
6 February 2004 J3/04-233

Subject: C-interoperable pointers with more Fortran semantics
From: Van Snyder
References: 98-170r1, 04-232

1 Number1

TBD2

2 Title3

C-interoperable pointers with more Fortran semantics.4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

Provide C-interoperable pointers with more Fortran semantics.10

6 Rationale11

Facilities to use C-interoperable pointers are sufficient to do everything desirable, but are quite cum-12

bersome and cryptic. This increases maintenance costs and reduces efficiency. The present facilities,13

together with those proposed in 04-232, require one to understand the functionality of seven procedures,14

two types, and two named constants. Once a competent Fortran programmer realizes that the only15

difference between Fortran pointers and the proposed pointers here is that the proposed ones have some16

restrictions, the proposed facilities are instantantly understandable.17

7 Estimated Impact18

Small to moderate.19

8 Detailed Specification20

Provide a new pointer attribute for data objects and procedures. These pointers are to be C inter-21

operable. Data pointers can be scalars, assumed-size arrays, or explicit-shape arrays. We use here22

terminology presently reserved for dummy arguments because the pointers have the same semantics as23

dummy arguments with the same properties, but they need not be dummy arguments.24

Provide a type that interoperates with the C void type.25

8.1 Suggested syntax26

The attribute POINTER(C) is proposed for data objects and procedure objects.27

The type name C VOID is proposed. It is a derived type with no public components.28

8.2 Comparisons to current practice29

Declarations that are the same in both cases:30

integer :: I(10,20,30), J31

integer, pointer :: F(:,:,:)32

subroutine S ... BIND(C) ... ; ... ; end subroutine S33

procedure(s), pointer :: P34

6 February 2004 Page 1 of 3

6 February 2004 J3/04-233

Using 03-007r2 Using POINTER(C) (see 98-170r1)
integer, pointer :: p1(:), p3a(:,:,:), p3b(:,:,:) ! not needed in examples below
type(c ptr) :: C, CC integer, pointer(c) :: C(10,20,*), &

& CC(10,20,*), C1(0:*)
type(c fptr) :: P ! void* procedure(s), pointer(c) :: Q
q = c null funptr q => null() ! or

nullify(q)
c = cc ! no rank check c => cc ! ranks checked
c = c loc (i) ! no rank check c => i ! ranks checked
c = c loc (f) ! no rank check c => f ! ranks checked
if (c associated(c)) ... if (associated(c)) ...
if (c associated(c,cc)) ... if (associated(c,cc)) ...
c = malloc (10 * 20 * 30 * ???) allocate (c (10, 20, 30))
call free (c) deallocate (c)
! no rank check
call c f pointer (c, f, (/10,20,30/)) f(10,20,30) => c ! ranks checked
q = c funloc (s) ! no bounds check q => s ! Interfaces shall agree!
q = c funloc (p) ! no bounds check q => p ! Interfaces shall agree!
call c f procpointer (q, p) p => q ! Interfaces shall agree!
c = c null ptr c => null() ! or

nullify(c)
call c f pointer (c, p3a, (/10,20,30/))
j = p3a(1,2,3) j = c(1,2,3) ! could check bounds
call c f pointer (c, p3a, (/10,20,30/))
p3a(1,2,3) = j c(1,2,3) = j ! could check bounds
call c f pointer (c, p3a, (/10,20,30/))
call c f pointer (cc, p3b, (/10,20,30/))
p3b = p3a cc(:,:,:30) = c(:,:,:30)
call c f pointer (c, p1, (/ 10 /))
j = p1(4) j = c1(3) ! could check bounds
call c f pointer (c, p1, (/ 10 /))
p1(4) = j c1(3) = j ! could check bounds
Type, bind(c) :: Node Type, bind(c) :: Node

integer(c int) :: value integer(c int) :: value
integer(c int) :: n neighbors integer(c int) :: n neighbors
type(c ptr) :: neighbors type(node), pointer(c) :: neighbors(*)

End type Node End type Node
type(c ptr) :: PN ! void* type(node), pointer(c) :: PN
type(node), pointer :: FPN(:) ! not needed in examples below
call c f pointer (pn, fpn, (/ 1 /))
call c f pointer (fpn(1)%neighbors, fpn,

(/ fpn(1)%n neighbors /))
call c f pointer (fpn(2)%neighbors, fpn, print *, pn%neighbors(0)%neighbors(1)% &

(/ fpn(2)%n neighbors /)) & neighbors(2)%value
print *, fpn(3)%value pn%neighbors(0)%neighbors(1)% &
fpn(3)%value = 42 & neighbors(2)%value = 42

8.3 Comparisons to proposals in 04-2321

The proposals in 04-232 simplify some of the examples in the left column above, but at the expense of2

learning the functionality of two more procedures, as shown below.3

6 February 2004 Page 2 of 3

6 February 2004 J3/04-233

Using 03-007r2 and proposals in 04-232 Using POINTER(C) (see 98-170r1)
j = c value (c, j, 3) ! no bounds check j = c1(3) ! could check bounds
call c store (c, j, 3) ! no bounds check c1(3) = j ! could check bounds
! No type checking in c store
call c store (pn, n)
pn = n%neighbors
call c store (pn, n, 0)
pn = n%neighbors
call c store (pn, n, 1)
pn = n%neighbors print *, pn%neighbors(0)%neighbors(1)% &
call c store (pn, n, 2) & neighbors(2)%value
print *, n%value pn%neighbors(0)%neighbors(1)% &
n%value = 42 & neighbors(2)%value = 421

9 History2

6 February 2004 Page 3 of 3

