2 March 2000 Page 1 of 2 J3/00-152

Subject: Define “component order” term, do more work on constructors
From: Van Snyder

1 Introduction

Section 4.5.6 Construction of derived-type values doesn’t work for extended types. Section
4.5.3.1 Inheritance defines the order of components of an extended type, for purposes of
derived-type value construction and intrinsic input/output, but doesn’t define the term.

This paper defines the term for nonextensible, base and extended types, and uses the term for
value construction and intrinsic input/output.

2 Edits

Edits refer to 00-007. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks for the editor are noted in the margin, or appear between [and | in the text.

[Editor: Delete “For purposes...” to the end of the paragraph.]

4.5.3% Component order
[Editor: Insert “component order” into the index.]

The component order of the components of a derived type is the component order of the
components inherited from the parent type, if the type is an extended type and the parent
type has components, followed by the order of the declarations of components declared in the
derived type definition.

The component order of the ultimate components of a derived type is the order of the ultimate
components inherited from the parent type, if the type is an extended type and the parent type
has components, followed by the order of the declarations of components that are of intrinsic
type, and the ultimate components that result from declarations of components of derived type,
taken in the order the declarations appear in the derived type definition.

The structure constructor for any derived type may be in flattened form, in which values may
be provided for components inherited from the parent type, if any. The structure constructor
for an extended type may be in nested form, which allows providing a single value for the
parent subobject.

[Editor: Replace text in 00-007 and text added within this area by 00-148 by the following:]

Constraint: The type name shall be accessible in the scoping unit containing the structure
constructor.

Constraint: In the flattened form, there shall be at most one component-spec corresponding
to each component of the type. In the nested form, there shall be at most one
component-spec corresponding to each component declared for the extended type.

Constraint: In the flattened form, there shall be exactly one component-spec corresponding to
each component of the type that does not have default initialization. In the nested
form, there shall be exactly one component-spec corresponding to the parent subob-
ject of the type, and exactly one component-spec corresponding to each component
declared for the extended type that does not have default initialization.

53:13-16
55:04

55:28+

95:31-56:3

2 March 2000 Page 2 of 2 J3/00-152

Constraint: The keyword = may be omitted from a component-spec only if the keyword = has
been omitted from each preceeding component-spec in the constructor.

Constraint: In the flattened form, each keyword shall be the name of a component of the type.
In the nested form, each keyword shall be the name of a component declared for
the extended type, or the name of the parent subobject.

Constraint: In the nested form, there shall not be a keyword that is the same as the name of
any component inherited from the parent type.

Constraint: In the nested form, the parent type and all components declared for the extended
type shall be accessible in the scoping unit containing the structure constructor.
In the flattened form, all components of the type shall be accessible in the scoping
unit containing the structure constructor.

If the first component-spec has no keyword and the type of the expr is the same as the parent
type, or if there is a component-spec with a keyword that is the same as the name of the parent
subobject, the constructor is in nested form. Otherwise, the constructor is in flattened form.

In the nested form, in the absence of a component name keyword, the first expr is assigned
to the parent subobject, the second expr is assigned to the first component declared in the
derived type definition, and each subsequent ezpr is assigned to the sequentially corresponding
component declared in the derived type definition.

In the flattened form, in the absence of a component name keyword, each expr is assigned to the
corresponding component of the type, with the components taken in component order (4.5.3%).

If the keyword is the same as the name of the parent subobject, the ezpr is assigned to the
parent subobject; otherwise the expr is assigned to the component named by the keyword.

[Editor: Replace text in 00-007 and text added within this area by 00-148 by the following:]

The value that corresponds to the parent subobject is assigned to the parent subobject using
intrinsic assignment.

For nonpointer components, the corresponding value is assigned to the corresponding compo-
nent using intrinsic assignment (7.5.1.4).

Note 4.441

The rules for intrinsic assignment apply to the value and component.

The previous semantics were “converted according to the rules of intrinsic assignment to a
value that has the same type and type parameters as the corresponding component. The
shape of the expression shall correspond to the shape of the component.” Since this didn’t
say it did intrinsic assignment, there’s some question how it handles pointer and allocatable
components of a derived type component value. The revision clarifies this, and also allows a
scalar expr to be assigned to an array component.

For pointer components, the corresponding exzpr shall evaluate to an object that would be an
allowable target for such a pointer in a pointer assignment statement (7.5.2), and it is assigned
to the component using pointer assignment.

[Editor: Delete.]

[Editor: Replace “in the same ... type” by “in the component order (4.5.33) of the ultimate
components.”

[Editor: Replace “components ... comprise” by “effective items (9.5.2) that result from expand-
ing”.]

56:6-19

Note to J3

07:1-3
184:23-24

189:37

