6 January 2004 J3/04-181

Subject: MaxAbsLoc and other combined intrinsics

From: Van Snyder

Reference: 03-258r1, part of section 2.4.4.1

1 Number

2 TBD

3 Title

4 MaxAbsLoc and other combined intrinsics.

5 Submitted By

6 J3

7 Status

8 For consideration.

9 Basic Functionality

- 10 In several cases, intrinsic functions ought to be combined. For example, in linear algebra one usually
- 11 wants to know the location of the element with the maximum absolute value, not the one with the most
- 12 positive value.

13 Rationale

- 14 One can get the desired effect by compounding existing intrinsic functions. For example, the lo-
- 15 cation of the element in a rank-1 array A with maximum absolute value can be determined using
- 16 MAXLOC(ABS(A)) + LBOUND(A) 1. This works and is portable, but some processors may compute
- 17 it less efficiently than the best that could be done they might compute ABS(A) and put it in an array
- 18 temp, and then compute MAXLOC of that temp. The stuff about LBOUND(A)-1 is there because the
- 19 lower bound of an array expression is always 1, no matter what the bounds of the operands are. As a
- 20 consequence, program authors would be tempted to carry out this computation with a loop instead of
- 21 the above expression. This increases code bulk, which is the single best predictor of lifetime ownership
- 22 cost.

23 Estimated Impact

24 Minor — a few new intrinsic function definitions.

25 Detailed Specification

- 26 Provide a few new compounded intrinsic functions. The most important one from the point of view
- 27 of linear algebra is a compounding of MAXLOC and ABS, perhaps called MaxAbsLoc. For symmetry,
- users would expect also to find MaxAbsVal, MinAbsLoc and MinAbsVal. Other combinations might be
- 29 useful for other disciplines.

30 History

6 January 2004 Page 1 of 1