
29 October 2000 Page 1 of 3 J3/00-317

Subject: A problem concerning asynchronous input/output
From: Van Snyder

1 Introduction

There is a problem with asynchronous output as presently defined: If it is initiated for a non-
saved local variable of a procedure, and the procedure returns, the variable might become
undefined before the data transfer completes. There are three possibilities: (1) The ASYN-
CHRONOUS attribute implies or requires the SAVE attribute, which makes it unuseful in
recursive procedures, (2) there is some machinery under the covers that prevents the undefini-
tion in some other way, which makes implementation difficult, or (3) the program is required to
WAIT before returning, which would be more simply and more safely enforced by a structured
form of parallelism.

2 Proposal

Delete asynchronous input/output and the WAIT statement. Define the ASYNCHRONOUS
attribute in terms of parallel execution. Provide a simple construct for multi-thread parallelism.
The advent of cheap and ubiquitous multiprocessor computers makes support for parallel exe-
cution desirable. Since it is possible to provide the functionality of asynchronous input/output
with multi-thread parallelism, but not vice-versa, multi-thread parallelism is more valuable
than asynchronous input/output. The construct described below provides a natural linguistic
mechanism for multi-thread parallel execution that is simpler than the present mechanism for
asynchronous input/output, and avoids the danger described in section 1.

3 Replacement – structured parallelism

Define a new execution construct:
parallel-construct is [parallel-construct-name :] PARALLEL

fork
[fork] ...

END PARALLEL [parallel-construct-name]
fork is FORK [parallel-construct-name]

execution-construct
[execution-construct] ...

Upon executing a PARALLEL statement the processor may divide the sequence of execution
into a number of sequences not exceeding the number of FORK blocks. Each of these sequences
begins execution at the start of a different FORK block; after finishing execution of one FORK
block a sequence may continue into a different one, or may continue by executing the END
PARALLEL statement. In any case, each FORK block is executed exactly once. After all of
the FORK blocks are executed, all sequences of execution that were created by execution of
the PARALLEL statement are condensed into a single sequence, and execution proceeds at the
first statement after the END PARALLEL statement. Notice that this definition permits the
processor to ignore the PARALLEL statement, all FORK statements, and the END PARALLEL
statement.

29 October 2000 Page 2 of 3 J3/00-317

A GO TO statement or an arithmetic IF statement within a parallel construct shall not have
a branch target without that parallel construct or in a different fork block, and vice-versa. A
RETURN statement shall not appear within a parallel construct. This requirement prevents
the danger described in section 1, and avoids having to answer the question “So, how long does
the activation record exist?”.
A variable shall have the ASYNCHRONOUS attribute if it or a subobject of it or a variable
associated with it or a subobject of a variable associated with it may be accessed within more
than one FORK block. The ASYNCHRONOUS attribute is not automatically deduced so as
not to impose it when it is not necessary. Consider the following example of double-buffered
input overlapped with processing. Even though references to the BUF variable appear in both
FORK blocks, it should not have the ASYNCHRONOUS attribute because no element of BUF
can be accessed simultaneously in two FORK blocks.

type(myInput) :: BUF(blockSize,0:1)
integer :: STAT, WHICH

...
which = 0
read (inunit, iostat=stat) buf(:,which)
do while (stat == 0)

parallel
fork
! Process buf(:,which)

fork
! Read into the side of BUF not being processed
read (inunit, iostat = stat) buf(:,1-which)

end parallel
which = 1 - which

end do

The number of forks is statically specified. If a dynamically determined number of forks is
necessary, use FORALL. The iterations in FORALL are independent but qualitatively identical;
in a PARALLEL construct the forks can be qualititively different.

4 Alternative replacement – unstructured parallelism

The proposal in section 3 is safer than the present asynchronous input/output mechanism, but
has slightly less flexibility. The proposal here has the same danger and same flexibility as the
present asynchronous input/output mechanism, but provides for multi-thread execution as well.
Ideally, define a new intrinsic type SEMAPHORE. Objects of type SEMAPHORE may be
specified to have the DIMENSION, INTENT, OPTIONAL, PRIVATE, PUBLIC and SAVE
attributes. Maybe ALLOCATABLE and POINTER are OK, too. They shall not appear in
EQUIVALENCE or COMMON, or be components of sequence types. They implicitly have the
ASYNCHRONOUS attribute. Neither assignment nor any operations are defined for objects
of type SEMAPHORE. There are no constants of type SEMAPHORE. A semaphore variable
indicates whether a parallel construct is active, or has completed. A processor may put what-
ever information is necessary in a variable of type SEMAPHORE. The present asynchronous
input/output facility would benefit from using SEMAPHORE variables instead of INTEGER

29 October 2000 Page 3 of 3 J3/00-317

variables. Using integer semaphore variables, however, avoids the possibility of a conflict with
a user-defined derived type.
Add the following execution construct:
parallel-construct is [parallel-construct-name :] PARALLEL

(semaphore-variable)
execution-construct
[execution-construct] ...

END PARALLEL [parallel-construct-name]
Upon executing a PARALLEL statement, the processor is permitted to divide the sequence of
execution into two parallel sequences of execution. One of them shall initiate execution of the
body of the PARALLEL construct, and the other shall continue execution at the first state-
ment after the corresponding END PARALLEL statement. During execution of the parallel
construct, the semaphore variable shall indicate that the parallel construct is active, and other-
wise it shall not. If parallel sequences of execution are created, the sequence of execution that
proceeds through the parallel construct shall cease to exist upon executing the corresponding
END PARALLEL statement. A GO TO statement or an arithmetic IF statement within a par-
allel construct shall not have a branch target without that parallel construct, and vice-versa.
A RETURN statement shall not appear within a parallel construct.
The processor may instead choose to ignore the PARALLEL statement and its correspond-
ing END PARALLEL statement, except that while executing the body of the construct, the
semaphore variable shall indicate that the construct is active and otherwise it shall not.
Define a WAIT statement that references a list of semaphore variables. Upon executing a WAIT
statement, the sequence of execution in which it is encountered is suspended until the sequences
of execution indicated by all semaphores named in the WAIT statement have completed. Of
course, if a WAIT statement is executed in a sequence of execution associated with one of the
semaphore variables it names, the program locks up – and there are other ways to lock up. A
PARALLEL statement is considered to be preceeded by a WAIT statement that specifies the
same semaphore.
It is not necessary, but it may be useful to define an intrinsic function, say ACTIVE (or
COMPLETE), that takes a semaphore variable as an argument. The result type is LOGICAL.
It is true (or false) if the argument indicates a parallel construct has not completed execution,
and false (or true) otherwise.

5 Comparison

Unlike the unstructured parallelism proposal described in section 4, variables of type SEMA-
PHORE, a WAIT statement, and an ACTIVE intrinsic function are not needed by the struc-
tured parallelism proposal described in section 3. This simplicity comes at the price that
dynamic parallelism is required to nest with control constructs in the same way that they are
statically nested. Unstructured parallelism has the price that it is more difficult to define the
temporal span of existence of an activation record (in case a RETURN statement is executed
in one sequence of execution created in a procedure without waiting for the other sequences to
complete. It also has the same danger as described in section 1 for asynchronous input/output.

