~ W N =

10
11
12
13

14
15
16

17
18
19

20
21

22

23
24
25
26
27
28
29
30
31

18" March 03 4.5 REPLACEMENT J3/03-166

(\AND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (.NEQV.)
as described in 7.2.4. There is also a set of intrinsically defined relational operators that compare the
values of data entities of other types and yield a value of type default logical. These operations are
described in 7.2.3.

4.5 Derived types

Additional types may be derived from the intrinsic types and other derived types. A type definition is
required to define the name of the type and the names and attributes of its components.

The type specifier for a derived type uses the keyword TYPE followed by the name of the type in
parentheses (R503).

A derived type may be parameterized by multiple type parameters, each of which is defined to be either
a kind or nonkind type parameter. There is no concept of a default value for a type parameter of a
derived type; it is required to explicitly specify, assume, or defer the values of all type parameters of a
derived-type entity.

The ultimate components of an object of derived type are the components that are of intrinsic type
or have the POINTER or ALLOCATABLE attribute, plus the ultimate components of the components
of the object that are of derived type and have neither the ALLOCATABLE nor POINTER attribute.

NOTE 4.17

The ultimate components of objects of the derived type kids defined below are name, age, and
other kids.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids
type(person) :: oldest_child
type(person), allocatable, dimension(:) :: other_kids

end type kids

By default, no storage sequence is implied by the order of the component definitions. However, a storage
order is implied for a sequence type (4.5.1.2). If the derived type has the BIND attribute, the storage
sequence is that required by the companion processor (2.5.10, 15.2.3).

A derived type may have procedures bound to it. A type-bound procedure is accessed via an object of
the type.

4.5.1 Derived-type definition

R423 derived-type-def is derived-type-stmt
[type-param-def-stmt | ...
[private-or-sequence | ...
[component-part |
[type-bound-procedure-part |
end-type-stmt

R424 derived-type-stmt is TYPE [[, type-attr-spec-list | :: | type-name A
B [(type-param-name-list) |
R425 type-attr-spec is access-spec

18" March 03 4.5 REPLACEMENT 41

~ W N =

(&)

10

11
12

13
14

15

16
17

18

19

20
21
22
23
24

25
26

27
28

J3/03-166 4.5 REPLACEMENT 18" March 03

or EXTENSIBLE

or EXTENDS ([access-spec :: | parent-type-name B
B [= initialization-expr |)

or BIND (C)

C414 (R424) A derived type type-name shall not be the same as the name of any intrinsic type defined
in this standard.

C415 (R424) The same type-attr-spec shall not appear more than once in a given derived-type-stmt.
C416 (R424) EXTENSIBLE and EXTENDS shall not both appear.

C417 (R425) A parent-type-name shall be the name of an accessible extensible type (4.5.6).

C418 (R423) If EXTENDS or EXTENSIBLE appears, neither BIND(C) nor SEQUENCE shall appear.
R426 private-or-sequence is private-components-stmt

or sequence-stmit

C419 (R423) The same private-or-sequence shall not appear more than once in a given derived-type-
def .

R427 end-type-stmt is END TYPE | type-name |

C420 (R427) If END TYPE is followed by a type-name, the type-name shall be the same as that in
the corresponding derived-type-stmit.

Derived types with the BIND attribute are subject to additional constraints as specified in 15.2.3.

NOTE 4.18
An example of a derived-type definition is:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:

TYPE (PERSON) :: CHAIRMAN

4.5.1.1 Accessibility

Types that are defined in a module or accessibile in that module by use association have either the
PUBLIC or PRIVATE attribute. Types for which an access-spec is not explicitly specified in that
module have the default accessibility attribute for that module. The default accessibility attribute for a
module is PUBLIC unless it has been changed by a PRIVATE statement (5.2.1). Only types that have
the PUBLIC attribute in that module are available to be accessed from that module by USE association.

The accessibility of a type does not affect, and is not affected by, the accessibility of its components and
bindings.

If a type definition is private, then the type name, and thus the structure constructor (4.5.9) for the
type, are accessible only within the module containing the definition.

42 4.5 REPLACEMENT 18" March 03

©O© 0w N O

10
11
12

18" March 03 4.5 REPLACEMENT J3/03-166

NOTE 4.19

An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC
CHARACTER (LEN = 20) :: MESSAGE

END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined.

4.5.1.2 Sequence type
R428 sequence-stmt is SEQUENCE

C421 (R431) If SEQUENCE appears, all derived types specified in component definitions shall be
sequence types.

C422 (R423) If SEQUENCE appears, a type-bound-procedure-part shall not appear.

If the SEQUENCE statement is present, the type is a sequence type. The order of the component
definitions in a sequence type specifies a storage sequence for objects of that type. If there are no type
parameters and all of the ultimate components of objects of the type are of type default integer, default
real, double precision real, default complex, or default logical and are not pointers or allocatable, the
type is a numeric sequence type. If there are no type parameters and all of the ultimate components
of objects of the type are of type default character and are not pointers or allocatable, the type is a
character sequence type.

NOTE 4.20

An example of a numeric sequence type is:

TYPE NUMERIC_SEQ

SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL

LOGICAL :: LOG_VAL
END TYPE NUMERIC_SEQ

NOTE 4.21

A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE
statement, the use of this terminology in no way implies that these components are stored in
this, or any other, order. Nor is there any requirement that contiguous storage be used. The
sequence merely refers to the fact that in writing the definitions there will necessarily be an order
in which the components appear, and this will define a sequence of components. This order is of
limited significance since a component of an object of derived type will always be accessed by a
component name except in the following contexts: the sequence of expressions in a derived-type
value constructor, intrinsic assignment, the data values in namelist input data, and the inclusion
of the structure in an input/output list of a formatted data transfer, where it is expanded to this
sequence of components. Provided the processor adheres to the defined order in these cases, it is
otherwise free to organize the storage of the components for any nonsequence structure in memory
as best suited to the particular architecture.

18" March 03 4.5 REPLACEMENT 43

w

©O© 0 N o OB

10
11

J3/03-166 4.5 REPLACEMENT 18" March 03

4.5.1.3 Determination of derived types

Derived-type definitions with the same type name may appear in different scoping units, in which case
they may be independent and describe different derived types or they may describe the same type.

Two data entities have the same type if they are declared with reference to the same derived-type
definition. The definition may be accessed from a module or from a host scoping unit. Data entities in
different scoping units also have the same type if they are declared with reference to different derived-type
definitions that specify the same type name, all have the SEQUENCE property or all have the BIND
attribute, have no components with PRIVATE accessibility, and have type parameters and components
that agree in order, name, and attributes. Otherwise, they are of different derived types. A data entity
declared using a type with the SEQUENCE property or with the BIND attribute is not of the same type
as an entity of a type declared to be PRIVATE or that has any components that are PRIVATE.

NOTE 4.22
An example of declaring two entities with reference to the same derived-type definition is:

TYPE POINT
REAL X, Y
END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)
CONTAINS
SUBROUTINE SUB (A)
TYPE (POINT) :: A

END SUBROUTINE SUB

The definition of derived type POINT is known in subroutine SUB by host association. Because
the declarations of X1 and A both reference the same derived-type definition, X1 and A have the
same type. X1 and A also would have the same type if the derived-type definition were in a module
and both SUB and its containing program unit accessed the module.

NOTE 4.23
An example of data entities in different scoping units having the same type is:

PROGRAM PGM
TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME
END TYPE EMPLOYEE
TYPE (EMPLOYEE) PROGRAMMER
CALL SUB (PROGRAMMER)

END PROGRAM PGM
SUBROUTINE SUB (POSITION)
TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

44 4.5 REPLACEMENT 18" March 03

10

11

12
13
14

15
16
17

18" March 03 4.5 REPLACEMENT J3/03-166

NOTE 4.23 (cont.)

END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION

END SUBROUTINE SUB

The actual argument PROGRAMMER and the dummy argument POSITION have the same type
because they are declared with reference to a derived-type definition with the same name, the
SEQUENCE property, and components that agree in order, name, and attributes.

Suppose the component name ID_NUMBER was ID_NUM in the subroutine. Because all the
component names are not identical to the component names in derived type EMPLOYEE in the
main program, the actual argument PROGRAMMER would not be of the same type as the dummy
argument POSITION. Thus, the program would not be standard conforming.

NOTE 4.24

The requirement that the two types have the same name applies to the type-names of the respective
derived-type-stmts, not to type-alias names or to local names introduced via renaming in USE
statements.

4.5.2 Derived-type parameters

R429 type-param-def-stmt is INTEGER [kind-selector | , type-param-attr-spec :: B
B type-param-name-list
C423 (R429) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the

type-param-names in the derived-type-stmt of that derived-type-def.

C424 (R429) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear as a

type-param-name in a type-param-def-stmt in that derived-type-def .
R430 type-param-attr-spec is KIND
or NONKIND
The derived type is parameterized if the derived-type-stmt has any type-param-names.

Each type parameter is itself of type integer.

A type parameter is either a kind type parameter or a nonkind type parameter (4.2). If it is a kind
parameter it is said to have the KIND attribute. Its type-param-attr-spec explicitly specifies whether a
type parameter is kind or nonkind.

A type parameter may be used as a primary in a specification expression (7.1.6) in the derived-type-
def. A kind type parameter may also be used as a primary in an initialization expression (7.1.7) in the
derived-type-def .

NOTE 4.25

The following example uses derived-type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k
INTEGER (selected_int_kind(12)), NONKIND :: d
!-— Specify a nondefault kind for d.

18" March 03 4.5 REPLACEMENT 45

w

N~ o oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26

27
28

29
30
31

32
33

J3/03-166 4.5 REPLACEMENT 18" March 03

NOTE 4.25 (cont.)

REAL(k) :: element(d,d)
END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of
procedures distinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

4.5.2.1 Type parameter order

Type parameter order is an ordering of the type parameters of a derived type; it is used for derived-
type specifiers.

The type parameter order of a nonextended type is the order of the type parameter list in the derived-
type definition. The type parameter order of an extended type consists of the type parameter order of
its parent type followed by any additional type parameters in the order of the type parameter list in the
derived-type definition.

4.5.3 Components

R431 component-part is [component-def-stmt | ...
R432 component-def-stmt is data-component-def-stmt
or proc-component-def-stmt
R433 data-component-def-stmi is declaration-type-spec [[, component-attr-spec-list | :: | B
B component-decl-list
R434 component-attr-spec is POINTER
or DIMENSION (component-array-spec)
or ALLOCATABLE
or access-spec

R435 component-decl is component-name [(component-array-spec) | W
B [* char-length | [component-initialization]
R436 component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list
R437 component-initialization is = initialization-expr

or => null-init
C425 (R433) No component-attr-spec shall appear more than once in a given component-def-stmt.

C426 (R433) A component declared with the CLASS keyword (5.1.1.8) shall have the ALLOCATABLE
or POINTER, attribute.

C427 (R433) If the POINTER attribute is not specified for a component, the declaration-type-spec in
the component-def-stmt shall specify an intrinsic type or a previously defined derived type.

C428 (R433) If the POINTER attribute is specified for a component, the declaration-type-spec in the
component-def-stmt shall specify an intrinsic type or any accessible derived type including the
type being defined.

C429 (R433) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec
shall be a deferred-shape-spec-list.

46 4.5 REPLACEMENT 18" March 03

10

11
12

13
14
15

16
17

18
19
20
21

22
23

24

25
26

27
28

29

30

31
32
33
34

18" March 03 4.5 REPLACEMENT J3/03-166

C430 (R433) If neither the POINTER attribute nor the ALLOCATABLE attribute is specified, each
component-array-spec shall be an explicit-shape-spec-list.

C431 (R436) Each bound in the ezplicit-shape-spec shall either be an initialization expression or be a
specification expression that does not contain references to specification functions or any object
designators other than named constants or subobjects thereof.

C432 (R433) A component shall not have both the ALLOCATABLE and the POINTER attribute.
C433 (R435) The * char-length option is permitted only if the type specified is character.

C434 (R432) Each type-param-value within a component-def-stmt shall either be a colon, be an ini-
tialization expression, or be a specification expression that contains neither references to speci-
fication functions nor any object designators other than named constants or subobjects thereof.

NOTE 4.26

Since a type parameter is not an object, a bound for an explicit-shape-spec or a type-param-value
may contain a type-param-name.

C435 (R433) If component-initialization appears, a double-colon separator shall appear before the
component-decl-list.

C436 (R433) If => appears in component-initialization, POINTER, shall appear in the component-
attr-spec-list. If = appears in component-initialization, POINTER or ALLOCATABLE shall
not, appear in the component-attr-spec-list.

R438 proc-component-def-stmt is PROCEDURE ([proc-interface]) , R
B proc-component-attr-spec-list :: proc-decl-list

NOTE 4.27
See 12.3.2.3 for definitions of proc-interface and proc-decl.

R439 proc-component-atir-spec is POINTER
or PASS [(arg-name) |
or NOPASS
or access-spec

C437 (R438) The same proc-component-attr-spec shall not appear more than once in a given proc-
component-def-stmt.

C438 (R438) POINTER shall appear in each proc-component-attr-spec-list.

C439 (R438) If the procedure pointer component has an implicit interface or has no arguments,
NOPASS shall be specified.

C440 (R438) If PASS (arg-name) appears, the interface shall have a dummy argument named arg-
name.

C441 (R438) PASS and NOPASS shall not both appear in the same proc-component-attr-spec-list.

4.5.3.1 Array components

A data component is an array if its component-decl contains a component-array-spec or its data-component-
def-stmt contains the DIMENSION attribute. If the component-decl contains a component-array-spec,
it specifies the array rank, and if the array is explicit shape (5.1.2.5.1), the array bounds; otherwise, the
component-array-spec in the DIMENSION attribute specifies the array rank, and if the array is explicit

18" March 03 4.5 REPLACEMENT 47

1

0 N o OB~ W

J3/03-166 4.5 REPLACEMENT 18" March 03

shape, the array bounds.

NOTE 4.28

A type definition may have a component that is an array. For example:

TYPE LINE

REAL, DIMENSION (2, 2) :: COORD
COORD(:,1) has the value of (/X1, Y1i/)
COORD(:,2) has the value of (/X2, Y2/)
Line width in centimeters
1 for solid, 2 for dash, 3 for dot

REAL :: WIDTH
INTEGER :: PATTERN
END TYPE LINE

An example of declaring a variable LINE_.SEGMENT to be of the type LINE is:
TYPE (LINE) :: LINE_SEGMENT
The scalar variable LINE_.SEGMENT has a component that is an array. In this case, the array

is a subobject of a scalar. The double colon in the definition for COORD is required; the double
colon in the definition for WIDTH and PATTERN is optional.

NOTE 4.29

A derived type may have a component that is allocatable. For example:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)
END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined
by execution of an ALLOCATE statement or assignment statement, or by argument association.

NOTE 4.30

Default initialization of an explicit-shape array component may be specified by an initialization
expression consisting of an array constructor (4.8), or of a single scalar that becomes the value of
each array element.

4.5.3.2 Pointer components

A component is a pointer if its component-attr-spec-list contains the POINTER, attribute. Pointers have
an association status of associated, disassociated, or undefined. If no default initialization is specified, the
initial association status is undefined. To specify that the default initial status of a pointer component is
to be disassociated, the pointer assignment symbol (=>) shall be followed by a reference to the intrinsic
function NULL () with no argument. No mechanism is provided to specify a default initial status of
associated.

48

NOTE 4.31

A derived type may have a component that is a pointer. For example:

TYPE REFERENCE

4.5 REPLACEMENT 18" March 03

10

11
12
13

14

15
16
17

18" March 03 4.5 REPLACEMENT J3/03-166

NOTE 4.31 (cont.)

INTEGER :: VOLUME, YEAR, PAGE

CHARACTER (LEN = 50) :: TITLE

CHARACTER, DIMENSION (:), POINTER :: ABSTRACT => NULL()
END TYPE REFERENCE

Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR,
PAGE, and TITLE, plus a pointer to an array of characters holding ABSTRACT. The size of this
target array will be determined by the length of the abstract. The space for the target may be
allocated (6.3.1) or the pointer component may be associated with a target by a pointer assignment
statement (7.4.2).

NOTE 4.32

A pointer component of a derived type may have as its target an object of that derived type. The
type definition may specify that in objects declared to be of this type, such a pointer is default
initialized to disassociated. For example:

TYPE NODE

INTEGER :: VALUE = 0O

TYPE (NODE), POINTER :: NEXT_NODE => NULL ()
END TYPE

A type such as this may be used to construct linked lists of objects of type NODE. See C.1.4 for
an example.

4.5.3.3 The passed-object dummy argument

A passed-object dummy argument is a distinguished dummy argument of a procedure pointer
component or type-bound procedure. It affects procedure overriding (4.5.6.2) and argument association
(12.4.1.1).

If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object
dummy argument.

If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argu-
ment of a procedure pointer component or type-bound procedure is its passed-object dummy argument.

If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy
argument of the procedure pointer component or named type-bound procedure.

C442 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data
object with the same declared type as the type being defined; all of its nonkind type parameters
shall be assumed; it shall be polymorphic if and only if the type being defined is extensible.

NOTE 4.33

If a procedure is bound to several types as a type-bound procedure, different dummy arguments
might be the passed-object dummy argument in different contexts.

4.5.3.4 Default initialization for components

Default initialization provides a means of automatically initializing pointer components to be disas-
sociated (4.5.3.2), and nonpointer nonallocatable components to have a particular value. Allocatable
components are always initialized to not allocated.

18" March 03 4.5 REPLACEMENT 49

©O© 00 N O OB W N =

—_
o

11
12
13

J3/03-166 4.5 REPLACEMENT 18" March 03

If initialization-expr appears for a nonpointer component, that component in any object of the type
is initially defined (16.5.3) or becomes defined as specified in 16.5.5 with the value determined from
initialization-expr. An initialization-expr in the EXTENDS type-attr-spec is for the parent component
(4.5.6.1). If necessary, the value is converted according to the rules of intrinsic assignment (7.4.1.3) to
a value that agrees in type, type parameters, and shape with the component. If the component is of a
type for which default initialization is specified for a component, the default initialization specified by
initialization-expr overrides the default initialization specified for that component. When one initializa-
tion overrides another it is as if only the overriding initialization were specified (see Note 4.35). Explicit
initialization in a type declaration statement (5.1) overrides default initialization (see Note 4.34). Unlike
explicit initialization, default initialization does not imply that the object has the SAVE attribute.

A subcomponent (6.1.2) is default-initialized if the type of the object of which it is a component
specifies default initialization for that component, and the subcomponent is not a subobject of an object
that is default-initialized or explicitly initialized.

NOTE 4.34
It is not required that initialization be specified for each component of a derived type. For example:

TYPE DATE

INTEGER DAY

CHARACTER (LEN = 5) MONTH

INTEGER :: YEAR = 1994 ! Partial default initialization
END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is overridden
by explicit initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 1995)

NOTE 4.35

The default initial value of a component of derived type may be overridden by default initialization
specified in the definition of the type. Continuing the example of Note 4.34:

TYPE SINGLE_SCORE

TYPE(DATE) :: PLAY_DAY = TODAY

INTEGER SCORE

TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ()
END TYPE SINGLE_SCORE
TYPE(SINGLE_SCORE) SETUP

The PLAY_DAY component of SETUP receives its initial value from TODAY, overriding the
initialization for the YEAR component.

NOTE 4.36

Arrays of structures may be declared with elements that are partially or totally initialized by
default. Continuing the example of Note 4.35 :

TYPE MEMBER (NAME_LEN)
INTEGER, NONKIND :: NAME_LEN
CHARACTER (LEN = NAME_LEN) NAME = ’°

50 4.5 REPLACEMENT 18" March 03

IS

o ~N o o

10

11
12

13
14
15

16
17

18" March 03 4.5 REPLACEMENT J3/03-166

NOTE 4.36 (cont.)

INTEGER :: TEAM_NO, HANDICAP = O

TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ()
END TYPE MEMBER
TYPE (MEMBER) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER) :: ORGANIZER = MEMBER ("I. Manage",1,5,NULL ())

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type
MEMBER.

Allocated objects may also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized object of type
! SINGLE_SCORE is created.

4.5.3.5 Component order

Component order is an ordering of the nonparent components of a derived type; it is used for intrinsic
formatted input/output and structure constructors (where component keywords are not used). Parent
components are excluded from the component order of an extensible type.

The component order of a nonextended type is the order of the declarations of the components in the
derived-type definition. The component order of an extended type consists of the component order of
its parent type followed by any additional components in the order of their declarations in the extended
derived-type definition.

4.5.3.6 Component accessibility
R440 private-components-stmt is PRIVATE

C443 (R440) A private-components-stmt is permitted only if the type definition is within the specifi-
cation part of a module.

The default accessibility for the components of a type is private if the type definition contains a private-
components-stmt, and public otherwise. The accessibility of a component may be explicitly declared by
an access-spec; otherwise its accessibility is the default for the type definition in which it is declared.

If a component is private, that component name is accessible only within the module containing the
definition.

NOTE 4.37
Type parameters are not components. They are effectively always public.

NOTE 4.38

The accessibility of the components of a type is independent of the accessibility of the type name.
It is possible to have all four combinations: a public type name with a public component, a private
type name with a private component, a public type name with a private component, and a private
type name with a public component.

NOTE 4.39
An example of a type with private components is:

18" March 03 4.5 REPLACEMENT 51

o O~ WwN

o ~

10
11

12
13

14
15

16

17
18

19
20

J3/03-166 4.5 REPLACEMENT 18" March 03

NOTE 4.39 (cont.)

MODULE DEFINITIONS

END MODULE DEFINITIONS

Such a type definition is accessible in any scoping unit accessing the module via a USE statement;
however, the components X and Y are accessible only within the module.

TYPE POINT
PRIVATE
REAL :: X, Y

END TYPE POINT

NOTE 4.40

The following example illustrates the use of an individual component access-spec to override the
default accessibility:

The component M%J is accessible in any scoping unit where M is accessible; M%I is accessible
only within the module containing the TYPE MIXED definition.

TYPE MIXED
PRIVATE
INTEGER :: I
INTEGER, PUBLIC :: J
END TYPE MIXED

TYPE (MIXED) :: M

4.5.4 Type-bound procedures

R441

R442
C444

R443

C445

R444

C446

type-bound-procedure-part is contains-stmt
[binding-private-stmt |
proc-binding-stmt
[proc-binding-stmt | ...
binding-private-stmt is PRIVATE

(R441) A binding-private-stmt is permitted only if the type definition is within the specification
part of a module.

proc-binding-stmt is specific-binding
or generic-binding
or final-binding

(R443) No proc-binding-stmt shall specify a binding that overrides (4.5.6.2) one that is inherited
(4.5.6.1) from the parent type and has the NON_OVERRIDABLE binding attribute.

specific-binding is PROCEDURE m
B [[, binding-attr-list] :: | binding-name [=> binding |

(R444) If => binding appears, the double-colon separator shall appear.

If => binding does not appear, it is as though it had appeared with a procedure name the same as the
binding name.

R445

52

generic-binding is GENERIC m
B [, binding-attr-list | :: generic-spec => binding-list

4.5 REPLACEMENT 18" March 03

10
11
12

13

14
15

16
17

18

19
20

21
22

23
24
25

26

27
28

29
30

31

18" March 03 4.5 REPLACEMENT J3/03-166

C447

C448

C449

C450

R446

C451

C452

C453

C454
C455

C456

C457

R447

C458

(R445) If generic-spec is generic-name, generic-name shall not be the name of a nongeneric
binding of the type.

(R445) If generic-spec is OPERATOR (defined-operator), the interface of each binding shall
be as specified in 12.3.2.1.1.

(R445) If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as specified
in 12.3.2.1.2.

(R445) If generic-spec is dtio-generic-spec, the interface of each binding shall be as specified in
9.5.3.7. The type of the dtv argument shall be type-name.

binding-attr is PASS [(arg-name) |
or NOPASS

or NON_OVERRIDABLE
or access-spec

(R446) The same binding-attr shall not appear more than once in a given binding-attr-list.

(R444, R445) If the interface of the binding has no dummy argument of the type being defined,
NOPASS shall appear.

(R444, R445) If PASS (arg-name) appears, the interface of the binding shall have a dummy
argument named arg-name.

(R443) PASS and NOPASS shall not both appear in the same binding-attr-list.

(R445) A generic-binding for which generic-spec is not generic-name shall have a passed-object
dummy argument (4.5.3.3).

(R445) An overriding binding shall have a passed-object dummy argument if and only if the
binding that it overrides has a passed-object dummy argument.

(R445) Within the specification-part of a module, each generic-binding shall specify, either
implicitly or explicitly, the same accessibility as every other generic-binding in the same derived-
type-def that has the same generic-spec.

binding is procedure-name

(R447) The procedure-name shall be the name of an accessible module procedure or an external
procedure that has an explicit interface.

Each binding in a proc-binding-stmt specifies a type-bound procedure. A type-bound procedure may
have a passed-object dummy argument ??. A generic-binding specifies a type-bound generic interface.

The interface of a binding is that of the procedure specified by procedure-name.

NOTE 4.41

An example of a type and a type-bound procedure is:

TYPE, EXTENSIBLE :: POINT

REAL :: X, Y
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE POINT

18" March 03 4.5 REPLACEMENT 53

o~ WN

(o))

10
11
12
13

14
15

16
17

18
19

20
21

J3/03-166 4.5 REPLACEMENT 18" March 03

NOTE 4.41 (cont.)

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B

POINT_LENGTH = SQRT ((A%X - B%X)*x2 + (A%Y - BAY)**2)
END FUNCTION POINT_LENGTH

The same generic-spec may be used in several generic-bindings within a single derived-type definition.

The default accessibility for the procedure bindings of a type is private if the type definition contains a
binding-private-stmt, and public otherwise. The accessibility of a procedure binding may be explicitly
declared by an access-spec; otherwise its accessibility is the default for the type definition in which it is
declared.

A public type-bound procedure is accessible via any accessible object of the type. A private type-bound
procedure is accessible only within the module containing the type definition.

NOTE 4.42

The accessibility of a type-bound procedure is not affected by a PRIVATE statement in the
component-part; the accessibility of a data component is not affected by a PRIVATE statement in
the type-bound-procedure-part.

4.5.5 Final subroutines
R448 final-binding is FINAL [:: | final-subroutine-name-list

C459 (R448) A final-subroutine-name shall be the name of a module procedure with exactly one
dummy argument. That argument shall be nonoptional and shall be a nonpointer, nonallocat-
able, nonpolymorphic variable of the derived type being defined. All nonkind type parameters
of the dummy argument shall be assumed. The dummy argument shall not be INTENT(OUT).

C460 (R448) A final-subroutine-name shall not be one previously specified as a final subroutine for
that type.

C461 (R448) A final subroutine shall not have a dummy argument with the same kind type parameters
and rank as the dummy argument of another final subroutine of that type.

The FINAL keyword specifies a list of final subroutines. A final subroutine might be executed when
a data entity of that type is finalized (4.5.5.1).

A derived type is finalizable if it has any final subroutines or if it has any nonpointer, nonallocatable
component whose type is finalizable. A nonpointer data entity is finalizable if its type is finalizable.

NOTE 4.43

Final subroutines are effectively always “accessible”. They are called for entity finalization regard-
less of the accessibility of the type, its other type-bound procedure bindings, or the subroutine
name itself.

NOTE 4.44

Final subroutines are not inherited through type extension and cannot be overridden. The final
subroutines of the parent type are called after calling any additional final subroutines of an extended

type.

54 4.5 REPLACEMENT 18" March 03

w N

©O© 0 N O OB

10
11
12
13

14
15
16

17

18
19

20
21
22
23
24

25
26

27
28

29
30

31
32

33
34

35
36
37

18" March 03 4.5 REPLACEMENT J3/03-166

4.5.5.1 The finalization process

Only finalizable entities are finalized. When an entity is finalized, the following steps are carried out
in sequence:

(1) If the dynamic type of the entity has a final subroutine whose dummy argument has the
same kind type parameters and rank as the entity being finalized, it is called with the entity
as an actual argument. Otherwise, if there is an elemental final subroutine whose dummy
argument has the same kind type parameters as the entity being finalized, it is called with
the entity as an actual argument. Otherwise, no subroutine is called at this point.

(2) Each finalizable component that appears in the type definition is finalized. If the entity
being finalized is an array, each finalizable component of each element of that entity is
finalized separately.

(3) If the entity is of extended type and the parent type is finalizable, the parent component is
finalized.

If several entities are to be finalized as a consequence of an event specified in 4.5.5.2, the order in which
they are finalized is processor-dependent. A final subroutine shall not reference or define an object that
has already been finalized.

4.5.5.2 When finalization occurs

The target of a pointer is finalized when the pointer is deallocated. An allocatable entity is finalized
when it is deallocated.

A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized im-
mediately before it would become undefined due to execution of a RETURN or END statement (16.5.6,
item (3)). If the object is defined in a module and there are no longer any active procedures referencing
the module, it is processor-dependent whether it is finalized. If the object is not finalized, it retains its
definition status and does not become undefined.

If an executable construct references a function, the result is finalized after execution of the innermost
executable construct containing the reference.

If an executable construct references a structure constructor, the entity created by the structure con-
structor is finalized after execution of the innermost executable construct containing the reference.

If a specification expression in a scoping unit references a function, the result is finalized before execution
of the first executable statement in the scoping unit.

When a procedure is invoked, a nonpointer, nonallocatable object that is an actual argument associated
with an INTENT(OUT) dummy argument is finalized.

When an intrinsic assignment statement is executed, variable is finalized after evaluation of ezpr and
before the definition of variable.

NOTE 4.45

If finalization is used for storage management, it often needs to be combined with defined assign-
ment.

If an object is allocated via pointer allocation and later becomes unreachable due to all pointers to that
object having their pointer association status changed, it is processor dependent whether it is finalized.
If it is finalized, it is processor dependent as to when the final subroutines are called.

18" March 03 4.5 REPLACEMENT 55

10
11

12

13
14
15
16

17
18
19
20

J3/03-166 4.5 REPLACEMENT 18" March 03

4.5.5.3 Entities that are not finalized

If program execution is terminated, either by an error (e.g. an allocation failure) or by execution of
a STOP or END PROGRAM statement, entities existing immediately prior to termination are not
finalized.

NOTE 4.46

A nonpointer, nonallocatable object that has the SAVE attribute or which occurs in the main pro-
gram is never finalized as a direct consequence of the execution of a RETURN or END statement.

A variable in a module is not finalized if it retains its definition status and value, even when there
is no active procedure referencing the module.

4.5.6 Extensible types
A derived type that has the EXTENSIBLE or EXTENDS attribute is an extensible type.

A type that has the EXTENSIBLE attribute is a base type. A type that has the EXTENDS attribute
is an extended type. The parent type of an extended type is the type named in the EXTENDS
attribute specification.

NOTE 4.47

The name of the parent type might be a type-alias name or a local name introduced via renaming
in a USE statement.

A base type is an extension type of itself only. An extended type is an extension of itself and of all
types for which its parent type is an extension.

4.5.6.1 Inheritance

An extended type includes all of the type parameters, components, and nonfinal procedure bindings of
its parent type. These are said to be inherited by the extended type from the parent type. They retain
all of the attributes that they had in the parent type. Additional type parameters, components, and
procedure bindings may be declared in the derived-type definition of the extended type.

NOTE 4.48

Inaccessible components and bindings of the parent type are also inherited, but they remain inac-
cessible in the extended type. Inaccessible entities occur if the type being extended is accessed via
use association and has a private entity.

NOTE 4.49

A base type is not required to have any components, bindings, or parameters; an extended type is
not required to have more components, bindings, or parameters than its parent type.

An object of extended type has a scalar, nonpointer, nonallocatable, parent component with the
type and type parameters of the parent type. The name of this component is the parent type name.
Components of the parent component are inheritance associated (16.4.4) with the corresponding
components inherited from the parent type.

NOTE 4.50

A component or type parameter declared in an extended type shall not have the same name as
any accessible component or type parameter of its parent type.

56 4.5 REPLACEMENT 18" March 03

© 0 N o

10

11
12

13
14

15

18" March 03 4.5 REPLACEMENT J3/03-166

NOTE 4.51

Examples:

TYPE, EXTENSIBLE :: POINT ! A base type
REAL :: X, Y
END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
! Components X and Y, and component name POINT, inherited from parent
INTEGER :: COLOR

END TYPE COLOR_POINT

45.6.2 Type-bound procedure overriding

If a specific binding specified in a type definition has the same binding name as a binding inherited from
the parent type then the binding specified in the type definition overrides the one inherited from the
parent type.

The overriding binding and the inherited binding shall satisfy the following conditions:

(1) Either both shall have a passed-object dummy argument or neither shall.

(2) If the inherited binding is pure then the overriding binding shall also be pure.

(3) Either both shall be elemental or neither shall.

(4) They shall have the same number of dummy arguments.

(5) Passed-object dummy arguments, if any, shall correspond by name and position.

(6) Dummy arguments that correspond by position shall have the same names and characteris-

tics, except for the type of the passed-object dummy arguments.

(7) Either both shall be subroutines or both shall be functions having the same result charac-
teristics (12.2.2).
(8) If the inherited binding is PUBLIC then the overriding binding shall not be PRIVATE.

NOTE 4.52
The following is an example of procedure overriding, expanding on the example in Note 4.41.

TYPE, EXTENDS (POINT) :: POINT_3D

REAL :: Z
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH
END TYPE POINT_3D

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_3D_LENGTH (A, B)

CLASS (POINT_3D), INTENT (IN) :: A

CLASS (POINT), INTENT (IN) :: B

IF (EXTENDS_TYPE_OF(B, A)) THEN
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%LY-BYY)**2 + (A%Z-B%Z)**2)
RETURN

END IF

PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’

18" March 03 4.5 REPLACEMENT 57

~N o OB w

©o

10

11

12

13
14

15

16
17

18
19
20

21

22
23

24

25

26
27

28

29
30

31
32
33
34

J3/03-166 4.5 REPLACEMENT 18" March 03

NOTE 4.52 (cont.)

STOP
END FUNCTION POINT_3D

A generic binding overrides an inherited binding if they both have the same generic-spec and satisfy the
above conditions for overriding. A generic binding with the same generic-spec that does not satisfy the
conditions extends the generic interface; it shall satisfy the requirements specified in 16.2.3.

If a generic binding in a type definition has the same dtio-generic-spec as one inherited from the parent,
and the dtv argument of the procedure it specifies has the same kind type parameters as the dtv argument
of one inherited from the parent type, then the binding specified in the type overrides the one inherited
from the parent type. Otherwise, it extends the type-bound generic interface for the dtio-generic-spec.

A binding of a type and a binding of an extension of that type are said to correspond if the latter binding
is the same binding as the former, overrides a corresponding binding, or is an inherited corresponding
binding.

A binding that has the NON_OVERRIDABLE attribute in the parent type shall not be overridden.

4.5.7 Derived-type values

The set of values of a particular derived type consists of all possible sequences of component values
consistent with the definition of that derived type.

4.5.8 Derived-type specifier

A derived-type specifier is used in several contexts to specify a particular derived type and type param-
eters.

R449 derived-type-spec is type-name [(type-param-spec-list)]
or type-alias-name
R450 type-param-spec is [keyword =] type-param-value

C462 (R449) type-name shall be the name of an accessible derived type.

C463 (R449) type-alias-name shall be the name of an accessible type alias that is an alias for a derived
type.

C464 (R449) type-param-spec-list shall appear if and only if the type is parameterized.
C465 (R449) There shall be exactly one type-param-spec corresponding to each parameter of the type.

C466 (R450) The keyword= may be omitted from a type-param-spec only if the keyword= has been
omitted from each preceding type-param-spec in the type-param-spec-list.

C467 (R450) Each keyword shall be the name of a parameter of the type.

C468 (R450) An asterisk may be used as a type-param-value in a type-param-spec only in the decla-
ration or allocation of a dummy argument.

Type parameter values that do not have type parameter keywords specified correspond to type param-
eters in type parameter order (4.5.2.1). If a type parameter keyword is present, the value is assigned to
the type parameter named by the keyword. If necessary, the value is converted according to the rules of
intrinsic assignment (7.4.1.3) to a value of the same kind as the type parameter.

58 4.5 REPLACEMENT 18" March 03

IS

O 0w N o O

10

11
12

13
14
15

16
17

18

19
20

21
22
23

24
25

26

27
28
29
30
31
32

33
34

18" March 03 4.5 REPLACEMENT J3/03-166

4.5.9 Construction of derived-type values

A derived-type definition implicitly defines a corresponding structure constructor that allows con-
struction of values of that derived type. The type and type parameters of a constructed value are
specified by a derived type specifier.

R451 structure-constructor is derived-type-spec (| component-spec-list |)

R452 component-spec is [keyword =] component-data-source

R453 component-data-source is expr

or data-target
or proc-target

C469 (R451) At most one component-spec shall be provided for a component.

C470 (R451) If a component-spec is be provided for a component, no component-spec shall be provided
for any component with which it is inheritance associated.

C471 (R451) A component-spec shall be provided for a component unless it has default initialization
or is inheritance associated with another component for which a component-spec is provided or
that has default initialization.

C472 (R452) The keyword= may be omitted from a component-spec only if the keyword= has been
omitted from each preceding component-spec in the constructor.

C473 (R452) Each keyword shall be the name of a component of the type.

C474 (R451) The type name and all components of the type for which a component-spec appears shall
be accessible in the scoping unit containing the structure constructor.

C475 (R451) If derived-type-spec is a type name that is the same as a generic name, the component-
spec-list shall not be a valid actual-arg-spec-list for a function reference that is resolvable as a
generic reference (12.4.4.1).

C476 (R453) A data-target shall correspond to a nonprocedure pointer component; a proc-target shall
correspond to a procedure pointer component.

C477 (R453) A data-target shall have the same rank as its corresponding component.

NOTE 4.53

The form 'name(...)" is interpreted as a generic function-reference if possible; it is interpreted as
a structure-constructor only if it cannot be interpreted as a generic function-reference.

In the absence of a component keyword, each component-data-source is assigned to the corresponding
component in component order (4.5.3.5). If a component keyword is present, the ezpr is assigned to
the component named by the keyword. If necessary, each value is converted according to the rules of
intrinsic assignment (7.4.1.3) to a value that agrees in type and type parameters with the corresponding
component of the derived type. For nonpointer nonallocatable components, the shape of the expression
shall conform with the shape of the component.

If a component with default initialization has no corresponding component-data-source, then the default
initialization is applied to that component.

NOTE 4.54

Because no parent components appear in the defined component ordering, a value for a parent

18" March 03 4.5 REPLACEMENT 59

J3/03-166 4.5 REPLACEMENT 18" March 03

NOTE 4.54 (cont.)

component may be specified only with a component keyword. Examples of equivalent values using
types defined in Note 4.51:

2.0, color = 3.
Assume components of TYPE(POINT)
are accessible here.

! Create values with components x = 1.0, y
TYPE(POINT) :: PV = POINT(1.0, 2.0)

COLOR_POINT(point=point(1,2), color=3)
COLOR_POINT(point=PV, color=3)

! Value for parent component

! Available even if TYPE(point)

! has private components
COLOR_POINT(1, 2, 3) ! A11 components of TYPE(point)
!

! need to be accessible.

1 A structure constructor shall not appear before the referenced type is defined.

NOTE 4.55

This example illustrates a derived-type constant expression using a derived type defined in Note
4.18:

PERSON (21, ’JOHN SMITH’)
This could also be written as

PERSON (NAME = ’JOHN SMITH’, AGE = 21)

NOTE 4.56
An example constructor using the derived type GENERAL_POINT defined in Note 4.25 is

general_point(dim=3) ((/ 1., 2., 3. /))

2 A derived-type definition may have a component that is an array. Also, an object may be an array of
3 derived type. Such arrays may be constructed using an array constructor (4.8).

4 Where a component in the derived type is a pointer, the corresponding component-data-source shall be
5 an allowable data-target or proc-target for such a pointer in a pointer assignment statement (7.4.2).

NOTE 4.57
For example, if the variable TEXT were declared (5.1) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived-type definition REFERENCE in Note 4.31
TYPE (REFERENCE) :: BIBLIO

the statement

BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &
&paper", TEXT)

60 4.5 REPLACEMENT 18" March 03

O N o OB W N

10
11
12
13

14

15
16
17

18
19

20
21

22

23
24

25
26

18" March 03 4.5 REPLACEMENT J3/03-166

NOTE 4.57 (cont.)

is valid and associates the pointer component ABSTRACT of the object BIBLIO with the target
object TEXT.

If a component of a derived type is allocatable, the corresponding constructor expression shall either be a
reference to the intrinsic function NULL with no arguments, an allocatable entity, or shall evaluate to an
entity of the same rank. If the expression is a reference to the intrinsic function NULL, the corresponding
component of the constructor has a status of unallocated. If the expression is an allocatable entity, the
corresponding component of the constructor has the same allocation status as that allocatable entity
and, if it is allocated, the same bounds (if any) and value. Otherwise the corresponding component of
the constructor has an allocation status of allocated and has the same bounds (if any) and value as the
expression.

NOTE 4.58

When the constructor is an actual argument, the allocation status of the allocatable component is
available through the associated dummy argument.

4.5.10 Derived-type operations and assignment

Intrinsic assignment of derived-type entities is described in 7.4.1. This standard does not specify any
intrinsic operations on derived-type entities. Any operation on derived-type entities or defined assign-
ment (7.4.1.4) for derived-type entities shall be defined explicitly by a function or a subroutine, and a
generic interface (4.5.1, 12.3.2.1).

4.6 Type aliases

Type aliasing provides a method of data abstraction. A type alias is an entity that may be used to
declare entities of an existing type; it is not a new type. The name of a type alias for a derived type
may also be used in the derived-type-spec of a structure-constructor.

R454 type-alias-stmt is TYPEALIAS :: type-alias-list
R455 type-alias is type-alias-name => declaration-type-spec

C478 (R455) A type-alias-name shall not be the same as the name of any intrinsic type defined in this
standard.

C479 (R455) A declaration-type-spec in a type-alias shall not use the CLASS keyword.

C480 (R455) A declaration-type-spec shall specify an intrinsic type or a previously defined derived
type. Each type-param-value shall be an initialization expression.

Explicit or implicit declaration of an entity or component using a type alias name has the same effect
as using the declaration-type-spec for which it is an alias.

NOTE 4.59
The declarations for X, Y, and S

TYPEALTAS :: DOUBLECOMPLEX => COMPLEX(KIND(1.0D0)), &
NEWTYPE => TYPE(DERIVED), &
ANOTHERTYPE => TYPE (NEWTYPE)
TYPE(DOUBLECOMPLEX) :: X, Y

18" March 03 4.5 REPLACEMENT 61

