10
11

12

13
14
15
16

17
18

19
20
21

22

23
24

25
26

27

28

29

30

31
32

33

8 January 2004 J3/04-193

Subject: ANDTHEN. and .ORELSE. operators
From: Van Snyder
Reference: 03-258r1, section 2.8.2

Number
TBD

Title
ANDTHEN. and .ORELSE. operators.

Submitted By
J3

Status

For consideration.

Basic Functionality

Provide logical AND and OR operators that force short-circuit evaluation, rather than merely allowing
it.

Rationale

The standard presently allows a processor to short-circuit evaluation of logical expressions. For example,
in A .AND. B, the processor is allowed not to evaluate B if A is false. It is sometimes desirable, however,
to require that the processor not evaluate B if A is false, as opposed simply to allowing it not to. Here’s
an example:

if (present(x) .and. x /= 0)
One can’t depend on the processor not trying to evaluate x /= 0 if x is not present.

To support this desire, add an .ANDTHEN. operator, the semantics of which require the processor to
evaluate the first operand first, and then prohibit it from evaluating the second operand if the first is
false. The example becomes:

if (present(x) .andthen. x /= 0)

Similar considerations apply to the .OR. operator, leading to the desire for an .ORELSE. operator, in
which the second operand is prohibited to be evaluated if the first is true.

These operators are, of course, even more useful elementally in WHERE statements and constructs. For
example

where (x > 0.0 .andthen. log(x) < tol)

Estimated Impact

Minor.

Detailed Specification

Provide logical AND and OR operators that force short-circuit evaluation, rather than merely allowing
it. One possible spelling is . ANDTHEN. and .ORELSE.

History

8 January 2004 Page 1 of 1

