18 September 2000 Page 1 of 2 J3/00-239r1

Subject: Issue 280
From: Van Snyder
References: 00-195r2

1 Introduction

Issue 280 says “ALLOCATE (... SOURCE = ...) begs for an example. Here’s one.

2 Edits

Edits refer to 00-007r2. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks for the editor are noted in the margin, or appear between [and | in the text.

[Editor: Replace issue 280:] 103:36-38

NOTE 6.171

An example of an ALLOCATE statement in which the value and dynamic type are determined
by reference to another object is:

CLASS(*), ALLOCATABLE :: NEW

CLASS(*), POINTER :: OLD

P

ALLOCATE (NEW, SOURCE = OLD) ! Allocate NEW with the value and
! dynamic type of OLD

A more extensive example is given in C.3.1%.

C.3.1% Allocation with dynamic type (6.3.1 422:8+4

The following example illustrates the use of allocation with the value and dynamic type of the
allocated object given by another, to copy a list of objects of any extensible type. It copies
the list starting at IN_LIST. After copying, each element of the list starting at LIST_COPY has
a polymorphic component, ITEM, for which both the value and type are taken from the ITEM
component of the corresponding element of the list starting at IN_LIST.

18 September 2000 Page 2 of 2 J3/00-239r1

NOTE 6.171
TYPE :: LIST ! A list of anything of extensible type
TYPE(LIST), POINTER :: NEXT => NULL()
CLASS(*), ALLOCATABLE :: ITEM
END TYPE LIST

TYPE(LIST), POINTER :: IN_LIST, LIST_COPY => NULL()
TYPE(LIST), POINTER :: IN_WALK, NEW_TAIL
! Copy IN_LIST to LIST_COPY
IF (ASSOCIATED(IN_LIST)) THEN
IN_WALK => IN_LIST
ALLOCATE (LIST_COPY)
NEW_TAIL => LIST_COPY
DO
ALLOCATE (NEW_TAIL % ITEM, SOURCE = IN_WALK % ITEM)
IN_WALK => IN_WALK % NEXT
IF (.NOT. ASSOCIATED(IN_WALK)) EXIT
ALLOCATE (NEW_TAIL % NEXT)
NEW_TAIL => NEW_TAIL % NEXT)
END DO
END IF

