10

11

12
13
14

15
16
17

18
19

20
21
22

23
24
25

26
27
28
29
30
31
32

33
34
35

28 December 2003 J3/04-149

Subject: Coroutines
From: Van Snyder
Reference:  03-258r1, section 1.1

1 Number
TBD

2 Title

Coroutines.

3 Submitted By
J3

4 Status

For consideration.

5 Basic Functionality

Provide for corouties.

6 Rationale

In many cases when a “library” procedure needs access to user-provided code, the user-provided code
needs access to entities of which the libary procedure is unaware. There are at least four ways by which
the user-provided code can gain access to these entities:

e The user-provided code can be implemented as a procedure that is invoked either directly or by
way of a dummy procedure, the extra entities can be made public entities of some module, and
accessed in the user-provided procedure by use association.

e The user-provided code can be implemented as a procedure that is invoked either directly or by
way of a dummy procedure, and the extra entities can be put into common if they’re data objects.

e The user-provided code can be implemented as a procedure that takes a dummy argument of
extensible type, which procedure is invoked either directly or by way of a dummy procedure, and
the extra entities can be put into an extension of that type.

e The library procedure can provide for reverse commaunication, that is, when it needs access to user-
provided code it returns instead of calling a procedure. When the user-provided code reinvokes
the library procedure, it somehow finds its way back to the appropriate place.

Each of these solutions has drawbacks. Entities that are needlessly public increase maintenance expense.
The maintenance expense of common is well known. If the user-provided procedure expects to find its
extra information in an extension of the type of an argument passed through the library procedure, the
dummy argument has to be polymorphic, and the user-provided code has to execute a SELECT TYPE
construct to access the extension. Reverse communication causes a mess that requires GO TO statements
to resume the library procedure where it left off, which compromises the ability to use well-structure
control constructs.

Reverse communication is, however, a blunt-force simulation of a well-behaved control structure that
has been well-known to computer scientists for decades: The coroutine. Coroutines would allow user-
provided code needed by library procedures more easily to gain access to entities of which the library

28 December 2003 Page 1 of 2



Gl W N =

10
11
12
13
14

15
16

17
18
19
20
21
22

23
24

25
26
27

28
29

30

31
32
33
34
35

36

37
38
39
40
41
42

28 December 2003 J3/04-149

procedure is unaware, without causing the disruption of the control structure of the library procedure
that reverse communication now causes.

Coroutines are also useful to implement iterators, which are procedures that can be used both to enu-
merate the elements of a data structure and to control iteration of a loop that is processing those
elements.

7 Estimated Impact

Small. Minor additions to Section 12.

8 Detailed Specification

Provide two new statements, which we shall here call SUSPEND and RESUME,

If a subrutine suspends its execution by executing a SUSPEND statement, and its execution is subse-
quently resumed by executing a RESUME statement, execution resumes after the SUSPEND statement.
Otherwise (either execution of the subroutine was terminated by execution of a RETURN or END state-
ment, or it was invoked by a CALL statement), execution continues with the first executable statement
of the invoked subroutine.

It would be reasonable to restrict coroutines to be nonrecursive, and to prohibit a SUSPEND and
ENTRY statement to appear in the same subroutine.

A third statement, viz. COROUTINE could replace the SUBROUTINE statement, indicating that the
program unit could contain a SUSPEND statement and could not contain an ENTRY statement. This
would add some complication, as all references to the terms “subroutine” and “procedure” would need
to be examined to determine whether it is necessary to add the term “coroutine” to the discussion. The
RESUME atatement need not appear in the same subprogram as the CALL statement that initiated
execution of the coroutine.

It is not necessary or useful to prohibit internal subroutines to be coroutines.
Coroutines should be allowed to be actual arguments and procedure pointer targets.

The question whether the entire instance of the procedure survives execution of a SUSPEND statement,
or only those data entities that have the SAVE attribute survive, can be decided later. Similarly, the
question whether modules and common blocks accessed from the coroutine survive can be decided later.

Fortran already has a limited form of coroutine: The relation between an input/output item list and a
format is a coroutine relation.

8.1 Inferior alternative

An inferior alternative is to allow an ENTRY statement within a construct other than WHERE, FORALL
or DO with loop-control consisting of do-variable = scalar-int-expr, scalar-int-expr [, scalar-int-expr].
This is inferior because it puts the onus on the user to return to the correct place in the library code. It
is a step forward from the current situation because it doesn’t require to disrupt the control structure
to implement reverse communication. All in all, it’s a relatively crappy solution.

9 History

This proposal was discussed and eventually rejected at meeting 166. The argument that led to its
rejection was that one could always put the extra information for user-defined code into an extensible
type. It was not considered at the time, however, that this requires the dummy argument of the
user-provided subprogram to be polymorphic, and that the user-provided subprogram must execute a
SELECT TYPE construct to gain access to the extra information. This overhead would not be necessary
in a coroutine interaction. Furthermore, type extension cannot be applied to iterator construction.

28 December 2003 Page 2 of 2



