision type-parameter expression 7-8
null value 9-13

numeric constant expression 7-8
numeric intrinsic assignment statement 7-18
numeric intrinsic operation 7-4
numeric intrinsic operator 7-4
numeric relational intrinsic operation 7-5
object 2-7

obsolescent features 1-4

OPEN statement 9-6

Page G-2

INDEX X3J3/58

operator 2-10 size of a storage sequence 14-5
OPTIONAL attribute 5-8 source forms 3-4

Output statements 9-1 special characters 3-1
overloaded intrinsic operator 76 Specific names 13-1
PARAMETER attribute 5-5 specification expression 7-9
PARAMETER statement 5-14 standard module 1-5

partially associated 14-6 standard-conforming programs 1-1
position 9-2 starting point 6-2

preceding record 9-3 statement entity 14-1
precision parameter 4-3 statement function 12-1
precision type parameter 4-8 statement keyword 2-9
precision type-parameter expression 7-8 Statement labels 8-10
Preconnection 9-6 storage associated 14-6
present 12-12 storage association 14-3
PRINT statement 9-10 storage association 2-9
printing 9-18 storage sequence 14-5
procedure interface block 2-5 storage sequence 5-18
procedure reference 2-9 storage unit 14-5

Procedures 2-4 storage units 2-9

processor 1-1 structure 4-2

program name 11-1 structured object 4-2

range 59 subobject designator 2-9
range 8-6 subroutine 2-4

RANGE attribute 5-9 substring 6-1

RANGE statement 5-14 Syntax rules 1-2

rank 2-8 terminal point 9-3

READ statement 9-10 totally associated 14-6
reading 9-1 transformational functions 13-1
real part 4-5 type declaration statement 5-1
record 9-1 type specifier 5-2

record number 9-3 undefined 2-9

reference 6-1 unformatted input/output statement 9-11
relational intrinsic operation 7-5 unformatted record 9-1

repeat specification 10-2 unit 9-5

restricted expression 7-9 use association 14-3

SAVE attribute 5-8 USE statement 11-2

saved object 5-8 value separator 10-11

scalar 2-8 values 2-7

scalar 6-1 variable 2-8

scale factor 10-3 variable 6-1

scope 14-1 whole array 6-3

scoping unit 2-4 whole array constant 6-3
sequence array 12-6 , WRITE statement 9-10
sequence associated 12-7 writing 9-1

sequential access input/output statement 9-12
set of allowed access methods 9-2

set of allowed forms 9-2 ‘
set of allowed record lengths 9-2
SET RANGE statement 6-7
shape 2-8

shape conformance 7-7

share 8-6

size 2-8

size of a common block 5-18

Version 103 _ 1986 December Page G-3

