
J3/02-277

WORKING DRAFT

ISO IEC TECHNICAL REPORT 19767

ISO/IEC JTC1 WG5 PROJECT 1.22.02.01.01.01

Enhanced Module Facilities

in

Fortran

An extension to IS 1539-1

18 September 2002

THIS PAGE TO BE REPLACED BY ISO-CS

J3/02-277

Contents

0 Introduction ii

0.1 Shortcomings of Fortran’s module system . ii

0.1.1 Decomposing large and interconnected facilities . ii

0.1.2 Avoiding recompilation cascades . iii

0.1.3 Packaging proprietary software . iii

0.1.4 Easier library creation . iv

0.2 Disadvantage of using this facility . iv

1 General 1

1.1 Scope . 1

1.2 Normative References . 1

2 Requirements 2

2.1 Summary . 2

2.2 Submodules . 2

2.3 Separate module procedure and its corresponding module interface body 3

2.4 Examples of modules with submodules . 3

2.5 Relation between modules and submodules . 4

3 Required editorial changes to ISO/IEC 1539-1 5

i

J3/02-277

Foreword

[General part to be provided by ISO CS]

This technical report specifies an extension to the module program unit facilities of the programming language
Fortran. Fortran is specified by the international standard ISO/IEC 1539-1. This document has been
prepared by ISO/IEC JTC1/SC22/WG5, the technical working group for the Fortran language.

It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical
report be included in the next revision of the Fortran standard (ISO/IEC 1539-1) without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or changes
are needed to achieve proper integration, in which case every reasonable effort will be made to minimize the
impact of such changes on existing implementations.

0 Introduction

The module system of Fortran, as standardized by ISO/IEC 1539-1, while adequate for programs of modest
size, has shortcomings that become evident when used for large programs, or programs having large modules.
The primary cause of these shortcomings is that modules are monolithic.

This technical report extends the module facility of Fortran so that program developers can optionally
encapsulate the implementation details of module procedures in submodules that are separate from but
dependent on the module in which the interfaces of their procedures are defined. If a module or submodule
has submodules, it is the parent of those submodules.

The facility specified by this technical report is compatible to the module facility of Fortran as standardized
by ISO/IEC 1539-1.

0.1 Shortcomings of Fortran’s module system

The shortcomings of the module system of Fortran, as specified by ISO/IEC 1539-1, and solutions offered
by this technical report, are as follows.

0.1.1 Decomposing large and interconnected facilities

If an intellectual concept is large and internally interconnected, it requires a large module to implement
it. Decomposing such a concept into components of tractable size using modules as specified by ISO/IEC
1539-1 may require one to convert private data to public data.

Using facilities specified in this technical report, such a concept can be decomposed into modules and
submodules of tractable size, without exposing private entities to uncontrolled use.

ii

J3/02-277

Decomposing a complicated intellectual concept may furthermore require circularly dependent modules, but
this is prohibited by ISO/IEC 1539-1. It is frequently the case, however, that the dependence is between the
implementation of some parts of the concept and the interface of other parts. Because the module facility
defined by ISO/IEC 1539-1 does not distinguish between the implementation and interface, this distinction
cannot be exploited to break the circular dependence. Therefore, modules that implement large intellectual
concepts tend to become large, and therefore expensive to maintain reliably.

Using facilities specified in this technical report, complicated concepts can be implemented in submodules
that access modules, rather than modules that access modules, thus reducing the possibility for circular
dependence between modules.

0.1.2 Avoiding recompilation cascades

Once the design of a program is stable, most changes in modules occur in the implementation of those
modules – in the procedures that implement the behavior of the modules and the private data they retain
and share – not in the interfaces of the procedures of the modules, nor in the specification of publicly accessible
types or data entities. Changes in the implementation of a module have no effect on the translation of other
program units that access the changed module. The existing module facility, however, draws no structural
distinction between interface and implementation. Therefore, if one changes any part of a module, most
language translation systems have no alternative but to conclude that a change might have occurred that
could affect other modules that access the changed module. This effect cascades into modules that access
modules that access the changed module, and so on. This can cause a substantial expense to retranslate and
recertify a large program. Recertification can be severals orders of magnitude more costly than retranslation.

Using facilities specified in this technical report, implementation details of a module can be encapsulated in
submodules. Submodules are not accessible by use association, and they depend on their parent module, not
vice-versa. Therefore, submodules can be changed without implying that other modules must be translated
differently.

If a module is used only in the implementation of a second module, a third module accesses the second, and
one changes the interface of the first module, utilities that examine the dates of files have no alternative but
to conclude that a change may have occurred that could affect the translation of the third module.

Modules can be decomposed using facilities specified in this technical report so that a change in the interface
of a module that is used only in a submodule has no effect on the parent of that submodule, and therefore no
effect on the translation of other modules that use the second module. Thus, compilation cascades caused
by changes of interface can be shortened.

0.1.3 Packaging proprietary software

If a module as specified by international standard ISO/IEC 1539-1 is used to package proprietary software,
the source text of the module cannot be published as authoritative documentation of the interface of the
module, without either exposing trade secrets, or requiring the expense of separating the implementation
from the interface every time a revision is published.

iii

J3/02-277

Using facilities specified in this technical report, one can easily publish the source text of the module as
authoritative documentation of its interface, while witholding publication of the source text of the submodules
that contain the implementation details, and the trade secrets embodied within them.

0.1.4 Easier library creation

Most Fortran translator systems produce a single file of computer instructions and data, called an object
file, for each module. This is easier than producing an object file for the specification part and one for each
module procedure. It is also convenient, and conserves space and time, when a program uses all or most of
the procedures in each module. It is inconvenient, and results in a larger program, when only a few of the
procedures in a general purpose module are needed in a particular program.

Modules can be decomposed using facilities specified in this technical report so that is easier for each program
unit’s author to control how module procedures are allocated among object files.

0.2 Disadvantage of using this facility

Translator systems will find it more difficult to carry out inter-procedural optimizations if the program uses
the facility specified in this technical report. When translator systems become able to do inter-procedural
optimization in the presence of this facility, it is likely that requesting inter-procedural optimization will
cause compilation cascades in the first situation mentioned in section 0.1.2, even if this facility is used.
Although one advantage of this facility could perhaps be nullified in the case when users request inter-
procedural optimization, it would remain if users do not request inter-procedural optimization, and the
other advantages remain in any case.

iv

TECHNICAL REPORT 19767 J3/02-277

Information technology – Programming Languages – Fortran

Technical Report: Enhanced Module Facilities

1 General

1.1 Scope1

This technical report specifies an extension to the module facilities of the programming language Fortran.2

The current Fortran language is specified by the international standard ISO/IEC 1539-1 : Fortran. The3

extension allows program authors to develop the implementation details of concepts in new program units,4

called submodules, that cannot be accessed directly by use association. In order to support submodules,5

the module facility of international standard ISO/IEC 1539-1 is changed by this technical report in such6

a way as to be upwardly compatible with the module facility specified by international standard ISO/IEC7

1539-1.8

Clause 2 of this technical report contains a general and informal but precise description of the extended9

functionalities. Clause 3 contains detailed editorial changes that would implement the revised language10

specification if they were applied to the current international standard.11

1.2 Normative References12

The following standards contain provisions that, through reference in this text, constitute provisions of this13

technical report. For dated references, subsequent amendments to, or revisions of, any of these publications14

do not apply. Parties to agreements based on this technical report are, however, encouraged to investigate the15

possibility of applying the most recent editions of the normative documents indicated below. For undated16

references, the latest edition of the normative document referenced applies. Members of IEC and ISO17

maintain registers of currently valid International Standards.18

ISO/IEC 1539-1 : Information technology - Programming Languages - Fortran19

1

J3/02-277 TECHNICAL REPORT 19767

2 Requirements1

The following subclauses contain a general description of the extensions to the syntax and semantics of the2

current Fortran programming language to provide facilities for submodules, and to separate subprograms3

into interface and implementation parts.4

2.1 Summary5

This technical report defines a new entity and modifications of two existing entities.6

The new entity is a program unit, the submodule. As its name implies, a submodule is logically part of a7

module, and it depends on that module. A new variety of interface bodies, a module interface body, and a8

new variety of procedure, a separate module procedure, are described below.9

By putting a module interface body in a module and its corresponding separate module procedure in a10

submodule, program units that access the module interface body by use association do not depend on the11

procedure’s body. Rather, the procedure’s body depends on its interface body.12

2.2 Submodules13

A submodule is a program unit that is dependent on and subsidiary to a module or another submodule.14

A module or submodule may have several subsidiary submodules. If it has subsidiary submodules, it is the15

parent of those subsidiary submodules, and each of those submodules is a child of its parent.16

An ancestor of a submodule is that submodule, or an ancestor of its parent. A descendant of a module17

or submodule is that program unit, or a descendant of a child of that program unit.18

A submodule is introduced by a statement of the form SUBMODULE (parent-name) submodule-name, and19

terminated by a statement of the form END SUBMODULE submodule-name. The parent-name is the name of20

the parent module or submodule.21

Identifiers in a submodule are effectively PRIVATE, except for the names of separate module procedures22

that correspond to public module interface bodies in the parent module. It is not possible to access entities23

declared in the specification part of a submodule by use association because a USE statement is required to24

specify a module, not a submodule. ISO/IEC 1539-1 permits PRIVATE and PUBLIC declarations only in25

a module, and this technical report does not propose to change that specification.26

In all other respects, a submodule is identical to a module.27

2

TECHNICAL REPORT 19767 J3/02-277

2.3 Separate module procedure and its corresponding module interface body1

A module interface body is different from an interface body defined by ISO/IEC 1539-1 in three respects.2

First, it has a MODULE prefix in the subroutine statement or function statement that introduces the interface3

body. Second, in addition to specifying a procedure’s characteristics and dummy argument names, a module4

interface body specifies that its corresponding procedure body is in a descendant of the module or submodule5

in which it appears. Third, unlike an ordinary interface body, it accesses the module or submodule in which6

it is declared by host association.7

If a module procedure has the same name as a module interface body declared in an ancestor module or8

submodule, the procedure is a separate module procedure that corresponds to the module interface9

body. Its characteristics and dummy argument names are declared by its corresponding interface body. The10

procedure is accessible if and only if its interface body is accessible.11

Some or all of the characteristics and dummy argument names may be redeclared in the module subprogram12

that defines the separate module procedure. If any dummy arguments are redeclared, all shall be redeclared,13

and shall have the same names and characteristics as in the interface body. Any other characteristics of the14

module procedure that are declared in the module subprogram shall be the same as those declared in its15

interface body.16

If the procedure is a function, the result variable name is determined by the declaration of the module17

subprogram, not by the module interface body. If the module interface body declares a result variable name18

different from the function name, that declaration is ignored, except for its use in specifying the result19

variable characteristics.20

2.4 Examples of modules with submodules21

The example module POINTS below declares a type POINT and an interface body for a module function22

POINT DIST. Because the interface body includes the MODULE prefix, it accesses the scoping unit of the23

module by host association, without needing an IMPORT statement. The declaration of the result variable24

name DISTANCE serves only as a vehicle to declare the result characteristics; the name is otherwise ignored.25

MODULE POINTS26

TYPE :: POINT27

REAL :: X, Y28

END TYPE POINT29

30

INTERFACE31

MODULE FUNCTION POINT_DIST (A, B) RESULT (DISTANCE)32

TYPE(POINT), INTENT(IN) :: A, B ! Accessed by host association33

REAL :: DISTANCE34

END FUNCTION POINT_DIST35

END INTERFACE36

END MODULE POINTS37

3

J3/02-277 TECHNICAL REPORT 19767

The example submodule POINTS A below is a submodule of the POINTS module. The scope of the type1

name POINT extends into the submodule; it cannot be redefined in the submodule. The characteristics of2

the function POINT DIST can be redeclared in the module function body, or taken from the module interface3

body in the POINTS module. The fact that POINT DIST is accessible by use association results from the fact4

that there is a module interface body of the same name in the ancestor module.5

SUBMODULE (POINTS) POINTS_A6

CONTAINS7

REAL FUNCTION POINT_DIST (P, Q) RESULT (HOW_FAR)8

TYPE(POINT), INTENT(IN) :: P, Q9

HOW_FAR = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)10

END FUNCTION POINT_DIST11

END SUBMODULE POINTS_A12

An alternative declaration of the example submodule POINTS A shows that it is not necessary to redeclare the13

characteristics of the module procedure POINT DIST. The result variable name is POINT DIST, even though14

the module interface body specifies a different result variable name.15

SUBMODULE (POINTS) POINTS_A16

CONTAINS17

FUNCTION POINT_DIST18

TYPE(POINT), INTENT(IN) :: P, Q19

POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)20

END FUNCTION POINT_DIST21

END SUBMODULE POINTS_A22

2.5 Relation between modules and submodules23

Public entities of a module, including module interface bodies, can be accessed by use association. The only24

entities of submodules that are accessible by use association are separate module procedures for which there25

is a corresponding publicly accessible module interface body.26

A submodule accesses the scoping unit of its parent module or submodule by host association. Therefore, all27

entities accessible in a parent module or submodule, including private entities and module interface bodies28

for separate module procedures in different submodules, are accessible within each subsidiary submodule.29

4

TECHNICAL REPORT 19767 J3/02-277

3 Required editorial changes to ISO/IEC 1539-11

The following editorial changes, if implemented, would provide the facilities described in foregoing sections of2

this report. Descriptions of how and where to place the new material are enclosed between square brackets.3

[After the third right-hand-side of syntax rule R202, at 9:12+, insert:]4

or submodule5

[After syntax rule R1104, at 9:34+, add the following syntax rule. This is a quotation of the “real” syntax6

rule in subclause 11.2.3.]7

submodule is submodule-stmt8

[specification-part]9

[module-subprogram-part]10

end-submodule-stmt11

[In the second line of the first paragraph of subclause 2.2, at 11:42, insert “, a submodule” after “module”.]12

[In the fourth line of the first paragraph of subclause 2.2, at 11:44, insert a new sentence:]13

A submodule is an extension of a module; it may contain the definitions of procedures declared in a module14

or another submodule.15

[In the sixth line of the first paragraph of subclause 2.2, at 11:46, insert “, a submodule” after “module”.]16

[In the penultimate line of the first paragraph of subclause 2.2, at 11:48, insert “or submodule” after “mod-17

ule”.]18

[Replace the second sentence of 2.2.3.2, at 12:27-29, by the following sentence.]19

A module procedure may be invoked from within any scoping unit that accesses its declaration (12.3.2.1) or20

definition (12.5).21

[Insert the following note at the end of 2.2.3.2, at 12:30+.]22

NOTE 2.2 1
2

The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by host
association.

5

J3/02-277 TECHNICAL REPORT 19767

[Insert a new subclause at 13:17+:]1

2.2.5 Submodule2

A submodule contains definitions (12.5) for procedures whose interfaces are declared (12.3.2.1) in its parent3

module or submodule. It may also contain declarations and definitions of entities that are accessible to and4

used by descendant submodules. An entity declared in a submodule is not accessible by use association, but5

a procedure that is declared in a module and defined in one of that module’s submodules is accessible by6

use association.7

[In the second line of the first row of Table 2.1 on page 14, insert “, SUBMODULE” after “MODULE”.]8

[On page 14, change the heading of the third column of Table 2.2 from “Module” to “Module or Submodule”.]9

[In the second footnote to Table 2.2 on page 14, insert “or submodule” after “module” and change “the10

module” to “it”.]11

[In the last line of 2.3.3, at 15:3, insert “, end-submodule-stmt” after “end-module-stmt”.]12

[In the first line of the second paragraph of 2.4.3.1.1, at 17:4, insert “, submodule” after “module”.]13

[At the end of 3.3.1, immediately before 3.3.1.1 on page 28, add “END SUBMODULE” to the list of adjacent14

keywords where blanks are optional.]15

[In the third line of the first paragraph of 4.5.1.8, at 50:22, replace “itself” by “and all of its descendant16

submodules”.]17

[In the last line of the second paragraph of 4.5.1.8, at 50:28, after “definition” add “and all of its descendant18

submodules”.]19

[In the last line of the fourth paragraph of 4.5.1.8, at 51:6, after “definition” add “and all of its descendant20

submodules”.]21

[In the last line of the first paragraph after Note 4.34, at 51:8, after “definition” add “and all of its descendant22

submodules”.]23

[In the last line of Note 4.37 on page 51, after “module” add “and all of its descendant submodules”.]24

6

TECHNICAL REPORT 19767 J3/02-277

[In the last line of Note 4.38 on page 51, after “defined” add “, and all of its descendant submodules”.]1

[In the last line of Note 4.39 on page 52, after “definition” add “and all of its descendant submodules”.]2

[In the third line of the second paragraph of 4.5.10.1, at 60:19, insert “or submodule” after “module”. In3

the third and fourth line, replace “referencng the module” by “that has access to that program unit”.]4

[In the first line of the second paragraph of Note 4.58, on page 61, insert “or submodule” after “module”.]5

[In constraint C531, at 69:33, insert “or submodule” after “module”.]6

[In the first line of the second paragraph of 5.1.2.12, at 81:26, insert “, or any of its descendant submodules”7

after “attribute”.]8

[In the first line of the second paragraph of 5.1.2.13, at 82:9, insert “or any of its descendant submodules”9

after “module”.]10

[In constraint C558, at 85:10, insert “or submodule” after “module”.]11

[After the second paragraph after constraint C580, at 91:7+, insert the following note.]12

[In the third line of the penultimate paragraph of 6.3.1.1, at 111:15, replace “or a subobject thereof” by “or13

submodule, or a subobject thereof,”.]14

[In the first line of the first paragraph after Note 6.22, at 113:9, insert “or submodule” after “module”.]15

[In the fourth item in the list in 6.3.3.2, at 115:10, insert “or submodule” after the first “module”.]16

[In the second line of the first paragraph of Section 11, at 245:3, insert “, a submodule” after “module”.]17

[In the first line of the second paragraph of Section 11, at 245:4, insert “, submodules” after “modules”.]18

[In constraint C1105, at 246:20, insert “or submodule” after “module”.]19

[In constraint C1106, at 246:22, insert “or submodule” after “module”.]20

[In constraint C1107, at 246:24, insert “or submodule” after “module”.]21

7

J3/02-277 TECHNICAL REPORT 19767

[Within the first paragraph of 11.2.1, at its end at 247:4, insert the following sentence:]1

A submodule shall not reference its ancestor module by use association, either directly or indirectly.2

[Then insert the following note:]3

NOTE 11.6 1
2

It is possible for submodules of different modules to access each others’ ancestor modules.

[After constraint C1109, at 247:36+, insert an additional constraint:]4

Constraint: If the USE statement appears within a submodule, module-name shall not be the name of the5

ancestor module of the submodule.6

[Insert a new subclause immediately before 11.3, at 249:6-:]7

11.2.3 Submodules8

A submodule is a program unit that depends on a module or another submodule. It may provide definitions9

for module procedures that are declared in or accessible by host association in the module or submodule on10

which it depends, and declarations and definitions of other entities that are accessible by host association in11

submodules subsidiary to it.12

submodule is submodule-stmt13

[specification-part]14

[module-subprogram-part]15

end-submodule-stmt16

submodule-stmt is SUBMODULE (parent-name) submodule-name17

end-submodule-stmt is END [SUBMODULE [submodule-name]]18

Constraint: The parent-name shall be the name of a submodule or a nonintrinsic module.19

Constraint: The submodule-name shall not be the same as parent-name.20

Constraint: If a submodule-name is specified in the end-submodule-stmt, it shall be identical to the submodule-21

name specified in the submodule-stmt.22

The program unit on which a submodule depends is its parent module or submodule; its parent is specified23

by the parent-name in the submodule-stmt. A submodule is a child of its parent. An ancestor of a24

submodule is that submodule or an ancestor of its parent. A descendant of a module or submodule is that25

program unit or a descendant of one of its child submodules.26

8

TECHNICAL REPORT 19767 J3/02-277

A submodule accesses the scoping unit of its parent module or submodule by host association.1

NOTE 11.12 1
2

A procedure in a module or submodule has access to every entity in its ancestor program units. Even if
no other program unit has access to the module or submodule, there may be an active procedure invoked
by way of a procedure pointer or by means other than Fortran that has access to it. This may affect
finalization (4.5.10.1) or undefinition (6.3.3.2, 16.4.2.1.3, 16.5.6).

[In the third line of the second paragraph of 12.3, at 253:15, replace “, but” by “. If the dummy arguments2

are redeclared in a separate module procedure body (12.5.2.5) they shall have the same names as in the3

corresponding module interface body (12.3.2.1); otherwise”.]4

[Add a new constraint after Constraint C1211 on page 255, at 255:26+.]5

Constraint: (R1209) An IMPORT statement shall not appear within a module procedure interface body.6

[After the third paragraph after constraint C1211 on page 255, at 255:35+, insert the following paragraph7

and note.]8

An interface body introduced by a function-stmt or subroutine-stmt that has a prefix in which MODULE9

appears is a module interface body. A separate module procedure (12.5.2.5) is accessible if and only if10

its corresponding module interface body is accessible. If its definition does not appear within the module-11

subprogram-part of the program unit in which the module interface body is declared, or one of its descendant12

submodules (11.2.3), the interface may be used but the procedure shall not be used in any way.13

NOTE 12.3 1
2

A module interface body shall not appear except within a specific or generic interface block within the
specification-part of a module or submodule.

[In the first sentence of the fourth paragraph after constraint C1211 on page 255, at 255:36, insert “, that is14

not a module interface body,” after “block”.]15

[In the first paragraph on page 256, move the sentence “An interface for a procedure named by an ENTRY16

statement may be specified by using the entry name as the procedure name in the interface body” to be a17

paragraph in its own right after Note 12.4.]18

[In the first paragraph after Note 12.6 on page 257, at 257:3-4, delete the sentence “The characteristics of19

module procedures are not given in interface blocks, but are assumed from the module subprograms.”]20

[After the first paragraph after Note 12.7 on page 258, at 258:2+, insert the following paragraph.]21

9

J3/02-277 TECHNICAL REPORT 19767

The characteristics of a module procedure may be specified by a module interface body, by the module1

procedure’s declaration, or both.2

[Add a fourth right-hand side for syntax rule R1228 on page 275, at 275:34+.]3

or MODULE [(module-or-submodule-name)]4

[Add the following constraint after constraint C1243 on page 275, at 275:38+.]5

Constraint: (R1227) MODULE shall not appear in a prefix except within subroutine-stmt or function-stmt6

that introduces an interface body that is directly within a specific or generic interface block that7

is in turn directly within the specification-part of a module.8

[Insert a new paragraph and a note immediately before Note 12.38 on page 276, at 276:33+]9

The optional module-or-submodule-name in the MODULE prefix shall be the name of the module or sub-10

module in which the separate module procedure definition appears (12.5.2.5).11

NOTE 12.37 1
2

The purpose of the optional module-or-submodule-name in the MODULE prefix is to allow processors
to inline module procedures that have separate bodies. It is also useful to those maintaining a program.
If it is not specified, the separate module procedure definition may not yet exist, it may be in the same
program unit as the interface body, or it may be in an unspecified submodule – which makes it difficult
to find.

[Insert a new subclause before 12.5.2.5 on page 280, at 280:14-, and renumber succeeding subclauses appro-12

priately.]13

12.5.2.5 Separate module procedure definition14

A separate module procedure is a module procedure that has the same name as a module interface body15

(12.3.2.1) in an ancestor module or submodule of the scoping unit in which the procedure is defined. That16

module interface body is the corresponding module interface body of the separate module procedure.17

NOTE 12.40 1
3

A separate module procedure can be accesseed by use association if and only if its corresponding module
interface body can be accessed by use association.

A module subprogram that defines a separate module procedure may respecify any of the characteristics18

declared in its corresponding module interface body. If any dummy arguments are respecified in the module19

subprogram, they shall all be respecified, in the same order and each with the same name and characteristics20

as specified in the corresponding module interface body. If a characteristic is specified in the corresponding21

10

TECHNICAL REPORT 19767 J3/02-277

module interface body but it is not specified in the module subprogram, the module procedure nonetheless1

has that characteristic. A characteristic that is specified in the module subprogram that defines a separate2

module procedure shall be specified in its corresponding module interface body.3

NOTE 12.40 2
3

As specified in 12.3.2.1, specifications within an interface body that do not specify characteristics or
dummy argument names have no effect. Therefore, if a separate module procedure is to be recursive,
or it is to have a result name different from the function name, these properties must necessarily be
specified within the module subprogram.

[In the first line of the first paragraph after syntax rule R1236 in 12.5.2.6, at 280:27, insert “, submodule”4

after “module”,]5

[In the first line of the first paragraph of 16.4.1.3, at 400:32, insert “, module interface body” after “module6

subprogram”. In the second line, insert “that is not a module interface body” after “interface body”.]7

[In item 2 of 16.5.6, at 411:30, insert “or submodule” after “module”.]8

[In item 4c of 16.5.6, at 411:38-39, insert “or submodule” after the first “module” and replace the second9

“module” by “that scoping unit”.10

[Replace Note 16.18 by the following.]11

NOTE 16.18
A module subprogram inherently references the module or submodule that is its host. Therefore, for
processors that keep track of when modules or submodules are in use, one is in use whenever any
procedure in it or any of its descendant submodules is active, even if no other active scoping units
reference its ancestor module; this situation can arise if a module procedure is invoked via a procedure
pointer or by means other than Fortran.

[In item 4d of 16.5.6, at 411:40-41, insert “or submodule” after the first “module” and replace the second12

“module” by “that scoping unit”.13

[Insert the following definitions into the glossary in alphabetical order:]14

ancestor (11.2.3) : A module or submodule, or an ancestor of the parent of that module or submodule. 415:12+15

child (11.2.3) : A submodule, when considered in its relation to the module or submodule upon which it 416:40+16

depends.17

descendant (11.2.3) : A module or submodule, or a descendant of a child of that module or submodule. 418:22+18

11

J3/02-277 TECHNICAL REPORT 19767

parent (11.2.3) : A module or submodule, when considered in its relation to the submodules that depend1

upon it.2

submodule (2.2.5, 11.2.3) : A program unit that depends on a module or another submodule; it extends3

the program unit on which it depends.4

[Insert a new subclause immediately before C.9, at 465:33+:]5

C.8.3.9 Modules with submodules6

Each submodule specifies that it is the child of exactly one parent module or submodule. Therefore, a module7

and all of its descendant submodules stand in a tree-like relationship one to another.8

If a module interface body is specified in a module, and it has public accessibility, and its corresponding9

separate module procedure is defined by a subprogram in a descendant of that module, the procedure can10

be accessed by use association. No other entity in a submodule can be accessed by use association. Each11

program unit that accesses a module by use association depends on it, and each submodule depends on its12

ancestor module. Therefore, one can change a procedure body in a submodule without any possibility of13

changing the interface of the procedure. If a tool for automatic program translation is used, and even if it14

exploits the relative modification times of files as opposed to comparing the result of translating the module15

to the result of a previous translation, modifying a submodule cannot result in the tool deciding to reprocess16

program units that access the module by use association.17

This is not the end of the story. By constructing taller trees, one can put entities at intermediate levels18

that are shared by submodules at lower levels, and have no possibility to affect anything that is accessible19

from the module by use association. Developers of modules that embody large complicated concepts can20

exploit this possibility to organize components of the concept into submodules, while preserving the privacy21

of entities that ought not to be exposed to users of the module and preventing cascades of reprocessing.22

The following example illustrates a module, color points, with a submodule, color points a, that in turn23

has a submodule, color points b. Public entities declared within color points can be accessed by use24

association. Except for the characteristics and dummy argument names of separate module procedures that25

have module interface bodies that are accessible by use association, the submodules color points a and26

color points b can be changed without causing the appearance that the module color points might have27

changed.28

The module color points does not have a contains-part, but a contains-part is not prohibited. It could29

be published as definitive specification of the interface, without revealing trade secrets contained within30

color points a or color points b. Of course, a similar module without the module prefix in the interface31

bodies would serve equally well as documentation – but the procedures would be external prodcedures.32

It wouldn’t make any difference to the consumer, but the developer would forfeit all of the advantages of33

modules.34

module color_points35

36

type color_point37

12

TECHNICAL REPORT 19767 J3/02-277

private1

real :: x, y2

integer :: color3

end type color_point4

5

interface ! Interfaces for procedures with separate6

! bodies in the submodule color_points_a7

module subroutine color_point_del (p) ! Destroy a color_point object8

type(color_point) :: p9

end subroutine color_point_del10

! Distance between two color_point objects11

real module function color_point_dist (a, b)12

type(color_point) :: a, b13

end function color_point_dist14

module subroutine color_point_draw (p) ! Draw a color_point object15

type(color_point) :: p16

end subroutine color_point_draw17

module subroutine color_point_new (p) ! Create a color_point object18

type(color_point) :: p19

end subroutine color_point_new20

end interface21

22

end module color_points23

The only entities within color points a that can be accessed by use association are separate module pro-24

cedures for which module interface bodies are provided in color points. If the procedures are changed but25

their interfaces are not, the interface from program units that access them by use association is unchanged.26

If the module and submodule are in separate files, utilities that examine the time of modification of a file27

would notice that changes in the module could affect the translation of its submodules or of program units28

that access the module by use association, but that changes in submodules could not affect the translation29

of the parent module or program units that access it by use association.30

The variable instance count is not accessible by use association of color points, but is accessible within31

color points a, and its submodules.32

submodule (color_points) color_points_a ! Submodule of color_points33

34

integer, save :: instance_count = 035

36

interface ! Interface for a procedure with a separate37

! body in submodule color_points_b38

module subroutine inquire_palette (pt, pal)39

use palette_stuff ! palette_stuff, especially submodules40

! thereof, can access color_points by use41

! association without causing a circular42

13

J3/02-277 TECHNICAL REPORT 19767

! dependence because this use is not in the1

! module. Furthermore, changes in the module2

! palette_stuff are not accessible by use3

! association of color_points4

type(color_point), intent(in) :: pt5

type(palette), intent(out) :: pal6

end subroutine inquire_palette7

8

end interface9

10

contains ! Invisible bodies for public interfaces declared in the module11

12

subroutine color_point_del ! (p)13

instance_count = instance_count - 114

deallocate (p)15

end subroutine color_point_del16

function color_point_dist result(dist) ! (a, b)17

dist = sqrt((b%x - a%x)**2 + (b%y - a%y)**2)18

end function color_point_dist19

subroutine color_point_new ! (p)20

instance_count = instance_count + 121

allocate (p)22

end subroutine color_point_new23

24

end submodule color_points_a25

The subroutine inquire palette is accessible within color points a because its interface is declared26

therein. It is not, however, accessible by use association, because its interface is not declared in the module,27

color points. Since the interface is not declared in the module, changes in the interface cannot affect the28

translation of program units that access the module by use association.29

submodule (color_points_a) color_points_b ! Subsidiary**2 submodule30

31

contains ! Invisible body for interface declared in the parent submodule32

subroutine color_point_draw ! (p)33

! Its interface is defined in an ancestor.34

type(palette) :: MyPalette35

...; call inquire_palette (p, MyPalette); ...36

end subroutine color_point_draw37

subroutine inquire_palette38

! "use palette_stuff" not needed because it’s in the parent submodule39

... implementation of inquire_palette40

end subroutine inquire_palette41

subroutine private_stuff ! not accessible from color_points_a42

...43

14

TECHNICAL REPORT 19767 J3/02-277

end subroutine private_stuff1

2

end submodule color_points_b3

4

module palette_stuff5

type :: palette ; ... ; end type palette6

contains7

subroutine test_palette (p)8

! Draw a color wheel using procedures from the color_points module9

type(palette), intent(in) :: p10

use color_points ! This does not cause a circular dependency because11

! the "use palette_stuff" that is logically within12

! color_points is in the color_points_a submodule.13

...14

end subroutine test_palette15

end module palette_stuff16

There is a use palette stuff in color points a, and a use color points in palette stuff. The use17

palette stuff would cause a circular reference if it appeared in color points. In this case it does not18

cause a circular dependence because it is in a submodule. Submodules are not accessible by use association,19

and therefore what would be a circular appearance of use palette stuff is not accessed.20

21

program main22

use color_points23

! "instance_count" and "inquire_palette" are not accessible here24

! because they are not declared in the "color_points" module.25

! "color_points_a" and "color_points_b" cannot be accessed by26

! use association.27

interface (draw) ! just to demonstrate it’s possible28

module procedure color_point_draw29

end interface30

type(color_point) :: C_1, C_231

real :: RC32

...33

call color_point_new (c_1) ! body in color_points_a, interface in color_points34

...35

call draw (c_1) ! body in color_points_b, specific interface36

! in color_points, generic interface here.37

...38

rc = color_point_dist (c_1, c_2) ! body in color_points_a, interface in color_points39

...40

call color_point_del (c_1) ! body in color_points_a, interface in color_points41

...42

end program main43

15

J3/02-277 TECHNICAL REPORT 19767

Multilevel submodule systems can be used to package and organize a large and interconnected concept1

without exposing entities of one subsystem to other subsystems.2

Consider a Plasma module from a Tokomak simulator. A plasma simulation requires attention at least to3

fluid flow, thermodynamics, and electromagnetism. Fluid flow simulation requires simulation of subsonic,4

supersonic, and hypersonic flow. This problem decomposition can be reflected in the submodule structure5

of the Plasma module:6

Plasma module7

|8

|---------------------|---------------------|9

| | |10

Flow submodule Thermal submodule Electromagnetics11

| Submodule12

|-------------------|-------------------|13

| | |14

Subsonic Supersonic Hypersonic15

Entities can be shared among the Subsonic, Supersonic, and Hypersonic submodules by putting them16

within the Flow submodule. One then need not worry about accidental use of these entities by the Thermal17

or Electromagneticsmodules, or the development of a dependency of correct operation of those subsystems18

upon the representation of entities of the Flow subsystem as a consequence of maintenance.19

16

