10
11

12

13

14
15
16
17
18

19
20

21
22
23

24

25

26

27
28
29
30
31

31 January 2004 J3/04-168r1

Subject: Partial application in interface bodies
From: Van Snyder
Reference:  03-258r1, sections 2.3.1

1 Number
TBD

2 Title

Partial application in interface bodies.

3 Submitted By
J3

4 Status

For consideration.

5 Basic Functionality

Allow generic identifiers to be partial applications, by putting values to be used as actual arguments for
some dummy arguments, either in interface bodies or [module] procedure statements.

6 Rationale

I have a sparse matrix package that includes a MatrixAdd function, with interface

function MatrixAdd ( A, B, Subtract ) result ( Z )
type(Matrix_T), intent(in) :: A, B
logical, optional, intent(in) :: Subtract
type(Matrix_T) :: Z

end function MatrixAdd

The functionality is that it adds A + B unless the Subtract argument is present with the value .true.,
in which case it subtracts A — B.

One cannot access this function with a defined operator. One could wrap it with additional functions
that have only two nonoptional arguments, but this increases code bulk. Numerous studies have shown
that the single most reliable predictor of lifetime cost of software is code bulk.

7 Estimated Impact

Minor.

8 Detailed Specification

Allow values to be specified for some arguments in an interface block, either in a [module] procedure
statement, or in an interface body. If a GENERIC statement is allowed outside of a type definition
(see that proposal), allow to specify values there, too. Only the remaining arguments are visible, as
arguments, when the procedure is accessed by using the generic-spec. After the values of some of the
arguments are specified, the remaining arguments shall satisfy the present requirements.

31 January 2004 Page 1 of 2



0 N o OB~ W

10
11
12

13
14
15
16
17
18

31 January 2004 J3/04-168r1

8.1 Example

It would be useful to be able to declare something like

interface operator(+)
module procedure MatrixAdd ! or MatrixAdd(subtract=.false.)
end interface
interface operator(-)
module procedure MatrixAdd(subtract=.true.)
end interface

with the requirement that after specifying values to use for some arguments, in the interface, there
remain one or two nonoptional arguments for which values are not specified, and these arguments meet
the present requirements for defined-operator interfaces. In the functional programming community, this
is called “partial application” or “Currying” (after Haskell Curry) of the MatrixAdd function.

The procedure MatrixAdd supports several different representations of sparse matrices, and has a lot
of analysis to figure out where the nonzeroes of the output will be, and what representation to use.
There are only a few places where it looks at the Subtract argument. It is undesirable to duplicate the
code and specialize the two copies for the Subtract = .true. and Subtract = .false. cases, because
that introduces the opportunity to create incorrect inconsistencies between them as a consequence of
maintenance.

9 History

31 January 2004 Page 2 of 2



