

American National Standard
for Information Systems
Programming Language

Fortran

58 (X3.9-198x)
Revision of X3.9-1978

Secretariat: Computer and Business Equipment Manufacturers Association

Draft S8, Version 99
Submitted to X3 by X3J3, Americal National Standards Institute, Inc.

FOREWORD

American National Standard Language Fortran, X3.9-198x, specifies the form and establishes
the interpretation of programs expressed in the Fortran Language. It consists of the
specification of the language Fortran. No subsets are specified in this standard. The previ-
ous standard, commonly known as “Fortran 77”, is entirely contained within this standard,
known as “Fortran 8x”. Any standard-conforming Fortran 77 program is intended to be a
standard-conforming Fortran 8x program. New Fortran 8x features can be compatibly incor-
porated into such programs, with any exceptions clearly indicated in the text of this standard.

This document is released to SPARC, a subcommittee of X3, the American National Stan-
dards Committee for Information Processing Systems, operating under the procedures of the
American National Standards Institute. The Computer and Business Equipment Manufactur-
ers Association holds the secretariat. The purpose of this release is to submit the document
for compliance review to SPARC and for preliminary information to X3 in anticipation of an
X3 favorable vote to process the draft as an American National Standard.

Appendix A describes a “Fortran Family of Standards” as well as the philosophy used in par-
titioning the Fortran Language into new or incremental features, primary features, and obso-
lete or decremental features.

Since the publication of Fortran 77 (April 1978), the technical committee, X3J3, has been
developing the draft revision. The central philosophy has been to modernize Fortran so that
it may continue its long history as a scientific and engineering programming language.

The membership of the committee since that time is listed in the following section. Adminis-
tration of X3J3 has been undertaken by a “Steering Committee” and the technical develop-
ment has been carried out by subgroups, whose work is reviewed by the full committee.
During the period of development of the draft Fortran standard, many persons assumed
important roles of leadership. Their contributions are mentioned in the following section. At
the present time, the membership consists of 40 members.

STEERING COMMITTEE

Jeanne Adams, Chair

Jerry Wagener, Acting Vice-Chair

Walt Brainerd, Director, Technical Work
Lioyd Campbell, Editor

Jeanne Martin, Secretary

Neldon Marshall, Librarian

Andrew Johnson, Interpretations

Jim Matheny, Vocabulary Representative

SUBGROUP HEADS

Dick Hendrickson
Kurt Hirchert

Jim Matheny
Rich Ragan
Andrew Johnson

The international community of Fortran experts has been very helpful in reviewing the devel-
opment of this draft standard. At the most recent meeting of Working Group 5, Subcommit-
tee 22 of Technical Committee 97 on Information Processing Systems, a resolution was

passed that the work is “in general representative of the needs of the Fortran community
worldwide....”

Version 99 1986 March Page i

FOREWORD

X3J3/S8

Subcommittee X3J3 on Fortran developed this standard. Those who contributed to the work

of the subcommittee were:

Jeanne C. Adams, Chair

Jerrold L. Wagener, Acting Vice-Chair
Martin N. Greenfield, Vice-Chair (1972-1985)
Walter S. Brainerd, Director, Technical Work*
Lloyd W. Campbell, Editor*
Jeanne T. Martin, Secretary*

Loren P. Meissner, Secretary (1978-1982)

Jeanne T. Martin, Acting International Representative
Frances E. Holberton, International Representative (1978-1982)
Neldon H. Marshall, Librarian*

Cornelis G. F. Ampt
Stuart L. Anderson
Charles Arnold
Graham Barber

Gloria M. Bauer”
Valerie G. Bowe
Joanne Brixius

Neil Brutman

Larry Bumgarner

Carl D. Burch
Winfried A. Burke™”
John H. Carman

T. C. Chao

Nancy Cheng

Joel Clinkenbeard

Joe Cointment

Ted Crowley

Chela Diaz de Villegas
David C. Dillon

Joe L. Dowdell

John T. Engle

Stuart I. Feldman
Murray F. Freeman
Daniel A. Gallagher
Gary L. Graunke
Stephen R. Greenwood
Richard B. Grove*
Kevin W. Harris
Richard A. Hendrickson*
Dean A. Herington*
Kurt W. Hirchert*
Steve K. Hue

E. Andrew Johnson*
Gregory Johnson
Peter N. Karculias
Leslie M. Klein
Wilfried Kneis

Werner Koblitz
George T. Komorowski
Joe A. Korty

Version 99

Dorothy E. Lang
John E. Lauer*
Kay Leonard
Donald L. Loe
Warren E. Loper
Bruce A. Martin*
Alex L. Marusak
James H. Matheny*
John Mayer
Edward H. McCall
Michael Metcalf
Geoff Millard
Robert M. Miller
Leonard J. Moss
David T. Muxworthy
Linda J. O’Gara
Rod R. Oldehoeft
John P. Olson*
Rex L. Page*
George Paul
Daniel Pearl

Odd Pettersen

lvor R. Philips
Bruce W. Puerling*
Richard R. Ragan*
John K. Reid
Steven M. Rowan
Werner Schenk*

Lawrie J. Schonfelder

Rick N. Schubert
John C. Schwebel

Richard Shepardson

Richard W. Signor*
Brian T. Smith*
Jan A. M. Snoek

Hieronymus Sobiesiak

Ken Sperka
Bruce Stowell
Sylvia Sund
Mario Surdi

1986 March

Richard C. Swift
Brian L. Thompson
Robert.B. Upshaw*
Richard W. Weaver
George E. Weekly
Bruce Weinman
Everett H. Whitley
Gunter Wiesner
Edward J. Wilkens
Alan Wilson

*Subgroup Head

Page ii

Version 99

TABLE OF CONTENTS

INTRODUCTION........ccciiiiieninnnimnncnesiiessiensrenssnsssasssenssnanenss 11
1.1 PUrPOSE.......ccorteieicn i rr e n e as e e r st e mns s s e s emn s nremnnnnn e 1-1
1.2 Processor.........c.ceeuunee. aSaas s omiteans s onan Tt nnnnns s annsansaa st an s aua s nan s nn e 1-1
1.3 8T T T 1-1
1.4 CONfOrMANCEcecimieriiiriniirrecsir e s rana e anaa s ramnnrnnnens 1-1
1.5 Notation Used in This Standardccccoovmminimemrniecinmcneennneenn 1-2
1.6 Deprecated Features, Core Conformance..........c.cccriermrennsirncennnennne 1-4
1.7 MOUIESccuieeiiiiiiiiirire et r e e rr s n e nen e nnnes 1-5
FORTRAN TERMS AND CONCEPTS......ccoitvirenrimncerncneerennnennns 2-1
2.1 High Level Syntax...........cccmiimemieimsecinininienemsesesesnisssianesnansnsanes 2-1
2.2 Program Unit Conceptsc.cccerememriimmmmeiiiimienincniemenesiesrnsienenas 2-3
2.3 Execution Conceptsc.cceccrivirimmaniinmmeianismsneneneeranese 2-4
2.4 Data CONceptsc.ccviieimmmmiiiinisresimenmesseenenmiinencsoesnneeseraene 2-6
2.5 Fundamental Terms.........c.cocecivirimrniiinmsniinmerieeennnene. 2-8
LEXICAL ELEMENTSccccitiimmnnimnninniunesrnnncnesssensnensnansse 3-1
3.1 Fortran Character Set............c..ccovcrcicmimmninimncinieincn e eneieenees 3-1
3.2 Low-Level Syntax.........ccccciimmmmriinneninemeiiimnesermieimnnireeesieseaserensens 3-2
3.3 SoUrce FOMM.........cceiiiimiiimmmiininnncesisstnnesasernmnssserersmnnscsresnnensennenes 3-4
DATA TYPES......ccoccitirmcrtimniiniiieieressensrertnsennnnseresrnseressans 4-1
4.1 The Concept of Type..........coiirieeeiiimirininrssi e eaees 4-1
4.2 ASSIGNMENEccuiiirieiiiiiicreiirieitrerrna s rresarrnnererernasesasasnssnnnsrns 4-2
4.3 Intrinsic Data TYPesccccuiiiiiiemeniiiimtmeciereecnraeresasueseresenmnnnsnens 4-2
4.4 Derlved-Data Types...........cccuremiirennisiiieirimmennnsssenesrsissesensnersenens 4-5
4.5 Array CONSIIUCLOrS.....covvumeiiriireneereriercieiereeeneerermrssseressnsessseennns 4-8
DATA OBJECT DECLARATIONS AND SPECIFICATIONS.......... 5-1
5.1 Type Declaration Statementsccceumiverrreimimrree e crenenens 5-1
5.2 Attribute Specification Statementscc.ccoermiiiiiinrcninic e, 5-7
5.3 IMPLICIT Statement........cccccciiiinininniniemmcmmnssnineneniernesnsensssnsens s 5-10
5.4 Storage Association of Data Objectscceeerrererereeneninnerennne.. 5-10
5.5 DATA Statementccccceiiimmeecimnmmicninimmennierenn e reresasesssesans 5-13
USE OF DATA OBJECTScccoittmuerernmieniiresermenssesmessersssnoneas 6-1
6.1 SCalarscccoiiiminiininci s 6-1
6.2 g 6-2
EXPRESSIONS AND ASSIGNMENTccccorveeeiimmmmasnirrenssnnnee 7-1
7.1 EXPressions.......c.c..coimmeeniinimieniniinecsienimesernenessisseresenanssssssessmnes 7-1

1986 March Page i

TABLE OF CONTENTS

10

11

12

Version 99

X3J3/58
7.2 Interpretation of Intrinsic Operations............c.cccemiiierccininanncinnenee. 7-12
7.3 Interpretation of Defined Operations..........c.ceceevimniicrinnecnenianieenee. 7-16
7.4 Precedence of Operators.............c.coiucininnnmsicnesinnensnmnoneenens warerrene 7-17
7.5 ASSIgNMeNt ..o e e s eran e 7-18
EXECUTION CONTROL........ccceccvuneenene eerresserarararnnaras ceereneanes 8-1
8.1 Executable Constructs Containing BIocks...........ccccevveerireanimnaninnee. 8-1
8.2 Branching.........cccuiiiieicsinimmemiininimtsiinninsesienercnssransesssrensersnenenns 8-12
8.3 CONTINUE Statement..........ccuummemmiininimectsnenineessirnncerenseserserassaes 8-14
8.4 STOP Statementc.cccciiermmeiiininnicccscnieriesien e resassesenes 8-14
8.5 PAUSE Statementc.c.ccovimmmiinininiiceiiiinm s enss e rerassans 8-14
INPUT/OUTPUT STATEMENTS........coecvvvirnnne ersrmrnananas vereeneeees 9-1
9.1 o o SO 9-1
9.2 Flles...... . st e s s s naar e n e s e mn e easararanan 9-2
9.3 File Connection...........c.iccciimriniiiiininccsiinnesicrenernesiennneresnaceescssnnnss 9-5
9.4 Data Transfer Statementsccccvcirrecrmierenrrrnecenerrenrmmsnrnsesnerenenns 9-9
9.5 File Positioning Statementscccccicimeciinicniiincresrerccenneenrenenns 9-17
9.6 File INQUIrY ..ccviimiiimiini i senm s s s e e s e e e meens 8-17
9.7 Restrictions on Function References and List Items 9-21
9.8 Restriction on Input/Output Statementscccc.coecuerermeeciininrananas 9-21
INPUT/OUTPUT EDITINGccovveieiiecirecrenicicrecrnnrmrensens veeennnes 10-1
10.1 Explicit Format Specification Methods............c.ccceirmrareniencmieecrennens 10-1
10.2 Form of a Format ltem List............cccciirimmiii e cnrmsn e eneees 10-2
10.3 Interaction Between Input/Output List and Format............c..cccveenene 10-3
10.4 Positioning by Format COntrolcc.cicirirceniiieemnnirereiierrennscorsaneee 10-4
10.5 Data Edit DeScriptorsccooecuviiierirrmmrmecrencessiiiieniesesssnsnmsesereen 10-4
10.6 Control Edit Descriptorsccccccisiimriimeisninimssrerieresiseensnsrereens 10-9
10.7 Character String Edit DeSCriptorscctvicuucrieecncnieriericimnenueesareane 10-11
10.8 List-Directed Formattingccceciiemiimmiinerinecreninranensennanens S 10-11
10.9 Name-Directed Formattingc.ccreeeiimmmcciiiiciiiiicinresienessersnannennas 10-14
PROGRAM UNITS EE AN NASENSNFENENEBEERNREES SAEESROSERANENNRNCENDONEEREENENNRERERS 11-1
11,1 Main Programccccuvieeeimmmmennmnenimmnmnnninneimsisennenesenserassens 11-1
11.2 Procedure Subprograms...........cccccuieremmeeisinnisieniesencesierensnersresenes 111
11.3 Module SUDProgramsccccicmminnnnensensninnanscernneneerinnessessnnsene 11-2
11.4 Data Abstractionccoereeriiiiiiciniciimec i es s aesenrenes 11-6
11.5 Block Data Subprograms..........c.cccceerecininnirieeninecararmassansireessrenssres 11-6
PROCEDURES GEWPRSENNEDPENANER I AN NS E N E AN NO N AP AR P RN PN RSN ERNUNESARNIRERPREDS 12-1
12.1 Procedure Classiflcationsc.cccnceiermneneriirinesseneeesesenenranees 121
12.2 Characteristics of Proceduresccceceueerivimiiinniesseseencrsssmersnnns 12-1
12.3 Procedure Interface........ccceciiirememeiiiricccrerirrmrenterirnsensensensessesssesnnns 12-2
12.4 Procedure Reference........c.cc.ceeeeueririmecunecrerennnierinensissensasssserenense 12-5
12.5 Procedure Definitioncccmeiiiiiinicciincemn e eeensssenenes 12-8
1986 March Page ii

13

14

15

Version 99

TABLE OF CONTENTS

INTRINSIC PROCEDURES.cciiiteeiireeireessennsernnssrensansennss 13-1
13.1 INtrinSic FUNCIONSceeecciciiiiiicci e e rec e ceeee e s eee s e nseenees 131
13.2 Elemental Intrinsic Function Arguments and Results 13-1
13.3 Argument Presence and Condition Status Functions 13-1
13.4 Numeric, Mathematical, Bit, Character, and Derived-Type Functions 13-1
13.5 Numeric Manipulation and Inquiry Functions............c.cccceemnurvnnnnnnn. 13-2
13.6 Array Intrinsic FUNCHONSccccceiiviciieieceececrereescrssescn e e s saes 13-3
13.7 Intrinsic Subroutinesc.cocecireiieiiiiiiciis i i crese e e s e rreennnns 13-5
13.8 Tables of Generic Intrinsic FUNCHIONScccevereivrierereneeerennnennnnne. 13-5
13.9 Specifications of the Intrinsic Procedures.............cccccoevmerennnnennen. 13-11
ENTITY SCOPE, ASSOCIATION, AND DEFINITION.................. 14-1
14.1 Name and Scoping RUleS............ccceverieviisnrersrsccrnnnencnennnenssserrersens 14-1
14.2 ASSOCIAtION........cociiiiiiiriiiieccrcceerrrer e e e e eere s e s s m e nam s mmenns 14-3
14.3 Definition and Undefinitioncoveiviemmeemericcssissememseemmemmenns 14-7
DEPRECATED FEATURESc.oiceeueriiiiieemenicreereenmnnsesennnseens 15-1
FORTRAN FAMILY OF STANDARDScceeuuvmmererierererrrmnnsnnns A-1
A.1 The Fortran Language Standard...............ccceceeererrcireeceeereneneiennn. A-1
A.2 Supplementary Standards Based on Procedure Libraries................ A-2
A.3 Supplementary Standards Based on Module Libraries.................... A-3
A.4 Secondary STaNAArdScceccereiesvererirensescsnsesssrreseressssnenn o A4
A.5 Standard CONfOrMANCE...........ccccovcriremiersreemeeresserersssssesersorsssennns A-5
A.6 Fortran Family of Standards................cccccmrisreeeeencenerssssneeeeerenson. A-6
DEPRECATED FEATURES NOTEScoeemmuruiriieererereersenemnnnnns B-1
B.1 Storage ASSOCIAtIONccccceciirecemriereeniirereee et reessce e e sees sesennss B-1
B.2 Redundant Functionalitycccceeviseereirnisscrereeeeneesssememnssessann B-3
B.3 Redundant Functionalitycoccuvieiiecmimresccreroresceesersvsosrersesnn B-5
SECTION NOTESccociieceeeeriiinsenneseeresssssirereeeresesssesnsnsnnnsess C-1
SYNTAX RULES.....c.cc i inireeeesceecsiesesnese s e s e en e sme e D-1
PERMUTED INDEX FOR HEADINGSccceerrrennnssennnnsnnnnnn. E-1

1986 March Page iii

10

15

20

25

30

35

1 INTRODUCTION

1.1 Purpose. This standard specifies the form and establishes the interpretation of pro-
grams expressed in the Fortran language. The purpose of this standard is to promote porta-
bility, reliability, maintainability, and efflcient execution of Fortran programs for use on a vari-
ety of computing systems. This standard is an upward compatible extension to the preced-
ing Fortran standard, X3.9-1978, informally referred to as Fortran 77. Any standard-
conforming Fortran 77 program is standard conforming under this standard, with the same
interpretation; however, see Section 1.4 regarding intrinsic procedures.

1.2 Processor. The combination of a computing system and the mechanism by which
programs are transformed for use on that computing system is called a processor in this
standard.

1.3 Scope. This standard specifies the bounds of the Fortran language by identifying both
those items included and those items excluded.

1.3.1 Inclusions. This standard specifies:
(1) The forms that a program written in the Fortran language may take
(2) The rules for interpreting the meaning of a program and its data
(3) The form of the input data to be processed by such a program
(4) The form of the output data resulting from the use of such a program

1.3.2 Exclusions. This standard does not specify:
(1) The mechanism by which programs are transformed for use on computers

(2) The operations required for setup and control of the use of programs on compu-
ters

(3) The method of transcription of programs or their input or output data to or from a
storage medium

(4) The program and processor behavior when the rules of this standard fail to estab-
lish an interpretation

(5) The size or complexity of a program and its data that will exceed the capacity of
any specific computing system or the capability of a particular processor

(6) The physical properties of the representation of quantities and the method of
rounding of numeric values on a particular processor

(7) The physical properties of input/output records, files, and units
(8) The physical properties and implementation of storage

1.4 Conformance. The requirements, prohibitions, and options specified in this standard
refer to permissible forms and relationships for standard-conforming programs rather than
for processors. The optional output forms produced by a processor, which are not under the
control of a program, are an example of an exception. The requirements, prohibitions, and
options for a standard-conforming processor must be inferred from those given for programs.

Version 99 1986 March Page 1-1

INTRODUCTION X3J3/s8

10

15

20

25

30

35

40

45

An executable program (2.2.1) conforms to this standard if it uses only those forms and rela-
tionships described herein and if the executable program has an interpretation according to
this standard. A program unit (2.2) conforms to this standard if it can be included in an exe-
cutable program in a manner that allows the executable program to be standard conforming.

A processor conforms to this standard if it executes standard-conforming programs in a man-
ner that fulfills the interpretations prescribed herein. A standard-conforming processor may
allow additional forms and relationships provided that such additions do not conflict with the
standard forms and relationships. However, a standard-conforming processor may allow
additional intrinsic procedures even though this could cause a conflict with the name of an
external or internal procedure in a standard-conforming program. If such a conflict occurs
and involves the name of an external procedure, the processor is permitted to use the intrin-
sic procedure unless the name appears in an EXTERNAL statement within the program unit.
A standard-conforming program must not use nonstandard intrinsic procedures that have
been added by the processor.

This standard has more intrinsic procedures than did Fortran 77. Therefore, a standard-
conforming Fortran 77 program may have a different interpretation under this standard if it
invokes a procedure having the same name as one of the new standard intrinsic procedures,
unless that procedure is specified in an EXTERNAL statement as recommended for
nonintrinsic functions in the appendix to the Fortran 77 standard.

Note that a standard-conforming program must not use any forms or relationships that are
prohibited by this standard, but a standard-conforming processor may allow such forms and
relationships if they do not change the proper interpretation of a standard-conforming pro-
gram. For example, a standard-conforming processor may allow a nonstandard data type
such as INTEGER=*2.

Because a standard-conforming program may place demands on a processor that are not
within the scope of this standard or may include standard items that are not portable, such
as external procedures defined by means other than Fortran, conformance to this standard
does not ensure that a standard-conforming program will execute consistently on all or any
standard-conforming processors.

1.5 Notation Used in This Standard. In this standard, “must” is to be interpreted as a
requirement; conversely, “must not” is to be interpreted as a prohibition.

1.5.1 Syntax Rules. Syntax rules are used to help describe the form that Fortran state-
ments and constructs may take. These syntax rules are a variation of Backus-Naur form
(BNF) in which:

(1) Characters from the Fortran character set are to be written as shown, except
where otherwise noted.

(2) Lower case italicized letters and words (often hyphenated and abbreviated) repre-
sent general syntactic classes for which specific syntactic entities must be substi-
tuted in actual statements.

Some common abbreviations used in syntactic terms are:

stmt for statement attr for attribute
expr for expression dec/ for declaration
spec for specifier def for definition
int for integer desc for descriptor
arg for argument op for operator

(3) The syntactic metasymbols used are:

Version 99 1986 March Page 1-2

INTRODUCTION X3J3/S8

10

15

20

25

30

35

40

is introduces a syntactic class definition

r introduces a syntactic class alternative

] encloses an optional item

| encloses an optionally repeated item
which may occur zero or more times

O continues a syntax rule

(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s
is a one or two digit section number and nn is a sequence number within that sec-
tion. The syntax rules are distributed as appropriate throughout the text, and may
be referenced by number as needed.

(5) The syntax rules are not a complete and accurate syntax description of Fortran,
and cannot be used to generate automatically a Fortran parser; where a syntax
rule is incomplete, it is accompanied by an informal description of the correspond-
ing constraint.

(6) Deprecated features are shown in a distinguishing type font. This is an example of the
font used for deprecated features.

An example of the use of syntax rules is:
int-constant Is digit [[underscore] digit]...
The following forms are examples of forms for an integer constant allowed by the above rule:
digit
digit digit
digit underscore digit digit digit
digit digit underscore digit digit digit underscore digit digit digit

When specific entities are substituted for digit and underscore actual integer constants might
be:

4

67

1.999
10243 852

1.5.2 Assumed Syntax Rules. To minimize the number of additional syntax rules and con-
vey appropriate constraint information, the following rules are assumed unless explicitly over-
ridden. The letters “xyz” stand for any legal syntactic class phrase:

xyz-list is xyz [, xyz ...
Xyz-name is symbolic-name
xyz-symbolic-constant is symbolic-name
Xyz-expr is expr
Xyz-variable Is variable
int-xyz is xyz

char-xyz is xyz
derived-type-xyz is xyz

scalar-xyz is xyz

array-xyz is xyz

Version 99 1986 March Page 1-3

INTRODUCTION X3J3/S8

10

15

20

25

30

35

40

1.5.3 Syntax Conventions and Characteristics.

(1) Any syntactic class name ending in “-stmt” follows the source form statement
rules: it may be labeled and must be delimited by end-of-line or semicolon. Con-
versely, everything considered to be a source form statement is given a “-stmt”
ending in the syntax rules.

(2) Statement ordering is rigorously described in the definition of program-unit-body
(R210). Expression hierarchy is rigorously described in the definition of expr
(R715).

(3) The term “type parameter” applies to a data type parameter, with “type-param-
name” used for the dummy parameter and “type-param-spec” (R503) used for the
actual parameter, including the optional keyword. The part without the keyword is
called “type-param-value” (R504). These terms parallel the use of “dummy-arg-
name”, “actual-arg-spec” (R1212) and “actual-arg” (R1214), respectively, for proce-
dure arguments. In the case of intrinsic type parameters, CHARACTER length
type-param-spec is called “length-param-spec” (R508), and REAL precision and
exponent range lype-param-specs are called “precision-param-spec” (R507) and
“exp-range-param-spec” (R507), respectively.

(4) The suffix “-spec” is used consistently for specifiers, such as keyword type para-
meters, keyword actual arguments, and input/output statement specifiers. It also
is used for type declaration attribute specifications (e.g., “array-spec”), and in a
few other ad hoc cases.

(5) When reference is made to a parameter, including the surrounding parentheses,
the term “selector” is used. See, for example, “length-selector” (R508),
“precision-selector” (R409, R507), “array-selector” (R605), and “case-selector”
(R813).

(6) The term “subscript” (e.g., R611 and R614) is used consistently in array
definitions.

1.5.4 Text Conventions. In the descriptive text, the normal English word equivalent of a
BNF syntactic term is usually used. Specific statements are identified in the text by the
uppercase keyword, e.g., “END statement”. Boldface words are also used in the text where
they are first defined with a specialized meaning.

1.6 Deprecated Features, Core Conformance. Since it first became available in
1957, Fortran has undergone several generations of development and evolution. This is the
third Fortran standard, the first having appeared in 1966 and the second in 1978. Fortran
has changed significantly during this period, and some of its newer features are more
effective for reliable software production than certain earlier features. Therefore, some
elements of the language are identified in this standard as deprecated features and are
intended to be removed from the next version of the Fortran standard. It is emphasized,
however, that the deprecated features are part of this version of the standard Fortran lan-
guage. This identification of deprecated features permits Fortran users to minimize the
impact of removal as follows:

(1) By using new features in new programs

(2) By replacing deprecated features with more effective features as existing pro-
grams are enhanced.

(38) By planned conversion for those remaining programs that must execute on
standard-conforming processors for the next version of the Fortran standard.

Version 99 1986 March Page 1-4

INTRODUCTION X3J3/58

The deprecated features are identified by means of a distinguishing type font (see Section
1.5 for an illustration of this font). Major deprecated features also are listed in Section 15
with a list of possible alternative features in Appendix B.

The set of language facilities in this standard that are not identified as deprecated features

5 are referred to collectively as the core, which is a complete language. A
standard-conforming executable program that does not contain any deprecated features is a
core-conforming program. A standard-conforming program unit that does not contain any
deprecated features is a core-conforming program unit.

1.7 Modules. This standard provides facilities that encourage the design and use of mod-

10 ular and reusable software. Data and procedure definitions may be organized into nonexe-
cutable program units, called modules, and made available to any other program unit. In
addition to global data and procedure library facilities, modules provide a mechanism for
defining data abstractions and certain language extensions.

An intrinsic module is a module definition included with this standard. In addition, a module

16 may be standardized as a separate collateral standard. A standard module must be core
conforming. Qperators defined in the module must not have the potential to alter the mean-
ing of any core-conforming intrinsic operation.

Version 99 1986 March Page 1-5

2 FORTRAN TERMS AND CONCEPTS

2.1 High Level Syntax. The high level syntax introduces the terms associated with
program units and other Fortran concepts above the construct, statement, and expression
levels and illustrates their relationships. The syntax rule notation is described in 1.5.

5 R201 executable-program is external-program-unit
[external-program-unit |...
Constraint: An executable-program must contain exactly one main-program
program-unit.
R202 external-program-unit is main-program
10 or external-subprogram
R203 main-program is [program-stmt |
program-unit-body
end-program-stmt
R204 external-subprogram is external-proc-subprogram
15 or module-subprogram

or block-data-subprogram
R205 external-proc-subprogram is procedure-subprogram

R206 procedure-subprogram is function-subprogram
or subroutine-subprogram

20 R207 function-subprogram is function-stmt
program-unit-body
end-function-stmt

R208 subroutine-subprogram Is subroutine-stmt
program-unit-body
25 end-subroutine-stmt
R209 module-subprogram is module-stmt
program-unit-body
end-module-stmt
Constraint: A module program-unit-body must not contain an execution-part.
30 R210 block-data-subprogram is block-data-stmt
program-unit-body
end-block-data-stmt
Constraint: A block-data-subprogram program-unit-body may contain only IMPLICIT, PARAMETER,

type declaration, COMMON, DIMENSION, EQUIVALENCE, DATA, and SAVE statements.

35 R211 program-unit-body Is [use-simt]...
[implicit-part |...
[declaration-part |...
[stmi-function-part]...
[execution-part |...
40 [contains-stmt
[internal-proc-subprogram |... |

R212 implicit-part is implicit-stmt
or parameter-stmt

Version 99 1986 March Page 2-1

FORTRAN TERMS AND CONCEPTS

X3J3/s58

or format-stmt
or entry-stmt

The last implicit-part, if any, in a program unit body must be an
implicit-stmt.

is derived-type-def

or interface-block

or type-declaration-stmt
or specification-stmt

or parameter-stmt

or format-stmt

or entry-stmt

is format-stmt
or data-simt

or entry-stmt

or stmi-function-stmt

The first stmt-function-part, if any, in a program unit body must be a

stmi-function-stmt.

is executable-construct
or format-stmt

or data-stmt

or entry-stmt

The first execution-part, if any, in a program unit body must be an

executable-construct or a DATA statement.

is proc-subprogram

is access-stmt
or condition-stmt
or exponent-letter-stmt
or external-stmt
or initialize-stmt
or intent-stmt

or intrinsic-stmt
or optional-stmt
or range-stmt

or save-stmt

or common-stmt

or dimension-stmt
or equivalence-stmt

An intent-stmt or optional-stmt must not appear in a module or main

program because they apply only to dummy arguments.

Constraint:
5 R213 declaration-part
10

R214 stmi-function-part
15

Constraint:

R215 execution-part
20

Constraint:

R216 internal-procedure
25 R217 specification-stmt
30
35

Constraint:
40 R218 executable-construct
45

R219 action-stmt
Version 99

is action-stmt

or case-construct
or do-construct

or enable-construct
or if-construct

or where-construct

is allocate-stmt

1986 March Page 2-2

FORTRAN TERMS AND CONCEPTS X3J3/S8

10

15

20

25

30

35

40

or assignment-stmt
or backspace-stmt
or call-stmt

or close-stmt

or continue-stmt
or cycle-stmt

or deallocate-stmt
or endfile-stmt

or exit-stmt

or forall-stmt

or goto-stmt

or identify-stmt

or if-stmt

or inquire-stmt

or open-stmt

or print-stmt

or read-stmt

or return-stmt

or rewind-stint

or set-range-stmt
or signal-stmt

or stop-stmt

or where-stmt

or write-stmt

or arithmetic-if-strmt

or assign-stmt

or assigned-goto-stmt
or computed-goto-stmt
or pause-stmt

Constraint: An entry-stmt or return-stmt must not appear in a main program; an
entry-stmt must not appear in constructs.

2.2 Program Unit Concepts. Program units are the fundamental components of a For-
tran program. A program unit may be a main program, procedure subprogram, module sub-
program, or block data subprogram. A procedure subprogram may be a function subprogram or a
subroutine subprogram. A module contains definitions that are to be made ???available to
other program units. A block data subprogram is used only to spacify initial values for named common block dala
objects. Each type of program unit is described in Section 11 or 12.

2.2.1 Executable Program. An executable program consists of exactly one main program
and any number (including zero) of external subprograms. The set of subprograms in the
executable program may include any combination of the different kinds of subprograms in
any order.

2.2.2 Main Program. Execution of an executable program begins with the first executable
construct of the main program. The main program is described in detail in 2??Section 11.1.

Version 99 1986 March Page 2-3

FORTRAN TERMS AND CONCEPTS X3J3/S8

10

15

20

25

30

35

40

45

any of the data objects accessible to the subroutine; a function subprogram may do this in
addition to computing the function value.

Procedures are described further in Section 12.

2.2.3.1 External Procedure. An external procedure is a nonintrinsic procedure whose
definition is not contained within another program unit. An external procedure may be
invoked by the main program or any procedure of an executable program.

2.2.3.2 Internal Procedure. An internal procedure is a procedure whose definition is con-
tained within another program unit. The containing program unit is called the host of the
internal procedure. An internal procedure is local to its host in the sense that the internal
procedure is accessible within the host but is not accessible outside the host except through
explicit means that make local entities accessible outside their hosts. Any kind of program
unit, except a block data subprogram, may host internal procedures, and an internal procedure may
host other internal procedures.

2.2.3.3 Procedure Interface Block. The purpose of a procedure interface block is to
describe to the invoking program the attributes and keyword names of dummy arguments
and, if the procedure is a function, the attributes of function results. It specifies the number
of arguments a procedure has, the data type of each argument, the optional argument key-
words that may be used in invoking the procedure, and which arguments (if any) are
optional. It may also specify the argument intents (IN, OUT, or INOUT). A procedure inter-
face block may be placed in a program unit that invokes the procedure, or in a module to
which the invoking procedure has access. Procedure interface blocks are described in Sec-
tion 12.

2.2.4 Module. A module contains (or accesses from other modules) definitions that are to
be made accessible to other external program units. These definitions include data object
declarations, type definitions, internal procedure definitions, and procedure interface blocks.
A module cannot contain any definitions or specifications that could not be placed in other
external program units. The purpose of a module is to make the definitions it contains
accessible to all other program units in an executable program that requests such accessibil-
ity. Modules are global to all of the program units in an executable program, and any set of
program units in the executable program may request access to the definitions contained in
a module. The facilities contained in a module are global to the executable program, with
the accessibility of the global facilities controlled on a program unit by program unit basis.
Modules are further described in Section 11.

2.3 Execution Concepts. A program unit is a sequence of statements. Statements are
classified as executable statements and nonexecutable statements. Fortran places restric-
tions upon the order in which statements may appear in a program unit, and allows certain
executable statements to appear only in an executable construct.

2.3.1 Executable/Nonexecutable Statements. Program execution is a sequence, in time,
of computational actions. An executable statement is an instruction to perform or control
one or more of these actions. Thus, the executable statements of a program unit determine
the computational behavior of the program unit. The executable statements are all of those
that make up the syntactic class of executable-part, except for format-stmt, cata-stmt, and entry-
stmt.

Nonexecutable statements do not specify actions; they are used to configure the program
environment in which computational actions take place. The nonexecutable statements are
all those not classified as executable. Al statements in a block data subprogram must be nonexecutable. A
module may contain executable statements only within an internal procedure definition.

Version 99 1986 March Page 2-4

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

45

50

2.3.1 Executable/Nonexecutable Statements. Program execution is a sequence, in time,
of computational actions. An executable statement is an instruction to perform or control
one or more of these actions. Thus, the executable statements of a program unit determine
the computational behavior of the program unit. The executable statements are all of those
that make up the syntactic class of executable-part, except for format-stmt, data-stmt, and
entry-stmt.

Nonexecutable statements do not specify actions; they are used to configure the program
environment in which computational actions take place. The nonexecutable statements are
all those not classified as executable. Al statements in a block data subprogram must be nonexecutable. A
module may contain executable statements only within an internal procedure definition.

2.3.2 Statement Order. The syntax rules of Section 2.1 specify the statement order within
program units. Figure 2.1 illustrates statement ordering. Vertical lines delineate varieties of
statements that may be interspersed and horizontal lines delineate varieties of statements
that must not be interspersed. USE statements, if any, must appear immediately after the
program unit heading and internal procedure definitions must follow a CONTAINS statement.
Between USE statements and internal procedure definitions nonexecutable statements gen-
erally precede executable statements, though the FORMAT statement, DATA statement, and
ENTRY statement may appear among the executable statements.

Figure 2.1. Constraints on Statement Ordering.

PROGRAM, FUNCTION, SUBROUTINE,
MODULE, or BLOCK DATA Statement

USE Statements

IMPLICIT
Statements
PARAMETER Derived Type Definitions
FORMAT Statements Interface blocks
and Type Declaration Statements
ENTRY Specification Statements
Statements

Statement

Function
DATA Statements
Statements

Executable
Statements

CONTAINS Statement

Internal Procedure Definitions

Program Unit END Statement

2.3.3 The END Statement. The program unit END statement must appear only as the ter-
minal statement of a program unit definition. The terminal statement of each program unit
must be an END statement. In all cases, the keyword END is a complete and valid END
statement. Variations allowed by each kind of program unit are included with the descrip-
tions of the program units (Sections 11 and 12). In main programs and procedure

Version 99 1986 March Page 2-5

FORTRAN TERMS AND CONCEPTS X3J3/S8

10

15

20

25

30

35

40

subprograms, the END statement may be executed, and its execution terminates execution
of the program unit (equivalent to a STOP statement in main programs and a RETURN state-
ment in procedures). An END statement may be labeled and may be the target of a pro-
gram branch.)

2.3.4 Execution Sequence. The execution of a main program or procedure involves exe-
cution of its executable constructs. Upon invocation of a procedure, execution begins with
the first executable construct appearing after the invoked entry point. With the following
exceptions, the executable constructs are executed in the order in which they appear in the
main program or procedure until a STOP, RETURN, or program unit END statement is exe-
cuted. The exceptions are:

(1) Execution of a branching statement (8.2) changes the execution sequence. These
statements explicitly specify a new starting place for the execution sequence, and
are called explicit branches.

(2) IF constructs, CASE constructs, and DO constructs contain an internal statement
structure and execution of these constructs involves implicit (i.e., automatic) inter-
nal branching. See Section 8 for the detailed semantics of each of these con-
structs.

(3) Execution of a SIGNAL statement, or any statement that causes a condition to be
raised, results in a change in the execution sequence.

(4) Atternate return and END = and ERR = specifiers may result in a branch.

(5) Internal procedure definitions may precede the END statement of a program unit.
The execution sequence skips all such definitions.

(6) Handler definitions may precede the END ENABLE statement of an ENABLE con-
struct. The execution sequence skips such definitions. .

2.4 Data Concepts. Nonexecutable statements are used to define the characteristics of
the data environment. This includes typing variables, declaring arrays, and defining new
data types.

2.4.1 Data Type. A data type consists of a set of values, together with a way to denote
these values and a collection of operations that interpret and manipulate the values. This
central concept is described in 4.1.

There are two categories of data types: intrinsic types and derived types.

2.4.1.1 Intrinsic Type. An intrinsic type is one that is implicitly defined, along with opera-
tions, and is always ???available. The intrinsic types are INTEGER, REAL, COMPLEX, pou-
BLE PRECISION, CHARACTER (of any length), LOGICAL, and BIT. The properties of intrinsic
types are described in ???Section 4.3.

2.4.1.2 Derived Type. A derived type is a type definition containing components, which
are intrinsic types or other derived types. Derived types have associated with them a small
set of intrinsic operations: assignment with type agreement, comparison for equality, use as
procedure arguments and function results, and input/output. If additional operations are
needed for a derived type, they must be supplied as procedure definitions.

Intrinsic types are ???available to every program unit. A derived-type definition is local to
the program unit in which it appears. In order to make such a definition ???available to
other program units in an executable program, the derived type may be defined in a module.
Program units using a module have access to the derived-type definitions it contains.

Version 99 1986 March Page 2-6

FORTRAN TERMS AND CONCEPTS X3J3/s8

10

15

20

25

30

35

40

Derived types are described further in 4.4.

2.4.2 Data Value. Each intrinsic type has associated with it a set of intrinsic values that
objects of that type may take. These values for each intrinsic type are described in ???Sec-
tion 4.3. Because derived types are specified in terms of intrinsic types, the intrinsic values
also determine the values that objects of a derived type may assume.

2.4.3 Data Entity. A data entity is an entity that has, or may have, a data value. A data
entity is either a constant or a variable. In addition, it is either a scalar or an array. Expres-
sion values and function results are considered to be data entities, either scalar or array,
and have some of the properties of constants (for example, as procedure arguments).

2.4.3.1 Data Object. A data object is a named datum or set of data of the same type and
type parameters that has a symbolic name and may be referenced as a whole. It may be a
simple variable or symbolic constant.

2.4.3.2 Subobjects. Portions of certain data objects may be referenced and defined inde-
pendently of the other portions. These include portions of arrays (array elements and array
sections), portions of character strings (substrings), and portions of structured objects (com-
ponents). These subobjects are described in Section 6.

2.4.3.3 Constant. A constant is a data entity whose value must not change during execu-
tion of an executable program.

A constant with a symbolic name is called a symbolic constant. Symbolic constants and
the means by which they are defined are described in Section 5. A constant without a sym-
bolic name is called a literal constant.

2.4.4 Variable. A variable is a data object or subobject whose value can be defined and
redefined during execution of an executable program. A data object explicitly declared as
an array and not having the PARAMETER attribute is a variable (array variable name). A
nonarray data object, declared explicitly or implicitly and not having the PARAMETER attri-
bute is a variable (scalar variable name). In some cases, a portion of a variable may itself
be a variable and may be assigned a value independently of the other portions. The follow-
ing data objects are variables:

a scalar variable name (a scalar object)

an array variable name (an array object)

an array element (a scalar object)

an array section (an array object)

a derived type component (either a scalar or array object)
a substring (a scalar or an array object)

2.4.4.1 Scalar. A scalar is a datum that is not an array or an array section. Scalars
include

scalar variables and constants

array elements

substring of a scalar

scalar components of derived type objects

Scalars may be of any intrinsic type or derived type.

Version 99 1986 March Page 2-7

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

40

45

2.4.4.2 Array. An array is a set of data, all of the same type and type parameters, whose
individual elements are arranged in a rectangular pattern. An array element is one of the
individual elements in the array.

An aray with a symbolic name has one subscript for each dimension of the pattern. The pat-
tern may have dimensions up to seven, and any extent (size) in any dimension. The rank of
the array is the number of dimensions, and its size is the total number of elements, which is
equal to the product of the extents. Arrays may have zero size. The ghape of an array is
determined by its rank and its extent in each dimension; shape is a rank one array whose
elements are the extents. The rank of a scalar is zero. All arrays must be declared, and
the rank of an array is specified in its declaration. The rank of an array, once declared, is
constant and the extents may be constant also. However, the extents may vary during exe-
cution for dummy argument arrays, automatic arrays, alias arrays, ranged arrays, and
allocatable arrays.

Two arrays are said to be conformable if they have the same shape. A scalar is conform-
able with any array. Any operation defined for scalar objects may be applied to conformable
objects. Such operations are performed element wise to produce a resultant array conform-
able with the array operands. Element-wise operation means corresponding elements of the
operand arrays are involved in a “scalar-like” operation to produce the corresponding ele-
ment in the result array, and all such element operations may be performed simultaneously.

A one-dimensional array of scalar constants may be reshaped into any allowable array
shape.

Array objects may be of any intrinsic type or derived type and are described further in Sec-
tion 6.

2.4.5 Storage. Many of the facilities of this standard make no assumptions about the physical storage characteris—
tics of data objects. However, program units that include storage association dependent features (Section 14) must
observe certain storage constraints.

There are two kinds of physical storage units: numeric and character. When used in a storage association context, sca-
lar objects of type integer, default real, and logical each use a single numeric storage unit. When used in a storage
association context, scalar objects of type double precision and default complex each use two contiguous numeric stor—
age units. When used in a storage association context, each character in an object of type character uses one character
storage unit and scalar character objects employ a contiguous set of such units. When used in a storage association
context, array objects are assigned contiguous storage units of the appropriate typs, in subscript order value (Section 6).
For example, the storage order for a two-dimensional array is the first column followed by the second column, etc.

Objects having different kinds of storage units must not be storage associated. Nondefault precision type objects,
derived type objects, and bit objects must not appear in a storage association context.

2.5 Fundamental Terms. The following terms are defined here and used throughout
this standard.

2.5.1 Symbolic Name. A symbolic name is used to identify a program constituent, such as
a program unit, variable, symbolic constant, dummy argument, or a derived type name. The
rules governing the construction of symbolic names are given in 3.2,

2.5.2 Keyword. The term keyword is used in two ways in this standard. The words that
are always part of the syntax of a statement and may be used to identify the statement are
statement keywords. Examples of this kind of keyword are: IF, READ, WHERE, and INTE-
GER. These keywords are not “reserved words”; that is, symbolic names with the same
spellings are allowed.

Version 99 1986 March Page 2-8

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

Argument keywords are dummy argument names. Section 13 defines argument keywords
for all of the intrinsic procedures. Argument keywords for nonintrinsic procedures may be
made ?7?7?available outside the procedure definition by making the procedure interface
explicit (Section 12).

2.5.3 Declaration. The term declaration refers to the specification of attributes for various
program entities. Often this involves specifying the data type of a data object or specifying
the shape of an array object.

2.5.4 Definltion. The term definitlon is used in two ways. First, when a data object is
given a valid value during program execution, it is said to become defined. This is often
accomplished by execution of an assignment statement or input statement. Section 14
describes the ways in which data objects may become defined and undefined. The second
use of the term definition is for the definition of derived types and procedures.

2.5.5 Reference. A data object reference is the appearance of the data object in a con-
text requiring its value at that point during execution.

A procedure reference is the appearance of the procedure name in a context requiring exe-
cution of the procedure at that point.

The appearance of a data object or procedure name in an actual argument list does not con-
stitute a reference to that data object or procedure unless such a reference is needed to
complete the specification of the actual argument.

2.5.6 Association. An association exists if an entity may be identified by different names
in the same program unit or by the same name or different names in different program units.
The forms of association are described in 14.2.

2.5.7 Intrinsic. The term intrinsic applies to intrinsic data types, intrinsic procedures,
intrinsic operators, and intrinsic conditions that are defined in this standard. These may be
used in any program unit without further definition or specification.

2.5.8 Operator. An operator specifies a particular computation involving one (unary opera-
tor) or two (binary operator) data values (operands). Fortran contains a number of intrinsic
operators (e.g., the arithmetic operators +, —, *, /, and ** with numeric operands and the
logical operators .AND., .OR., etc. with logical operands). Additional operators may also be
defined.

2.5.9 Handler. A handler is a sequence of statements with a HANDLE statement as the
first statement and terminated with the statement before the next HANDLE statement or
END ENABLE statement, whichever comes first. A handler may be executed when a
specified condition is signaled.

2.5.10 Condition. A condition is signaled when it is inappropriate to continue the normal
execution sequence. A condition may be signaled by the execution of a SIGNAL statement
(8.1.5.1) or it may be signaled implicitly. See 8.1.5.4 for the list of intrinsic conditions.

Version 99 1986 March Page 2-9

10

15

20

25

30

35

40

3 LEXICAL ELEMENTS

This section describes the Fortran character set and the various lexical elements such as
symbolic names and operators. This section also describes the rules for the forms that For-
tran programs may take.

3.1 Fortran Character Set. The Fortran character set consists of twenty-six letters, ten
digits, underscore, and twenty-three special characters.

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit

or underscore

3.1.1 Letters. The twenty-six letters are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

If a processor also permits lower-case letters, the lower-case letters are equivalent to upper-
case letters in program units except in character constants, delimited character edit descrip-
tors, and H edit descriptors.

3.1.2 Digits. The ten digits are:
0123456789
When used in numeric constants, the digits are interpreted according to the decimal base

number system.

3.1.3 Special Characters. The twenty-three special characters plus underscore, which is
considered to be an alphanumeric character, are:

Character Name of Character Character Name of Character
Blank : Colon
= Equals | Exclamation Point
+ Plus y Quotation Mark or Quote
— Minus % Percent
* Asterisk & Ampersand
/ Slash ; Semicolon
(Left Parenthesis < Less Than
) Right Parenthesis > Greater Than
, Comma ? Question Mark
. Decimal Point or Period [Left Bracket
$ Currency Symbol] Right Bracket

Apostrophe — Underline or Underscore

The special characters are used for operator symbols, bracketing, and various forms of sepa-
rating and delimiting of other lexical elements. The special characters $ and ? have no
specified use. The underscore (__) may be used as a significant character in symbolic
names and as an insignificant character in numeric constants.

Version 99 1986 March Page 3-1

LEXICAL ELEMENTS X3J3/S8

10

15

20

25

30

35

3.1.4 Character Graphics. Except for the currency symbol, the graphics used for the char-
acters must be as given in 3.1.1, 3.1.2, and 3.1.3. However, the style of any graphic is not
specified.

3.1.5 Collating Sequence. Each implementation defines a collating sequence for the char-
acter set. A collating sequence is a one-to-one mapping of the characters into the nonneg-
ative integers such that each character corresponds to a different nonnegative integer. The
intrinsic functions CHAR and ICHAR (see Section 13) provide conversions between the char-
acters and the integers according to this mapping. Thus,

ICHAR (character)

returns the integer value of the specified character according to the collating sequence of
the processor.

The only constraints on the collating sequence are:
(1) [ICHAR(A’) < ICHAR(B’) < --- < ICHAR('Z’) for the twenty-six letters.
() ICHAR(0) < ICHAR('1") < --- < ICHAR ('9’) for the ten digits.

(3) ICHAR(blank) < ICHAR('0’) < ICHAR('®") < ICHAR(A’) or
ICHAR(blank) < ICHAR(A’) < ICHAR('Z') < ICHAR('0")

(4) ICHAR(a’) < ICHAR(b’) < :-- < ICHAR('Z), if a processor supports lower
case letters

Except for blank, there are no constraints on the location of the special characters and
underscore in the collating sequence, nor is there any specified collating sequence relation-
ship between the upper-case and lower-case letters.

Note that the intrinsic functions ACHAR and IACHAR provide conversions between the char-
acters and the integers according to the mapping specified in ANS X3.4-1977 (ASCI).

3.2 Low-Level Syntax. The low-level syntax describes the fundamental lexical
elements of a program unit. These are sequences of characters and include keywords, sym-
bolic names, constants, operators, labels, and delimiters.

3.2.1 Keywords. Keywords appear as upper-case words in the syntax rules in Sections 4
through 12.

Some keywords may be written as either two separate consecutive words (e.g., END IF) or a
single word (e.g., ENDIF). These double keywords are: BLOCK DATA, DOUBLE PRECI-
SION, ELSE IF, ELSE WHERE, END BLOCK DATA, END DO, END ENABLE, END FILE,
END FUNCTION, END IF, END INTERFACE, END MODULE, END PROGRAM, END
SELECT, END SUBROUTINE, END TYPE, END WHERE, EXPONENT LETTER, FOR ALL,
GO TO, IMPLICIT NONE, IN OUT, and SELECT CASE.

3.2.2 Symbolic Names. Symbolic nhames are names for various entities such as varia-
bles, program units, dummy arguments, symbolic constants, and derived types.

R303 symbolic-name is letter | alphanumeric-character ...
Constraint: The maximum length of a symbolic-name is 31 characters.

Version 99 1986 March Page 3-2

LEXICAL ELEMENTS

3.2.3 Constants.

constant

literal-constant

symbolic-constant

3.2.4 Operators.

R304
R305
5
10 R306
R307
15
20
R308
25 R309
R310
R311
30 R312
R313
R314
R315
35
40
Version 99

intrinsic-operator

power-op
mult-op

add-op

bnot-op
band-op
bor-op

concat-op
rel-op

is literal-constant
or symbolic-constant

is int-constant

or real-constant

or complex-constant
or logical-constant
or char-constant

or bit-constant

is symbolic-name

is power-op
or mult-op
or add-op
or bnot-op
or band-op
or bor-op
or concat-op
or rel-op

or not-op
or and-op
or or-op

or equiv-op

is ok
is *
or /

is +
or —

is .BNOT.
is .BAND.

is .BOR.
or .BXOR.
is //

is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or <>
or <

or <=
or >

1986 March

X3J3/S8

Page 3-3

LEXICAL ELEMENTS X3J3/58

10

15

20

25

30

35

40

or >=
R316 not-op is .NOT.
R317 and-op is .AND.
R318 or-op is .OR.
R319 equiv-op is .EQV.
or .NEQV.
R320 defined-operator is overloaded-intrinsic-op

or defined-unary-op
or defined-binary-op

R321 overloaded-intrinsic-op Is intrinsic-operator
R322 defined-unary-op Is . letter [letter]... .
R323 defined-binary-op is . letter [letter]... .

Constraint: A defined-unary-op and a defined-binary-op must not contain more than 31 char-
acters and must not be the same as any intrinsic-operator or logical-constant.

3.2.5 Statement Labels. Any statement may be labeled.
R324 /abel is digit [digit | digit [digit [digit 1111

In free source form (3.3.1), a label is considered a lexical element that must immediately
precede the statement. In fixed source form (3.3.2), a label may appear only in character pasitions 1-5; blanks
may appear within a fixed source form label. The same statement label must not be given to more
than one statement in a program unit. Leading zeros are not significant in distinguishing
between statement labels and blanks are not significant in distinguishing between statement labels in fixed
source form.

3.2.6 Delimiters. The special characters blank, comma, equals, colon, left parenthesis,
right parenthesis, left bracket, right bracket, percent, slash, and asterisk are used in various
delimiting ways, as described in the syntax rules.

3.2.7 Lexical Element Sequence and Separation. The syntax rules specify the
sequences of lexical elements that are valid Fortran statements. In general, any number of
optional blanks may be inserted between otherwise adjacent lexical elements. In free
source form (3.3.1), one or more blanks must separate a symbolic name adjacent to a key-
word and blanks must not be inserted within any lexical element. In fixed source form (3.3.2), this is
not the case; blanks may be inserted or omitted freely.

3.3 Source Form. A Fortran program is a sequence of source records, called lines.
These records contain the characters that make up the statements of a program unit. Lines
following a program unit END statement are not part of that program unit.

Any syntax rule term that ends with “-stmt” is a Fortran statement.

A character context means characters within (between the delimiters for) character con-
stants, format-item lists in FORMAT statements, and comments.

There are two source forms:, free and fixed. Free form has no character position restrictions
and statements may appear in any character positions on the lines. Fixed form reserves character
positions 1-6 of each source line for special purposes. Free form and fixed form must not be mixed in the same pro-
gram unit. The means for specifying the source form of a program unit is processor dependent.

Version 99 1986 March Page 3-4

LEXICAL ELEMENTS X3J3/58

10

15

20

25

30

35

3.3.1 Free Source Form. In free form, each source record may contain from zero to a
maximum of 132 characters. Blank characters are significant and must not appear within
lexical elements and must be used to separate a symbolic name adjacent to a keyword. A
sequence of blank characters outside of a character context is equivalent to a single blank
character.

3.3.1.1 Commentary. The character “!” initiates a comment except when it appears within
a character context. The comment extends to the end of the source line. A comment,
including its “1” delimiter, is processed as though it were a blank character. Lines contain-
ing only blanks or blank equivalents are ignored and may appear anywhere in a program
unit.

3.3.1.2 Statement Separation. The character “;” separates statements on a single source
line except when it appears within a character context. A sequence of characters consisting
of a “;” followed by blanks, blank equivalents, or another “;” (possibly with intervening
blanks) is equivalent to a “;” except within a character context. A semicolon may follow the
last statement on a line. A statement must not follow an END statement on the same line.

3.3.1.3 Statement Continuation. Outside of a comment, the character “&” as the last
nonblank character on a line signifies that the statement is continued on the next line. If the
first nonblank character on the next line is also “&”, the statement continues at the next
character position following the “&”; otherwise, it continues at character position 1. When
used for continuation, the “&” is not part of the statement. If a character context other than
a comment is being continued, the “&” signifying continuation cannot be followed by com-
mentary and the continued portion must begin with an “&”. If the continuation is not within a
character context, the “&” may be followed by commentary. A statement must not contain
more than 1320 characters.

3.3.2 Fixed Source Form. Fixed form is the same as free form, with the following exceptions:

(1) Blank characters outside of a character context are insignificant and may be used freely throughout the
program.

(@) Source lines are exactly 72 character positions long.
3) Lines with a “C" or “*" in character position 1 are additional forms of commentary.

(4) The “&" continuation is not used in fixed form; rather, character position 6 is used. If character position &
contains a blank or zero, a new statement begins in character position 7 of this line and character positions
1-5 may contain a label. If character position 6 contains some character other than a blank or zero, char~
acter positions 7-72 of this line constitute a continuation of the preceding (noncomment) line. Columns 1-5
of such continuation lines must be blank. A statement must not have more than 19 continuation lines.

(5) Statement labels may appear only in character positions 1-5 and the continuation indicator may appear only
in character position 6.

(6) The program unit END statement must not be continued and no other statement in the program unit may
have an initial line that appears to be a program unit END statement.

Version 99 1986 March Page 3-5

10

15

20

25

30

35

4 DATA TYPES

A data entity is either a specific data value (e.g., the value of a specific expression) or an
accessible entity that may contain a specific data value {e.g., a simple scalar variable). In
either case, a data entity is associated with a specific instance of a data value. A data
object is a data entity that has a name or is a constant. Data objects may also be coliec-
tions of other data objects, as is the case with arrays and structured objects.

A data type does not represent specific instances of data values, but rather defines the prop-
erties of a specific class of data values and the allowed operations on them. For example,
the data type integer defines the class of integer numeric values and the operations of inte-
ger arithmetic. Each data object has a data type. Data objects may have other attributes in
addition to their types. How data types and other attributes are specified for data objects is
described in Section 5.

There are two categories of data types: intrinsic types and derived types. An intrinsic type
(e.g., integer) is one that is defined implicitly, along with operations, and is always available.
A derived type is a data structure definition whose components are intrinsic types or other
derived types. A derived type must be defined, whereas an intrinsic type is predefined.
The distinction between data type and data object is especially important in the case of
derived types and is reflected in the separate steps of type definition and object declaration.

4.1 The Concept of Type. A data type consists of a specific set of data values. The
principal properties of such a class are: (1) the set of valid values and their representation
(constants) and (2) the set of operations provided on and between these values.

4.1.1 Set of Values. For each data type, there is a set of valid values. The set of valid
values may be completely specified, as is the case for bit or logical, or may be specified by
a processor-dependent method, as is the case for integer and real. For data types such as
complex or derived types, the set of valid values consists of the set of all the combinations
of the values of the individual components.

4.1.2 Constants. For each of the intrinsic data types, the form for literal constants of that
type is defined intrinsically. These literal constants are described below for each intrinsic
type.

A constant value may be given a symbolic name.

Constants for derived types cannot be represented directly. Rather, a symbolic name may
be given to a constant expression (7.1.6.1) formed from derived type values using construc-
tors (4.4.2).

4.1.3 Operations. For each of the intrinsic data types, a set of operations and correspond-
ing operators are defined intrinsically. These are described in Section 7. In addition, opera-
tions and operators may be defined, augmenting the intrinsic set. Operator definitions are
described in Sections 7 and 12.

The only intrinsic operations for derived types are equality comparisons (.EQ. and .NE.). All
other operations on derived type entities must be defined.

Version 99 1986 March Page 4-1

DATA TYPES X3J3/S8

10

15

20

25

30

35

40

4.2 Assignment. Assignment provides a means of defining or redefining the value of a
variable of any type.

Assignment (7.5) is intrinsically defined for all types where there is conformance between the
type and other attributes of the variable and the value to be assigned to it. Assignment is
intrinsically defined with certain specific conversions, as described in Section 7, where the
value and variables do not have to conform. For example, an integer value may be
assigned to a real variable and the necessary conversion is applied. For nonintrinsic assign-
ment, conversions may be defined by assignment subroutines (Section 7 and 12.5.2.3).

4.3 Intrinsic Data Types. The intrinsic data types are:

numeric types: Integer, Real, Complex, and Double Precision
nonnumeric types: Character, Logical, and Bit

4.3.1 Numeric Types. The numeric types are provided for numerical computation. The
normal operations of arithmetic, addition (+), subtraction (—), multiplication (*), division (/),
exponentiation (**), negation (unary —), and identity (unary +), are defined intrinsically for
all of these types.

Each numeric type includes a zero value, which is considered to be neither negative nor
positive. In this standard, the unqualified term “constant” means “unsigned constant” when
applied to numeric types.

4.3.1.1 Integer Type. The set of values for the integer type is a subset of the mathemati-
cal integers. This subset includes all of the integer values from some processor-dependent
minimum negative value to some processor-dependent maximum positive value.

The type specifier (R502) for the integer type is the keyword INTEGER.
Any integer value may be represented as a signed-int-constant.

R401 int-constant is digit [[—] digit]...
R402 signed-int-constant is [sign] int-constant
R403 sign is +

or —

Examples of unsigned and signed integer constants are:

473
5_000_000
+56

-101

An underscore character in an integer constant is insignificant and has no effect on the
value of the constant. An integer constant represents a decimal value.

4.3.1.2 Real and Double Precision Type. The real type approximates the mathematical
real numbers. A processor must provide two or more approximation methods that define
sets of values that are representable for data entities of type real. Each such method is
characterized by an effective decimal precision and an effective decimal exponent range.
The effective decimal precision of an approximation method is returned by the inquiry intrin-
sic function EFFECTIVE__PRECISION (13.9.38) and the effective decimal range is returned
by the inquiry intrinsic function EFFECTIVE_EXPONENT__RANGE (13.9.37).

A data entity of type real may have real type parameters specified for precision and expo-
nent range. The values specified for these type parameters indicate minimum requirements
for the approximation method selected to represent the data object. A processor must

Version 99 1986 March Page 4-2

DATA TYPES X3J3/S8

select an approximation method with an effective decimal precision that is greater than or
equal to the specified precision, and with an effective decimal exponent range that is greater
than or equal to the specified exponent range. If more than one such method exists, the
processor must select the method with effective decimal precision that exceeds the specified
5 precision required by the least margin. If more than one method still exists, the processor
must select the method with effective decimal exponent range that exceeds the specified
exponent range by the least margin. If more than one method still exists, the method
selected is processor dependent. If no method exists that satisfies the specified precision
and exponent range, the processor must indicate an error condition, but other processor
10 action is undefined.

If one of the type parameters is omitted in the specification of a data object of type real, a
processor-dependent default is used.

If neither type parameter is specified, a processor-defined default real method is selected
and the data object is of type default real.

15 If double precision is specified for a data object, a processor-defined double precision method is selected and the object
is of type double precision. The effective decimal precision of the double precision method must be greater than that of
the default real method.

A data object of specified precision or exponent range may select the default real or double

precision method for its representation if either of these methods satisfies the specified
20 requirements. Such a data object must not become associated with a default real or double

precision data object in argument association (12.4.1.1) or in an IDENTIFY statement (6.2.6).

The type specifier for the real type is the keyword REAL and the type specifier for the double precision
type is the keyword DOUBLE PRECISION.

R404 signed-real-constant is [sign] real-constant
25 R405 real-constant is significand [exponent-letter exponent |
or int-constant exponent-letter exponent
R406 significand is int-constant . [int-constant]
or . int-constant
R407 exponent is signed-int-constant
30 R408 exponent-letter is E
or D
or defined-exponeni-letter
R409 exponent-letter-stmt is EXPONENT LETTER precision-selector defined-exponent-letter
R410 defined-exponent-letter Is letter

35 Constraint: A defined-exponent-letter must be a letter other than E, D, or H.

A given letter may be specified as the defined exponent letter in one and only one EXPO-
NENT LETTER statement in a given declaration part sequence.

Real constants written without an exponent part, or with exponent letter E, are default real
objects; exponent letter D specifies a double precision constant. A specified precision real constant must

40 use the exponent character specified for that precision in an EXPONENT LETTER state-
ment. A defined exponent letter and its association with a particular precision selector may
be made accessible to a program unit by a USE statement.

Examples of signed real constants are:

-12.78
45 +1,.6E3
2.1

VERSION 99 1986 MARCH PAGE 4-3

DATA TYPES X3J3/S8

10

15

20

25

30

35

40

45

Examples of unsigned real constants are:

0.45E-4
10.93L7
.123
3E4

In the second example (10.93L7), the letter L must have been defined as an exponent letter
in an EXPONENT LETTER statement.

The exponent represents the power of ten scaling to be applied to the significand. The
meaning of these constants is as in decimal scientific notation.

4.3.1.3 Complex Type. The complex type approximates the mathematical complex num-
bers. The values of a complex type are ordered pairs of real values. The first real value in
a complex pair value is called the real part, and the second real value is called the imagi-
nary part.

Any approximation method used to represent data objects of type real may be used to repre-
sent both the real and imaginary parts of a data object of type complex. The precision and
exponent range type parameters may be specified for complex data objects. They express
the required minimum precision and exponent range requirements for the real approximation
method used to represent both the real and imaginary parts of the complex data object.
The specified precision and exponent range select one real approximation method for both
parts following the same rules as for the real type.

If neither the precision nor the exponent range is specified, the default real method is
selected for both parts and the complex data object is default complex. A specified preci-
sion or exponent range complex data object must not be associated with a default complex
object in argument association (12.4.1.1) or in an IDENTIFY statement (6.2.6).

The type specifier for the complex type is the keyword COMPLEX.
R411 complex-constant is (real-part, imag-part)

R412 real-part is signed-int-constant
or signed-real-constant

R413 imag-part is signed-int-constant
or signed-real-constant

If the real part and imaginary part of a complex constant do not have the same precision and
exponent range type parameters, both are converted to an approximation method consistent
with the maximum of the two precisions and the maximum of the two exponent ranges.

If both the real and imaginary parts are signed integer constants, they are converted to the
default real approximation method and the constant is of type default complex. If only one
of the parts is a signed integer constant, the signed integer constant is converted to the
approximation method selected for the signed real constant.

4.3.2 Nonnumeric Types. The nonnumeric types are provided for nonnumeric processing.
The intrinsic operations defined for each of these types are indicated below.

4.3.2.1 Character Type. The character type is a set of values composed of character
strings. A character string is a sequence of characters, numbered from left to right 1, 2, 3,
.. up to the number of characters in the string. The number of characters in the string is
called the length of the string. The length is a type parameter and its value must be
greater than or equal to zero. Any character representable in the processor may occur in a
character string. Strings of different lengths are all of type character.

Version 99 1986 March Page 4-4

DATA TYPES X3J3/58

The type specifier for the character type is the keyword CHARACTER.

Literal character constants are written as a sequence of characters, delimited by either
apostrophes or quotation marks.

R414 char-constant is ' [character]..."’
5 or “ [character }... *

An apostrophe character within an character constant delimited by apostrophes is repre-

sented as two consecutive apostrophes (without intervening blanks); in this case, the two

apostrophes are counted as one character. Similarly, a quotation mark character within a

character constant delimited by quotation marks is represented as two consecutive quotation
10 marks and the two quotation marks are counted as one character.

The intrinsic operation concatenation (//) is defined between two data objects of type char-
acter (7.2.3).

4.3.2.2 Logical Type. The logical type has two values which represent true and false.

R415 logical-constant is .TRUE.
15 or .FALSE.

The intrinsic operations defined for data objects of logical type are: negation (.NOT.), con-

junction (.AND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical non-

equivalence (.NEQV.). There is also a set of intrinsically defined relational operators that

compare the value of data objects of other types and yield a logical value. These operations
20 are described in Section 7.2.4.

The type specifier for the logical type is the keyword LOGICAL.

4.3.2.3 Bit Type. The bit type has two values which represent the bit values zero and
one. Each of these values has two literal representations.

R416 bit-constant is B"0”
25 or B0’
or B"1”
or B'1’
The intrinsic operations defined for data objects of bit type are: bit negation (.BNOT.), bit

conjunction (.BAND.), bit inclusive disjunction (.BOR.), and bit exclusive disjunction (.BXOR.).
30 These operations are described in 7.2.2.

The type specifier for the bit type is the keyword BIT.

4.4 Derived-Data Types. Additional data types may be derived from the intrinsic data
types. Each such derived type is defined as a set of components, where each component is
an intrinsic type or another previously defined derived type. Ultimately, the structure of a

35 derived type is resolved into a sequence of components of intrinsic type. Objects of derived
type are called structures or structured objects.

4.4.1 Derlved-Type Definition.

R417 derived-type-def is derived-type-stmt
component-def-stmt
40 [component-def-stmt]...
[variant-component |
end-type-stmt

R418 derived-type-stmt Is [access-spec | TYPE type-name [(type-param-name-list) |

Version 99 1986 March Page 4-5

DATA TYPES X3J3/S8

10

15

20

25

30

35

40

R419 end-type-stmt is END TYPE [type-name |
Constraint: A derived type fype-name must not be the same as any intrinsic type-name.

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as
that in the derived-type-stmt.

R420 component-def-stmt is type-spec [[, component-atir-spec ... :: | component-decl-list
Constraint: A type-spec in a component-def-stmt must not contain a type-param-value that is
an asterisk.
R421 component-attr-spec is PRIVATE
or ARRAY (explicit-shape-spec-list)

R422 componeni-dec! is component-name [(explicit-shape-spec-list) |
R423 variant-component is select-case-stmt

[case-stmt [component-def-stmt]...]...

end-select-stmt

Constraint: The select-case-stmt and end-select-stmt in a variant-component must not spec-
ify a construct-name.

A derived-type name must not be the same as any intrinsic type name and must not be the
same as any other accessible derived-type name. The type name is analogous to the intrin-
sic type names (e.g., INTEGER, CHARACTER) and specifies the derived type being defined.

An example of a derived-type definition is:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

4.4.1.1 Type Paramoters of Derived Type. Derived-type definitions may have type para-
meters that are symbolic names for integer values. These symbolic names may be used as
parameters in the specification of expressions in the derived-type definition. In a declaration
of a data object of a type whose definition contains type parameters, actual values for these
parameters must be specified. This establishes the actual type parameter values for these
objects.

Type parameters of derived type are analogous to precision and exponent range type para-
meters for the real and complex types and character length for the character type.

An example of a derived-type definition with type parameters is:

TYPE STRING (MAX_SIZE)
INTEGER LENGTH
CHARACTER (LEN = MAX _SIZE) VALUE
END TYPE STRING

4.4.1.2 Derived-Type Variant Component. A variant component specifies alternative
sequences of components. Only one such sequence has an interpretation at any given time
in a structured object of that type. The nonvariant component immediately preceding the
variant component of a variant derived type is the tag component. The value of the tag
component in a structured object determines which sequence of variant components is
selected. The selection follows the rules for the CASE construct, except that nesting and
construct names are prohibited (8.1.3).

An example of a variant structure is:

Version 99 1986 March Page 4-6

DATA TYPES X3J3/58

5

10

15

20

25

30

35

40

TYPE GEOMETRIC

REAL X, Y

REAL AREA

CHARACTER (LEN = 10) SHAPE ! TAG

SELECT CASE (SHAPE) ! VARIANT COMPONENT

CASE ('CIRCLE') ; REAL RADIUS
CASE ('SQUARE'> ; REAL SIDE
CASE ('RECTANGLE'); REAL HEIGHT, WIDTH
CASE ('POLYGON') ; INTEGER NUM_EDGES; REAL EDGES (10)
END SELECT
END TYPE GEOMETRIC

4.4.1.3 Equivalence of Derived Types. A particular type name may be defined at most
once in any program scope. Derived-type definitions with the same type name may appear
in different program scopes, in which case they are independent and define different derived
types.

Two data objects have the same type if they are declared with reference to the same
derived-type definition; conversely, two objects are of different type if they reference
different derived-type definitions, even if the two derived types have identical components
defined in the same order.

4.4.2 Derived-Type Values. The set of values of a specific derived type consists of all
combinations of the various component values. A value may be constructed from a corre-
sponding sequence of values, one value for each component of the derived type. A
derived-type definition also defines a corresponding derived-type constructor for that derived
type.

R424 derived-type-constructor is type-name [(type-pa_ram-spec-list) 1 (expr-list)

Constraint: The type-param-spec option must be supplied if and only if the referenced type
definition includes type parameters.

The sequence of expressions in a derived-type constructor specifies component values,
which must agree in number, order, type, and shape with the components of the derived
type. If necessary, each value is also coerced according to the rules of assignment so that
its value has the same actual type parameters as those specified by type-param-value. A
constructor whose values are all constant expressions is a derived-type constant expression.
Using the derived types illustrated in 4.4.1.1 and 4.4.1.2, examples of derived-type construc-
tor are:

STRING (200 (19, 'NOW IS THE TIME FOR®)
GEOMETRIC (0., 0., 4., 'SQUARE', 2.)

4.4.3 Operations on Derived Types. Any operations on derived-type data objects, other
than the intrinsically defined equality comparisons (.EQ. and .NE.), must be defined by oper-
ator functions. Such definitions are made as described in Section 12. Function values and
arguments (see Section 12) may be of any derived type.

Two objects of the same derived type with variant components may be compared, even if
the value of their tag components are not equal; the result of a comparison with unequal tag
components is that the objects are not equal.

Version 99 1986 March Page 4-7

DATA TYPES X3J3/S8

4.5 Array Constructors. An array constructor is defined as a sequence of specified
scalar values and interpreted as a rank-one array whose element values are those specified
in the sequence. The sequence of values may be specified by any combination of individual
scalar values, ranges of values, rank-one arrays, and other array constructors.

5 R425 array-constructor is [array-constructor-value-list |
or (/ constructor-value-list /)

In the preceding syntax rule, the brackets are part of the syntax.

R426 array-constructor-value is scalar-expr
or rank-1-array-expr
10 or scalar-int-expr : scalar-int-expr [: scalar-int-expr |
or [int-constant-expr | array-constructor

The int-constant-expr in the fourth form of array-constructor-value specifies the number of
consecutive copies of the associated array-constructor. The type of an array constructor is
the type of the scalar value interpreted as the first array element. Each subsequent scalar

15 value in the sequence must have intrinsic assignment conformance as described in 7.5.1.4,
and the value is so converted.

Version 99 1986 March Page 4-8

5 DATA OBJECT DECLARATIONS AND SPECIFICATIONS

Every data object has a type, a rank, and a shape and may also have a number of additional
properties. These properties determine the characteristics of the data and the uses of the
objects. Collectively these properties, including the type, are termed the attributes of the

5 data object. A data object must not be explicitly specified to have a particular attribute more
than once in a program unit. With the exception of literal constants which may be denoted
directly in the program, every data object is denoted by a symbolic name. The type of a
data object is either determined implicitly by the first letter of its name (5.3) or is specified
explicitly in a type declaration statement. Some of the additional attributes may also be

10 specified by separate specification statements; all of them may be included in a type decla-
ration statement.

For example:

INTEGER INCOME, EXPEND

declares the two data objects named INCOME and EXPEND to have the type integer.
15 REAL, ARRAY(-5:+5) :: X, Y, Z

declares three data objects with names X, Y, and Z. These all have default real type and
are explicit-shape rank-one arrays with a lower bound of —5, an upper bound of +5, and a
size of 11.

5.1 Type Declaration Statements.
20 RS501 type-declaration-stmt is fype-spec [[, attr-spec ... ::] object-decl-list

R502 type-spec is INTEGER

or REAL [precision-selector |
or DOUBLE PRECISION
or COMPLEX [precision-selector |

25 or CHARACTER [length-selector]
or LOGICAL
or BIT
or TYPE (type-name [(lype-param-spec-list)])

R503 type-param-spec is [type-param-name =] lype-param-value

30 R504 type-param-value is specification-expr
or *

R505 attr-spec Is value-spec

or access-spec
or ALIAS

35 or ALLOCATABLE
or ARRAY (array-spec)
or INTENT (intent-spec)
or OPTIONAL
or RANGE

40 or SAVE

R506 object-decl is object-name [(array-spec) | [» charlength } [= constant-expr |
Constraint: No attr-spec may appear more than once in a given type-declaration-stmt.

Version 99 1986 March Page 5-1

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

Constraint: The object-name may be the name of an accessible data object or of a function
procedure.

Constraint: The = constant-expr must appear if and only if the statement contains a value-
spec attribute (5.1.2.1, 7.1.6.1).

Constraint: The * char-length option is permitted only if the type-spec is CHARACTER. If present schar-length
overrides the length-selector for that specific object-dec! in which it appears.

Constraint: The ALLOCATABLE and RANGE attributes may be used only when declaring
array objects.

Constraint: An array must not have both the ALLOCATABLE and the ALIAS attribute.

Constraint: An array specified with an ALIAS attribute must be declared with an allocatable-
spec.

Constraint: The ALIAS attribute may be specified with type and array attributes only.

The value, accessibility, ALIAS, and SAVE attributes must not be specified for dummy argu-
ments.

5.1.1 Type-Specifier Attributes. A type specifier specifies the type of all objects declared
in an object declaration list. This type may override or confirm the implicit type indicated by
the first letter of the object name as declared by the implicit typing rules in effect (5.3).

5.1.1.1 INTEGER. The INTEGER type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type integer (4.3.1.1).

5.1.1.2 REAL. The REAL type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type real (4.3.1.2). |f a precision-selector is pre-
sent, it has the form:

R507 precision-selector is (type-param-value [, | EXPONENT_RANGE =] [J

U type-param-value |
or (PRECISION = type-param-value (]

O [, EXPONENT_RANGE = type-param-value])
or (EXPONENT_RANGE = type-param-value (J

O [, PRECISION = type-param-value |)
Constraint: The type-param-value must be an integer constant expression or an asterisk.

Let p be the value of the precision type-param-value and let r be the value of the exponent
range type-param-value. Then the value of p is the minimum decimal precision and r is the
minimum decimal exponent range required of the real approximation method used by the
processor to implement the objects.

If either p or r is an asterisk, the objects being declared by the statement must be dummy
arguments. The asterisk specifies that the corresponding type-param-value for the objects
being declared is to be assumed from the actual arguments that become associated with
the dummy arguments being declared.

If either part of the precision selector is omitted, a processor-dependent default value is
used for the omitted type parameter.

If the precision selector is omitted, entirely, a processor-dependent default approximation
method is selected and the objects declared are of the default real type.

Version 99 1986 March Page 5-2

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

5.1.1.3 DOUBLE PRECISION. The DOUBLE PRECISION type specifier specifies that objects whose names
are declared in this statement are of intrinsic type double precision (4.3.1.2).

5.1.1.4 COMPLEX. The COMPLEX type specifier specifies that all objects whose names
are declared in this statement are of intrinsic type complex (4.3.1.3).

The precision-selector, if present, is as for the real type (R507). The precision-selector
specifies the minimum decimal precision and exponent range requirements for the real
approximation method used by the processor to implement the two real values making up
the real and imaginary parts of the complex value.

If the precision selector is omitted, the processor-dependent default real approximation
method is used for both parts and objects declared are of default complex type.

5.1.1.5 CHARACTER. The CHARACTER type specifier specifies that all objects whose
names are declared in this statement are of intrinsic type character (4.3.2.1). The length
selector specifies the length of the character objects. The wchar-length may be part of an object-deci,
in which case the length is specified for this single object and overrides the length specified in the length selector. If
neither a length selector nor a xchar-fength is specified, the length of the data object is 1.

R508 length-selector is [LEN =] type-param-value
or #* charlength [,]

R509 char-length is (type-param-value)
or scalar-int-constant

If the type parameter value evaluates to a negative value, the length of character entities
declared is zero.

A type parameter value of * may be used to declare a dummy argument of a procedure, in
which case such a dummy argument assumes the length of the associated actual argument
when the procedure is invoked.

A type parameter value of * may be used to declare symbolic constants, in which case the
length is that of the constant values defined for the names.

An external function may be specified with a type parameter value of *; in this case any pro-
gram unit invoking the function must declare this function name with a type parameter value
other than *. When the function is invoked, the length of the result variable in the function
is assumed from the value of this type parameter value.

The length specified for a character-valued statement function or statement function dummy argument of type character
must be an integer constant expression.

5.1.1.6 LOGICAL. The LOGICAL type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type logical (4.3.2.2).

5.1.1.7 BIT. The BIT type specifier specifies that all objects whose names are declared in
this statement are of intrinsic type bit (4.3.2.3).

5.1.1.8 Derived Type. A TYPE type specifier spacifies that all objects whose names are
specified in this statement are of the derived type specified by the type name in the type-
spec. The declared objects have a component structure as defined by the derived-type-def
(4.4.1).

Each type parameter value is associated with the corresponding type parameter name in a
manner similar to the association of arguments in a procedure reference (12.4.1). The asso-
ciation may be positional or the type parameter names may be used as keywords, as with
procedure arguments (Section 12).

Version 99 1986 March Page 5-3

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

A type parameter value of * may be used only with dummy arguments. The asterisk
specifies that the relevant type parameter value is assumed from the associated object.

A declaration for a dummy argument object must specify a derived-type-def in a host proce-
dure or module because the same definition must be used to declare both the actual and
dummy arguments to ensure that both are of the same derived type.

5.1.2 Attributes. The additional attributes that may appear in the attribute specification of a
type declaration statement further specify the nature of the objects being declared or specify
restrictions on their use in the program.

5.1.2.1 Value Attribute. The value-spec specifies that the objects whose names are
declared in the statement have a defined initial value. Those objects declared with a
PARAMETER attribute are symbolic constants whose values must not be changed and those
objects declared with the INITIAL attribute are variables whose values may be changed.
The appearance of a value-spec in a specification requires that the =constant-expr option
appear for all objects in the object-decl-list.

R510 value-spec is PARAMETER
or INITIAL

5.1.2.1.1 PARAMETER Attribute. The PARAMETER attribute specifies that objects
whose names are declared in this statement are symbolic constants. The object-name
becomes defined with the value determined from the constant-expr that appears on the right
of the equals, in accordance with the rules of intrinsic assignment (7.5.1.4).

Any symbolic constant that appears in the constant expression must have been defined pre-
viously in the same type declaration statement, defined in a prior PARAMETER statement or
type declaration statement using the PARAMETER attribute, or made accessible by an
explicit or implicit USE statement.

A symbolic constant must not appear as part of a format specification.

5.1.2.1.2 INITIAL Attribute. The INITIAL attribute specifies that objects whose names are
declared in this statement are variables whose values are initially defined. The object-name
becomes defined with the value determined from the constant-expr that appears on the right
of the equals, in accordance with the rules of assignment (7.5.1.4).

The presence of an INITIAL attribute implies that all the variables declared in this statement
are saved. That is, INITIAL is equivalent to the combination INITIAL, SAVE.

5.1.2.2 Accessibility Attribute. The accessibility attribute specifies the accessibility of
the objects in the object-decl-list to other external program units by a USE statement. The
accessibility attribute may appear only in the declaration-part of a module.

R511 access-spec is PUBLIC
or PRIVATE

Objects that are declared with a PRIVATE attribute may be accessed only by procedures
internal to the declaring program unit. Objects that are declared with a PUBLIC attribute
may be made accessible in other external program units by the USE statement. The default
for objects without an explicitly specified access-spec is PUBLIC, but this may be changed
by a PRIVATE statement (see 5.2.3).

Version 99 1986 March Page 5-4

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/s8

10

15

20

25

30

35

40

45

5.1.2.3 INTENT Attribute. The INTENT attributes may appear only within a procedure
and may be specified only for dummy arguments. An intent attribute specifies that the
objects whose names are declared in a statement including the attribute are dummy argu-
ments to the procedure and specifies the intended use of the dummy argument within the
procedure.

R512 intent-spec is IN
or OUT
or INOUT

The INTENT (IN) attribute specifies that the dummy argument must not be redefined within
the procedure.

The INTENT (OUT) attribute specifies that the dummy argument must be defined within the
procedure before a reference to it is made and any actual argument that becomes associ-
ated with such a dummy argument must be definable. On invocation of the procedure, such
a dummy argument becomes undefined.

The INTENT (INOUT) attribute specifies that the dummy arguments declared are intended
for use both to receive data from and to return data to the invoking program unit. Any actual
argument that becomes associated with such a dummy argument must be definable.

Objects declared with an INTENT attribute must not be also declared with a value-spec,
access-spec, or SAVE attribute. Dummy procedures, dummy conditions, and allocatable arg-
uments must not be declared with an INTENT attribute.

5.1.2.4 ARRAY Attribute. The ARRAY attribute specifies that objects whose names are
declared in this statement are arrays with the same rank and shape specified by the array-
spec. An array-spec may be part of an object-dec/, in which case array properties are
specified for this single object and override the array-spec in the ARRAY attribute. If the
ARRAY attribute is omitted, an array-spec must be specified in the object-dec! to declare an
array object.

R513 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or allocatable-spec-list
or assumed-size-spec

5.1.2.4.1 Explicit Shape Array. An explicit shape array is declared with an explicit-
shape-spec. This specifies explicit values for the dimension bounds of the array.

R514 explicit-shape-spec is [lower-bound : | upper-bound
R515 lower-bound is specification-expr
R516 upper-bound is specification-expr

Constraint: An explicit shape array whose bounds depend on the values of variables must
either be a dummy argument or a local array of a procedure.

If any bound of a local array depends upon the value of a variable, such an array is termed
automatic. An automatic array must not appear in a SAVE statement nor be declared with a
SAVE attribute.

The values of the specification-expr determine the bounds of the array along a particular
dimension and hence the extent of the array in that dimension. The declared subscript
range of the array in that dimension is the set of integer values between and including the
lower and upper bounds, provided the upper bound is not less than the lower bound. If the
upper bound is less than the lower bound, the range is empty, the extent in that dimension
is zero, and the array is of zero size. If the lowser-bound is omitted, the value 1 is assumed.

Version 99 1986 March Page 5-5

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

The number of sets of bounds specified is the rank. The maximum rank is seven.

The declared bounds of an explicit shape array are the lower and upper bound. The
declared shape is the shape determined by the declared bounds. The declared extents are
the sizes determined by the declared bounds.

5 5.1.2.4.2 Assumed-Shape Array. An assumed-shape array is a dummy argument array
that takes its shape from the associated actual argument array.

R517 assumed-shape-spec is [lower-bound] :

The size of a dimension of an assumed-shape array is the size of the corresponding dimen-
sion of the associated actual argument array. If the lower bound value is represented by d

10 and the size of the corresponding dimension of the associated actual argument array is s,,
then the value of the upper bound is s, + D4 — 1.

5.1.2.4.3 Allocatable Array. An allocatable array is one whose type, name, and rank are

specified in a type declaration statement

containing an ALLOCATABLE attribute, but whose bounds, and hence shape, are declared
15 when space is allocated for the array by execution of an ALLOCATE statement (6.2.2).

R518 allocatable-spec is :
The rank is equal to the number of colons in the allocatable-spec-iist.

The size, bounds, and shape of an unallocated allocatable array are undefined, and no refer-
ence may be made to any part of it, nor may any part of it be defined. The declared lower

20 and upper bounds of each dimension are those specified in the ALLOCATE statement when
the array is allocatable.

An allocatable dummy array argument may be associated only with an allocatable actual
argument. An actual argument which is an allocated allocatable array may be associated
with a nonallocatable array dummy argument. A array-valued function may declare the result

25 to be an allocatable array. A component of a derived type must not have the
ALLOCATABLE attribute.

5.1.2.4.4 Assumed-Size Array. An assumed-size array is a dummy array where the size is assumed from
that of an associated actual argument. The rank and extents may differ for the actual and dummy arrays; only the size
of the actual array is assumed by the dummy array.

30 RS519 assumed-size-spec Is [explicit-shape-spec-list ,] [lower-bound :] *
Congtraint: assumed-size-spec must not be included in an ARRAY attribute.
Constraint: The value to be returned by an array-valued function must not be declared as an assumed-size array.

The size of an assumed-size array is determined as follows:

(1) I the actual argument associated with the assumed-size dummy array is an array name of any type other
35 than character, the size is that of the actual array.

(@ It the actual argument associated with the assumed-size dummy array is an array element of any type other
than character with a subscript order value of r (6.2.4.2) in an array of size x, the size of the dummy array
is MAX (x —r + 1, 0).

(3) If the actual argument is a character array name, character array element name, or a character array ele—
40 ment substring name (6.1.1), and if it begins at character storage unit ¢ of an array with ¢ character storage
units, the size of the dummy array is MAX (INT (¢ — t + 1)/ e), 0), where e is the length of an element in
the dummy character array.

If an assumed-size array has rank n, the product of the extents of the first n — 1 dimensions must be less than or equal
to the size of the associated actual array.

Version 99 1986 March Page 5-8

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

4C

An assumed-size array has no declared bounds, shape, or size.

5.1.2.5 SAVE Atiribute. The SAVE attribute specifies that the objects declared in a dec-
laration containing this attribute retain their definition status, effective range, and value after
execution of a RETURN or END statement in the program unit containing the declaration.
Such an object is called an saved object.

The SAVE attribute or SAVE statement may appear in declarations in a main program and
has no effect.

Objects in a module program unit may be declared with a SAVE attribute. Such objects
retain their definition status, effective range, and value when any procedure that accesses
the module in a USE statement execute a RETURN or END statement. The SAVE attribute
must not be specified for an object name that is in a common block.

5.1.2.6 OPTIONAL Attribute. The OPTIONAL attribute may be specified only for dummy
arguments within a procedure subprogram. The OPTIONAL attribute specifies that such
dummy arguments need not be associated with an actual argument in a reference to the
procedure.

5.1.2.7 ALIAS Attribute. The ALIAS attribute specifies that only the type, rank, and
name of the objects declared in the statement are specified. The object must not become
definable until it is associated with a definable object as the result of executing an IDENTIFY
statement (6.2.6).

5.1.2.8 RANGE Attribute. The RANGE attribute may be specified only for nonassumed-size
array objects and specifies that those arrays may have their effective shapes changed by
execution of SET RANGE statements. The initial effective shape of each array is its
declared shape.

If the range list name is omitted, the arrays declared in that type declaration may have
different shapes, and the individual array names may appear explicitly in SET RANGE state-
ments. [f the range list name is specified, the arrays must all be declared with the same
rank, lower, bounds, and upper bounds and be reshaped only by execution of a SET RANGE
statement containing that range list name.

5.2 Attribute Specification Statements. Most of the attributes (other than type) may
be specified for objects, independently of type, by single attribute specification statements.
A data object must not be explicitly given any of the following attributes more than once in a
program unit: type, value, accessibility, intent, array, save, optional, alias, and range.

5.2.1 INTENT Statement.

R520 intent-stmt is INTENT (intent-spec) [:: | dummy-arg-name-fist

This statement specifies the intended use of the specified dummy arguments (5.1.2.3). Each
specified dummy argument has the intent attribute.

5.2.2 OPTIONAL Statement.

R521 optional-stmt Is OPTIONAL [:: | dummy-arg-name-list

This statement specifies that the specified dummy arguments need not be associated with
actual arguments in a reference to the procedure (5.1.2.6). Each specified argument has
the optional attribute.

Version 99 1986 March Page 5-7

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

5.2.3 Accessibllity Statements.
R522 access-stmt Is access-spec [[::] object-name-list)

Constraint: An access-stmt may appear only in a module and only one accessibility state-
ment with omitted object name list is permitted in a host program unit.

This statement declares the accessibility, PUBLIC or PRIVATE, of the object names (5.1.2.2).
Each specified object name has the accessibility attribute.

If the object name list is omitted, the statement sets the default accessibility that applies to
all potentially accessible objects in the module subprogram. For example, the statement

PUBLIC
confirms the standard defauit of public accessibility. The statement
PRIVATE

switches this default to objects being private unless individual objects are specified explicitly
to be public.

5.2.4 SAVE Statement.
R523 save-stmt is SAVE [| ::] saved-object-list |

R524 saved-object is object-name
or / common-block-name /

Constraint: An object name must not be a dummy argument name, a procedure name, a
function result name, an automatic array name, an alias name, or the name of an
object in a common block.

Constraint: If a SAVE statement with an omitted saved object list occurs in a program unit,
no other occurrence of the SAVE attribute or SAVE statement is permitted.

All objects named explicitly or included within a common block named explicitly have the SAVE attribute
(5.1.2.5). Iif a particular common block name is specified in a SAVE statement in any subprogram of an executable
program, it must be specified in a SAVE statement in every subprogram in which that common block appears. For a
common block declared in a SAVE statement, the current values of the objects in a common block storage sequence
(14.2.2) at the time a RETURN or END statement is executed are made available to the next program unit in the execu=
tion sequence of the executable program that specifies the common block name. If a named common block is specified
in the main program unit, the current values of the common block storage sequences are made available to each subpro-
gram that specifies the named common block; a SAVE statement in the subprogram has no effect. The definition status
of each object in the named common block storage sequence depends on the association that has been established for
the common block storage sequence.

A SAVE statement with an empty saved object list is treated as though it contained the
names of all objects in a program unit that may be saved.

5.2.5 DIMENSION Statement.

R525 dimension-stmt is DIMENSION array-name (array-spec) [, array-name (array-spec) }...
Constraint: In a DIMENSION statement, only explicit shape and assumed-size array-specs are permitted.

This statement specifies a list of object names to have the ARRAY attribute and specifies the array properties that apply
for each object named.

Each specified array name has the array atiribute. The array properties for an array must not be specified in more than
one of these statements in a program unit.

Version 99 1986 March Page 5-8

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

5.2.6 INITIALIZE Statement. The INITIALIZE statement provides a means of initially
defining values for variables.

R526 initialize-stmt is INITIALIZE (initial-value-def-list)
R527 initial-value-def is variable = constant-expr

The variable becomes defined with the value determined from the constant expression that
appears on the right of the equals in accordance with the rules of intrinsic assignment
(7.5.1.4). A variable, or part of a variable, must not be initially defined more than once. A
variable that appears in an INITIALIZE statement and is typed implicitly may appear in a sub-
sequent declaration only if that subsequent type declaration confirms the implicit typing.

A variable that appears in an INITIALIZE statement has the SAVE attribute, but this may be
reaffirmed by a SAVE statement or a type declaration statement containing the SAVE attri-
bute.

5.2.7 PARAMETER Statement. The PARAMETER statement provides means of defining
a symbolic constant with a constant value. Symbolic constants defined by a PARAMETER
statement have exactly the same properties and restrictions as those declared in a type
statement specifying a PARAMETER attribute (5.1.2.1.1).

R528 parameter-stmt Is PARAMETER (symbolic-constant-def-list)
R529 symbolic-constant-def is symbolic-constant-name = constant-expr

The symbolic constant name must have its type, shape, and any type parameters specified
either by previous occurrence in a type declaration statement in the same program unit, or
must be determined by the implied typing rules currently in effect for the program unit. If
the symbolic constant is typed by the implied type rules, its appearance in any subsequent
type declaration statement must confirm this implied type and the values of any implied type
parameters.

Each symbolic constant becomes defined with the value determined from the constant
expression that appears on the right of the equals, in accordance with the rules of assign-
ment (7.5.1.4).

A symbolic constant that appears in the constant expression must have been defined pre-
viously in the same PARAMETER statement, defined in a prior PARAMETER statement or
type declaration statement using the PARAMETER attribute, or made accessible by an
explicit or implicit USE statement.

Each symbolic constant has the parameter attribute.

5.2.8 CONDITION Statement. A CONDITION statement is used to specify a condition.
R530 condition-stmt is CONDITION [::] condition-name-list

A condition name must not appear in any other statement in a declaration part sequence.
5.2.9 RANGE Statement. A RANGE statement specifies the RANGE attribute for each
array name in the array name list.

R531 range-stmt is RANGE [/ range-list-name / | array-name-list

If the range list name is present, the arrays in the array name list must all be declared with
the same rank, lower bounds, and upper bounds. but they may be of any type. The
effective shape of all arrays in the array name list may be changed by the execution of a
SET RANGE statement containing only the range list name.

Version 99 1986 March Page 5-9

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/88

10

15

20

25

30

35

40

If the range list name is omitted, the arrays in the array name list may have different ranks,
lower bounds, and upper bounds and each array name may appear in a SET RANGE state-
ments. An array name must not be given the RANGE attribute more than once in a program
unit.

Each array name appearing in a RANGE statement has the RANGE attribute.

5.3 IMPLICIT Statement. An IMPLICIT statement specifies a type, and possibly type
parameters, for all implicitly typed data objects that begin with the letters specified in the
statement. Alternatively, it may indicate that no implicit typing rules are to apply in a particu-
lar program unit.

R532 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE

R533 implicit-spec Iis type-spec (letter-spec-list)

R534 letter-spec is letter [— letter]

A letter-spec consisting of two letters separated by a minus is equivalent to writing all of the
letters in alphabetical order in the alphabetic sequence from the first letter through the sec-
ond letter. For example, A—C is equivalent to A, B, C.

if IMPLICIT NONE is specified, all objects in the program unit must be explicitly declared.

Any data object not explicitly declared by a type declaration statement, or made accessible
by a USE statement, that has a name starting with one of the letters in letter-spec-list is
declared implicitly to be of type (and type parameters) of fype-spec.

An IMPLICIT statement applies only to the program unit containing it. An IMPLICIT state-
ment does not change the type of any intrinsic function. The same letter must not appear
as a single letter, or be included in a range of letters, more than once in all of the IMPLICIT
statements in a program unit.

if no IMPLICIT statement is present, the default is equivalent to:
IMPLICIT INTEGER (I-N), REAL (A-H, 0-2)

However, if the external program unit contains a USE statement with the ONLY option omit-
ted, no default implicit typing rules are defined. In such program units, all data objects must
be explicitly declared or implicit typing rules must be established by an IMPLICIT statement.

5.4 Storage Association of Data Objects. In general, the physical storage units or storage order
for data objects is not specifiable. However, the EQUIVALENCE statement and the COMMON statement provide for
control of the “order” and “layout” of storage units. Section 14.2.2 describes the general mechanism of storage associ~
ation.

5.4.1 EQUIVALENCE Statement. An EQUIVALENCE statement is used to specify the sharing of storage
units by two or more objects in a program unit. This causes association of the objects that share the storage units.

If the equivalenced objects are of different data types, the EQUIVALENCE statement does not cause type conversion or
imply mathematical equivalence. For example, if a scalar and an array are equivalenced, the scalar does not have array
properties and the array does not have the properties of a scalar.

R535 equivalence-stmt is EQUIVALENCE equivalence-set-list
R536 equivalence-set is (equivalence-object , equivalence-object-list)
R537 equivalence-object is object-name

or array-element

Version 99 1986 March Page 5-10

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

20

30

or substring
Constraint: object-name must be a scalar variable name or an array variable name.

Constraint: An equivalence-object must not be the name of a dummy argument, an abject of derived type, a com-
ponent of an object of derived type, an allocatable array, an automatic array, an object of real type
unless of default real type, an object of complex type unless of default complex type, an object of bit
type, an array of zero size, or a function nams.

Constraint: Each subscript or substring range expression in an equivalence-object must be an integer constant
expression.

5.4.1.1 Equivalence Association. An EQUIVALENCE statement specifies that the storage sequences of the
data objects whose names appear in an equivalence-set have the same first storage unit. This causes the association of
the data objects in the equivalence-set and may cause association of other data objects.

5.4.1.2 Equivalence of Character Objects. A data object of type character may be equivalenced only
with other objects of type character. The lengths of the equivalenced objects are not required to be the same.

An EQUIVALENCE statement specifies that the storage sequences of the character data objects whose names appear in
an equivalence-set have the same first character storage unit. This causes the association of the data objects in the
equivalence-set and may cause association of other data objects. Any adjacent characters in the associated data objects
may also have the same character storage unit and thus may also be associated. In the example:

CHARACTER (LEN=4) :: A, B
CHARACTER (LEN=3) :: C(2)
EQUIVALENCE (A, C(1)), (B, C(2))

the association of A, B, and C can be illustrated graphically as:
1 2 3 4 5 6 7

e

|— ¢ —] |— @ -

5.4.1.3 Array Names and Array Element Names. I an array element name appears in an EQUIVA-
LENCE statement, the number of subscripts must be the same as the rank of the array or one.

The use of an array name unqualified by a subscript in an EQUIVALENCE staterment has the same effect as using an
array element name that identifies the first element of the array.

5.4.1.4 Restrictions on EQUIVALENCE Statements. An EQUIVALENCE statement must not specify
that the same storage unit is to occur more than once in a storage sequence. For example,

REAL ARRAY(2) :: A
REAL ::
EQUIVALENCE (A1), B), (A(2), B)

is prohibited, because it would specify the same storage unit for A(1) and A(2). An EQUIVALENCE statement must not
specify that consecutive storage units are to be nonconsecutive. For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE (A(1), D(1)), (A(2), D(2))

5.4.2 COMMON Statement. The COMMON statement specifies blocks of physical storage, called common
blocks, that may be accessed by any of the program units in an executable program. Thus, the COMMON statement
provides a global data facility based on storage association (14.2.2). The common blocks specified by the COMMON
statement may be named and are called named common blocks or may be unnamed and are called blank common.

Version 99 1986 March Page 5-11

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

a5

R538 common-stmt is COMMON [/ [common-block-name | / Jcommon-block-object-list O
O [[.]/ [common-block-name } /common-block-object-list |...
R539 common-block-object is object-name [(explicit-shape-spec-fist)]

Constraint: object-name must be a scalar-variable-name or an array-variable-name. Only one appearance of object
name is permitted in all common block object lists within a program unit.

Constraint: A common-block-object must not be the name of a dummy argument, an object of derived type, a
component of an object of derived type, an allocatable array, an automatic array, an object of real type
unless of default real type, an object of complex type unless of default complex type, an object of bit
type, an array of zero size, or a function name.

Constraint: Each bound in the explicit-shape-spec must be an integer constant expression.
Each omitted common block name specifies the blank common block.

In each COMMON statement, the data objects whose names appear in a common block list following a common block
name are declared to be in that common block. If the first common block name is omitted, all data objects whose
names appear in the first common block list are specified to be in blank common. Alternatively, the appearance of two
slashes with no common block name between them declares the data objects whose names appear in the common
block list that follows to be in blank common.

Any common block name or an omitted common block name for blank common may occur more than once in one or
more COMMON statements in a program unit. The common block list following each successive appearance of the
same common block name is treated as a continuation of the list for that common block name.

If a character variable or character array is in a common block, all of the entities in that common block must be of type
character. Each array name appearing in a BANGE statement has the RANGE attribute.

5.4.2.1 Common Block Storage Sequence. For each common block, a common block storage
sequence is formed as follows:

(1) A storage sequence is formed consisting of the storage sequences of all data objscts in the lists common
block list for the common block. The order of the storage sequence is the same as the order of the
appearance of the lists common block list in the program unit.

() The storage sequence formed in (1) is extended to include all storage units of any storage sequence asso-
ciated with it by equivalence association. The sequence may be extended only by adding storage units
beyond the last storage unit. Data objects associated with an entity in a common block are considered to
be in that common block.

5.4.2.2 Size of a Common Block. The size of a common block is the size of its common block storage
sequence, including any extensions of the sequence resulting from equivalence association.

5.4.2.3 Common Association. Within an executable program, the common block storage sequences of all
common blocks with the same name have the same first storage unit. Within an executable program, the common block
storage sequences of all blank common blocks have the same first storage unit. This results in the association of entities
in different program units.

5.4.2.4 Differences between Named Common and Blank Common. A blank common block
has the same properties as a named common block, except for the following:

(1) Execution of a RETURN or END statement causes data objects in named common blocks to become
undefined unless the common block name has been declared in a SAVE statement, but never causes data
objects in blank common to become undefined (14.3.2).

() Named common blocks of the same name must be of the same size in all program units of an executable
program in which they appear, but blank common blocks may be of different sizes.

Version 99 1986 March Page 5-12

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

(3) A data object in a named common block may be initially defined by means of a DATA statement in a
BLOCK DATA subprogram, but objects in blank common must not be initially defined (11.5).

5.4.2.5 Restrictions on Common and Equivalence. An EQUIVALENCE statement must not cause the
storage sequences of two different common blocks in the same program unit to be assaciated. Equivalence association

& must not cause a common block storage sequence to be extended by adding storage units preceding the first storage
unit of the first object specified in a COMMON statement for the common block. For example, the following is not per-
mitted:

COMMON /X/ A
REAL B(2)
1c EQUIVALENCE (A, B(2))

5.5 DATA Statement. A DATA statement is used to provide initial values for variables.

R540 data-stmt is DATA data-stmt-init [[,] data-stmt-init ...
R541 data-stmt-init is data-stmt-object-list / data-stmt-value-list /
R542 data-stmt-object is object-name

1E or array-element

or data-implied-do

R543 data-stmt-value is [data-stmi-repeat * | data-stmt-constant
R544 data-stmt-constant is constant
or signed-int-constant
20 or signed-real-constant
R545 data-stmi-repeat is int-constant

or scalar-int-symbolic-constant

R546 data-implied-do is (data--do-object-list, do-variable = scalar-int-expr, scalar-int-expr [, scalar-int-expr])
R547 datia-i-do-object is array-element
25 or data-implied-do

The data statement repeat factor must be a positive integer constant. If the data statement repeat factor is a symbolic
constant, it must have been declared previously in the program unit or made accessible by a USE statement.

The variables or arrays whose names are included in the data-i-do-list must not be of type bit of a derived type, a
dummy argument, made accessible by a USE statement, in a named common block unless the DATA statement is in a

3¢ BLOCK DATA subprogram, in blank COMMON nor associated with an object in blank COMMON, a function name, or
an alias object.

The arrays whose names are included in the data-i-do-fists must not be automatic arrays, allocatable arrays, or zero-sized
arrays,

The data-i-do-list is expanded to form a sequence of scalar variables. Any array included is equivalent to a complete
38 sequence of array elements, ordered by subscript order value (6.2.4.2). The im-do-list is repeated in the expanded
data-i-do-list under control of the implied-do control index as in the DO loop (8.1.4.1, 9.4.2). The array-element must
include a subscript (6.2.4) that depends on the value of do-variable. The data-implied-do int-expr may involve as prima~
ries, constants, or inherited symbolic constants., The subscript expressions included in any array element names in the
data-i-do-list must be expressions with primaries that are constants or the do-var of containing implied-do-fists.

40 The data-stmt-value-list is expanded to form a sequence of constant values. Each value must be either an expilicit con=
stant or a previously defined or inherited symbolic constant, A data statement repeat factor indicates the number of the
following constant values are to be added to the sequence.

The expanded sequences of scalar variables and constant values are in one to one correspondence. Each constant
defines the initial value for the corresponding variable. The lengths of the two expanded sequences must be the same.

Version 99 1986 March Page 5-13

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

The value of the constant must be assignment compatible with its corresponding variable, according to the rules of
intrinsic assignment (7.5.1.2), and the constant defines the initial value of the variable according to those rules.

An initial value for a variable must be defined at most once in an executable program. If two or more variables are
associated, only one may be initially defined in an executable program.

Examples of DATA statements are:

CHARACTER (LEN = 10) NAME

INTEGER, ARRAY (0:9) :: MILES

REAL, ARRAY (100, 100> :: SKEW

DATA NAME / 'JOHN DOE' /, MILES / 10+0 /

DATA ((SKEW (I, J), I =1, 1000, J = I, 100) / 5050%0.0 /
DATA ((SKEW (I, J), J =1, 99, I = 1+J, 100) / 4950+1.0 /

The the character variable NAME is initialized with the value 'JOHN DOE', padding on the right since the length of the
constant is smaller than the variable. All ten elements of the integer array MILES are initialized to zero, and the two
dimensional array SKEW s initialized so that the lower triangle of SKEW is zero and upper triangle is one.

There must be the same number of items specified by each data-stmt-object-list and its corresponding data-stmt-value-
fist. There is a one-to-one correspondence between the items specified by a data--do-list and the constants specified by
a data-stmt-value-fist such that the first item of a data-i-do-fist corresponds to the first constant of a list, etc. By this cor-
respondence, the initial value is established and the data object is initially defined. |f an array name without a subscript
is in the list, there must be one constant for each element of that array. The ordering of array elements is determined by
the array element subscript order value (6.2.4.2).

The type of the object item and the type of the corresponding constant must agree when either is of type character or
logical. When the item is of type integer, real, double precision, or complex, the corresponding constant must also be of
type integer, real, double precision, or complex; if necessary, the constant is converted to the type of the object accord-
ing to the rules for numeric conversion and assignment (7.5.1.2). Note that if an object is of type double precision and
the constant is of type real, the processor may supply more precision derived from the constant than can be contained
in a real datum. A constant of type character is assigned to the object according to the rules for intrinsic assignment
(7.5.1.2).

Version 99 1986 March Page 5-14

10

15

20

25

30

35

40

6 USE OF DATA OBJECTS

The appearance of a data object name in a context that requires its value is termed a refer-
ence. A reference is permitted only if the data object is defined (5.2.6, 5.2.7, 14.3.1). A
data object becomes defined with a value when the data object name appears in certain
contexts and when certain events occur (14.3).

A data object whose value may be redefined is a variable.

R601 variable is scalar-variable-name
or array-variable-name
or array-element
or array-section
or structure-component
or substring

Under some circumstances alias arrays (6.2.6), allocatable arrays (6.2.2), array sections
(6.2.4.3), and variables associated with dummy arguments (7.5.1.1, 7.5.3.2, 12.4.1.1, 12.5.2.1,
12.5.2.7) must not be defined.

A literal constant is denoted by a syntactic form which indicates its type, shape, and value.
A symbolic constant is a symbolic name that has been associated with a constant value with
the PARAMETER attribute (5.1.2.1.1, 5.2.7). A reference to a constant is always permitted;
redefinition of a constant is never permitted.

6.1 Scalars. A scalar (2.4.4.1) is a data object whose value, if defined, is a single ele-
ment from the set of values comprising its data type.

A scalar has rank zero.

6.1.1 Substrings. A substring is a contiguous portion of a character string (4.3.2.1). The
following rules define the forms of a substring:

R602 substring is parent-string (substring-range)

R603 parent-string is char-scalar-variable-name
or char-array-element
or scalar-char-structure-component
or scalar-char-symbolic-constant
or scalar-char-constant

R604 substring-range is [scalar-int-expr] : [scalar-int-expr]

The first scalar-int-expr in substring-range is called the starting point and the second one is
called the ending point. The length of a substring is the number of characters in the
substring and is max (ending-point — starting-point + 1, 0).

Let the characters in the parent string be numbered 1,2,3,...,n, where n is the length of
the parent string. Then the characters in the substring are those from the parent string from
the starting point and proceeding in sequence up to and including the ending point. Both
the starting point and the ending point must be within the range 1,,2,...,n unless the start-
ing point exceeds the ending point, in which case the substring has length zero. The proc-
essor must signal the BOUND_ERROR condition if either the starting or ending point fails to
meet these constraints and the substring occurs in an ENABLE construct (8.1.5) that
specifies the BOUND_ERROR condition.

Version 99 1986 March Page 6-1

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

If the parent is a variable, the substring is also a variable. If the parent is an array section
(6.2.4.3), the substring is an array of the same shape as the array section and each element
is the designated substring of the corresponding element of the array section. A substring
of an allocatable parent must not be allocated or deallocated. A substring of an aliased par-
ent has the alias properties of the parent. -

Examples:

1D (429 scalar variable name as parent string
'0123456789' (N:N) character constant as parent string

6.1.2 Structure Components. A derived-type definition contains one or more component
definitions (4.4). A structure-component is one of the components of a structured object.

R605 structure-component is parent-structure % component-name [array-selector |

R606 parent-structure is derived-type-scalar-variable-name
or derived-type-array-variable-name
or derived-iype-array-element
or derived-type-array-section
or derived-type-structure-component
or derived-type-symbolic-constant

Constraint: An array-selector may appear only if the component specified by component-
name is an array.

R607 array-selector is (subscript-list)
or (section-subscript-list)

The type of the structure component is the same as the type declared for the component in
the derived-type definition.

The resulting data object has array properties if the parent or component has array proper-
ties.

If the parent has shape P and the selected component (including the array selector, if any)
has shape C, the component will be an array of shape [C, P], using the array constructor
notation from Section 4.5. The remaining attributes are determined by the component decla-
ration in the derived-type definition.

Examples:

SCALAR_PARENT % SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT (J) X SCALAR _FIELD component of array element parent
ARRAY_PARENT (1:N) X SCALAR_FIELD component of array section parent

SCALAR PARENT % ARRAY FIELD (K) array element component of scalar parent
ARRAY_PARENT (K) % ARRAY_FIELD (J) array element component of array element parent
ARRAY_PARENT % ARRAY_FIELD array component of array parent

6.2 Arrays. An array is a set of scalar data objects all having the same attributes
(2.4.4.2). The scalar objects that make up an array are known as the array elements.

6.2.1 Whole Arrays. A whole array is an array name appearing without an appended
parenthesized list and is referred to by its name.

Version 99 1986 March Page 6-2

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

6.2.1.1 Array Constants and Variables. A whole array is either a constant or variable. A
whole array constant is the symbolic name of a constant expression (5.1.2.1.1 and 5.2.7)
and comprises those elements determined by the declared shape of the symbolic constant.

The appearance of a whole array variable in an executable construct specifies those
elements determined by the effective shape (6.2.1.2). A whole array variable that is an
assumed-size array is permitted only as an actual argument in a procedure reference.

The appearance of a whole array name in a nonexecutable statement specifies the entire
array determined by the declared shape.

No ordering of an elements of the array is indicated by the appearance of the array name,
except when the name occurs in an input item (9.4.2), an output item (9.4.2), an initial value
definition (5.2.6), an internal file unit (9.2.2), a format identifier (9.4.1.1) or a DATA statement object
(5.5), where the order of reference is determined by the subscript order value (6.2.4.2).

6.2.1.2 Declared and Efifective Array Range. The declared range for an array is the set
of elements determined by the declared bounds for each dimension of the array. The effec-
tive range for an array is the subset of elements determined by the effective bounds of the
array as specified in the most recently executed SET RANGE statement for the array. The
declared shape for an array is the shape determined by the bounds of the array. The
effective shape for an array is the shape determined by the effective range bounds of the
array. If no SET RANGE statement has been executed for the array, the effective range is
the declared range. The effective range of an array that is local to a program unit reverts to
the declared range after execution of a RETURN or END statement in that program unit,
unless the array has the SAVE attribute.

6.2.2 The ALLOCATE Statement. The ALLOCATE statement dynamically creates
allocatable arrays.

R608 allocate-stmt is ALLOCATE (array-allocation-list)
R609 array-allocation is array-name (explicit-shape-spec-list)
Constraint: array-name must be the name of an allocatable array.

Constraint: The bound in an array-allocation explicit-shape-spec may be an arbitrary integer
expression, but must not depend on any other bound in the same allocate-stmt.

Constraint: The number of explicit-shape-specs in an array-allocation explicit-shape-spec-list
must be the same as the declared rank of the array.

Example:
ALLOCATE (X (N), B (MAX (K, 0) : M, 0:9))

The values of the lower bound and upper bound expressions in an explicit shape
specification determine the declared bounds of an allocatable array.

An allocatable array that has been allocated by an ALLOCATE statement and has not been
subsequently deallocated (6.2.3) is currently allocated and is definable. Allocating a cur-
rently allocated array is prohibited. At the beginning of execution of an executable program,
allocatable arrays have not been allocated and are not definable.

If the ALLOCATE statement appears in an ENABLE construct that specifies the
ALLOCATION_ERROR condition, the processor must signal that condition if it is unable to
allocate all of the arrays specified.

Version 99 1986 March Page 6-3

USE OF DATA OBJECTS X3J3/s8

6.2.3 The DEALLOCATE Statement. The DEALLOCATE statement causes an allocatable
array that has been allocated to become deallocated; hence, it becomes not definable.

R610 deallocate-stmt is DEALLOCATE (array-name-list)

The effect of deallocating an array that is not currently allocated is undefined. When the

5 execution of a procedure is terminated by execution of a RETURN or END statement, all
arrays allocated within the procedure except for allocatable dummy arguments, that are cur-
rently allocated and do not have the SAVE attribute are deallocated. Allocatable arrays that
have the SAVE attribute retain their definition status upon execution of the RETURN or END
statement.

10 An allocatable user-defined array-valued function is not deallocated upon execution of a
RETURN or END statement. Such an allocatable array is deallocated by the processor after
it has used the value returned by the function.

6.2.4 Subsets of Arrays. A subset of an array is either an array element, which is a sca-
lar, or an array section, which is an array.

15 R611 array-element is parent-array (subscript-list)
Constraint: The number of subscripts must equal the declared rank of the array.
R612 array-section Is parent-array (section-subscript-list) [(substring-range)]

R613 parent-array is array-variable-name
or array-symbolic-constant-name

20 Constraint: At least one section-subscript must be a subscript-triplet or a vector-int-expr.
Constraint: The number of section-subscripts must equal the declared rank of the array.

R614 subscript is scalar-int-expr
R615 section-subscript is subscript

or subscript-triplet

25 or vector-int-expr

Constraint: A vector-int-expr section-subscript must be a rank one integer array.

R616 subscript-triplet Is [subscript] : [subscript] [: stride]

R617 stride Is scalar-int-expr

6.2.4.1 Array Elements. The values of a subscript expression in an array element must
30 Dbe within the declared subscript range for that dimension.

If any subscript is outside the corresponding bounds of an array and the array element
occurs in an ENABLE construct (8.1.5) that specifies the BOUND_ERROR condition, the
processor must signal the BOUND_ERROR condition.

6.2.4.2 Subscript Order Value. The elements of an array form a sequence known as the

35 array element ordering. The position of an array element in this sequence is determined
by the subscript order value of the subscript list designating the element. The subscript
order value is computed from the formulas in Table 6.1.

Table 6.1. Subscript Order Value

Explicit Subscript
40 Rank Shape Subscript Order
n Specifier List Value

Version 99 1986 March Page 6-4

USE OF DATA OBJECTS X3J3/58

10

15

20

25

30

35

40

45

50

1 fiky Sy 14+(81=/1)
2 Jrkjako 81,52 1+(S1—j_1)
+(s2—j2)xd,

3 Jik,jakajaks 8$1,82,83 1+(S1—l"1)
+(32—{2)Xd1
+(Sa—fa)xdaxd,

n j1:k1,...,i":kn 81,..48p
1+(s1—J4)
+(S2—j2)xd4
+(83—ja)xdpxd,
+ T
+(sn_jn)an—1
Xdy_aX **+ Xdq

Notes for Table 6.1:
(1) d; = max (k; — j; + 1, 0) is the size of the ith dimension.
@ jiss<kforali=12..n.

6.2.4.3 Array Sections. An array section is an array data object designated by an array
name with a section subscript.

Each nonscalar item in the section subscript list indicates a sequence of subscripts (6.2.4.4,
6.2.4.5). The array section is the set of elements from the named array determined by all
possible subscript lists obtainable from the single subscripts or sequences of subscripts
specified by each section subscript.

The rank of the array section is the number of nonscalar items in the section subscript list.
The shape is the rank one array whose ith element is the number of integer values in the
sequence indicated by the ith nonscalar item in the section subscript list. If any of these
sequences is empty, the array section has size zero. The subscript order of the elements of
an array section is that of the array data object that the array section represents.

If any subscript value in a section subscript is outside the corresponding declared range of
the named array and the reference appears in an ENABLE construct (8.1.5) that specifies
the BOUND_ERROR condition, the processor must signal the BOUND__ERROR condition.

6.2.4.4 Triplet Notation. The subscripts and strides of subscript triplet are optional. An
omitted first subscript in a subscript triplet is equivalent to a subscript whose value is the
effective lower bound for the named array and an omitted second subscript is equivalent to
the effective upper bound (5.1.2.4, 5.1.4.2, 6.2.6). An omitted stride is equivalent to a stride
of one.

Version 99 1986 March Page 6-5

USE OF DATA OBJECTS X3J3/58

10

15

20

25

30

35

40

The second subscript must not be omitted in the last dimension of an assumed-size array.

When the stride is positive, the subscripts specified by a triplet form a regularly spaced
sequence of integers beginning with the first subscript and proceeding in increments of the
stride to the largest such integer not exceeding the second subscript; the sequence is empty
if the first subscript exceeds the second.

The stride must not be zero.

When the stride is negative, the sequence begins with the first subscript and proceeds in
increments of the stride down to the smallest such integer equal to or exceeding the second
subscript; the sequence is empty if the second subscript exceeds the first.

For example, if an array is declared as B (10), the array section B (3 : 11, 7) is the array of
shape [2] consisting of the elements B (3) and B (10), in that order. The section
B(9:1: —2) is the array of shape [5] whose elements are B (9), B (7), B (5), B (3), and
B (1), in that order.

For another example, suppose an array is declared as A (5, 4,3). The section
A (3:5,2,1:2)is the array of shape [3, 2] shown below:

A@G,21) A@B22
A4,2,1) A@422
AGG,21) A®B22

6.2.4.5 Vector Subscripts. A section subscript that is a rank-one integer expression desig-
nates a sequence of subscripts that are the values of the expression; each element of the
expression must be defined. The sequence is empty if the expression is of size zero.

For example, suppose Z is a two-dimensional array of shape [5,7] and U and V are one-
dimensional arrays of shape [3] and [4], respectively. Assume the values of U and V are:

U=m,32
V=1[21,1,3

Then Z (3, V) consists of the elements from the third row of Z in the order:
23,2 2@B,1) 23,1 2@, 3

and Z (U, 2) consists of the column elements:
Z(1,2) Z(3,2) Z(2,2)

and Z (U, V) consists of the elements:

Z(1,2) Z(1,1) z(1,1) Z(1, 3)

Z(3,2) 23, 1) Z(3,1) 23,3

22,2 Z(2,1) Z(@2 1) Z(23)
Because Z (U, V) contains duplicate elements from Z, the section Z (U, V) must not be
redefined.

6.2.5 The SET RANGE Statement. Execution of a SET RANGE statement establishes the
effective range for the arrays in the array name list or for the members of the range list
specified by the range list name.

R618 sef-range-stmt is SET RANGE ([effective-range-list]) array-name-list

or SET RANGE ([effective-range-list |) / range-list-name /
R619 effective-range is explicit-shape-spec

or [lower-bound | : [upper-bound]

Version 99 1986 March Page 6-6

USE OF DATA OBJECTS X3J3/S8

Constraint: The number of effective ranges in an effective-range-list must equal the rank of
the arrays being ranged.

Constraint: All arrays being ranged must have the same lower bounds.

Constraint: An array that is a member of a range list must not appear in an array-name-list
5 of a SET RANGE statement.

Each effective range specifies the effective lower and upper bounds for each array in array-
name-list or range-list.

An array name must not appear in the array name list of a SET RANGE statement unless it
has the RANGE attribute. A SET RANGE statement must not be used to establish the

10 effective range for an allocatable or alias array that is not definable. The values of the
effective lower bound and the effective upper bound must be within the declared bounds for
the corresponding dimension of every array in the array list or every member of the range
list specified by the range list name. The effect of a SET RANGE is global to all program
units accessing those arrays by a USE statement. If the effective lower bound or the

15 effective upper bound is omitted, they default to the current effective lower bound or
effective upper bound, respectively. If the effective range list is omitted, the effective range
is set to the declared range for the arrays in the array list or for the members of the range
list specified by the range list name.

6.2.6 The IDENTIFY Statement. An IDENTIFY statement provides a dynamic aliasing
20 facility involving an alias object and a parent object. An alias may be an array whose

elements are a subset of the elements of a given parent. Such an alias has properties sim-

ilar to those of an array section, but can specify a greater variety of subsets of the array

elements of the parent. For example, an alias may be the diagonal of an array of rank two,

or may have one subscript selecting an array of derived type and another indexing a compo-
25 nent of the array elements (Examples 2 and 3 below).

R620 identify-stmt is IDENTIFY (alias-name = parent)
or IDENTIFY (alias-element = parent-element , [1

1 alias-range-spec-list)
Constraint: The alias and parent objects must conform in type, rank, and type parameters.

30 Constraint: The alias object must have the alias attribute and its name must not be the
same as the parent-name.

R621 alias-element Is alias-name (subscript-range)

Constraint: The number of subscript-names in an alias element must equal the number of
alias-range-specs.

35 Constraint: A subscript name must be a scalar integer variable name.
R622 parent-element Is parent-name (subscript-mapping) [% component-name [(subscript-list)
R623 subscript-mapping is subscript-list
Constraint: Each subscript must be linear in the alias-element subscript-names.
R624 alias-range-spec is subscript-range = subscript : subscript

40 Constraint: The subscript ranges in a subscript-name-list must be identical to the subscript
ranges in the corresponding alias range specification list, and must appear in
the same order. A name must not appear more than once in such a list.

Constraint: Each integer expression in the subscript mapping must be linear in the sub-
script names.

Version 99 1986 March Page 6-7

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

45

An alias is definable following a valid execution of an IDENTIFY statement. An alias must
not be defined unless it is definable. Execution of an IDENTIFY statement for an alias array
that has the RANGE attribute sets the actual range and the effective range of the alias array
to bounds specified by the range in the IDENTIFY statement.

The scope of the subscript names is the IDENTIFY statement itself, and the subscripts are
implicitly of type integer.

The elements of the alias are specified by the subscript names varying over the correspond-
ing ranges. The IDENTIFY statement specifies the mapping between the elements of the
alias and the elements of the parent.

The linear mappings in the subscript lists of the parent elements must be mathematically
equivalent to expressions of the form kg + ky X iy + kaXia + - - - + K, X I, where each
k, is a scalar integer expression not involving /; and each i; is named in the subscript name
list. The mapping is established by evaluating kg, k1, ..., K.

If the parent is not an alias, the new alias is regarded as belonging to its parent. If the par-
ent is an alias, it must be definable and the new alias is regarded as belonging to the
nonalias object to which the parent belongs. If the parent is an allocatable array, it must be
definable. Whenever an allocatable array is deallocated, all aliases belonging to it become
not definable. On return from a procedure, all aliases established by an IDENTIFY state-
ment within that procedure become not definable.

An alias array is said to be many-to-one if two or more of its elements are mapped onto the
same parent element to which the alias belongs. If an alias is definable, it may be used
according to the rules that govern the use of data objects, except that if it is many-to-one,
the elements sharing a common parent element must not be defined or redefined.

When an alias array or a section of an alias array is associated with a dummy argument of a
procedure, only elements within the alias array or alias array section are associated with the
dummy argument.

The following are examples of aliasing:

(1) Simple alias
IDENTIFY (PART = STRUCTURE % COMPONENT)

(2) Skew section
IDENTIFY (DIAG (I) = ARRAY (I, I), I = 1:N)

(3) Array of structure components
IDENTIFY (PART (I) = STRUCTURE % ARRAY (I), I = 1:N)
IDENTIFY (PATTERN (I, J) = STRUCTURE (I) % ARRAY (J), I = 1:M, J = 1:N)

6.2.7 Summary of Array Name Appearances.

Table 6.2. Allowed Appearances of Array Names
Simple Alias Component Aliocatable

Place of Appearance Array Array Array Array
dummy-arg Yes No No Yes
use-stmt Yes Yes No Yes
type-declaration Yes Yes No Yes
equivalence-stmt Yes No No No
data-stmt Yes No No No

Version 99 1986 March Page 6-8

USE OF DATA OBJECTS

10

Version 99

common-stmt

actual-arg In a reference
to a procedure-subprogram

lo-list
internal-file-id
fmt-spec
save-stmt
primary
assignment-stmt
identify-stmt
allocate-stmt
free-stmt

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

1986 March

No
Yes

Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
Yes

No
Yes

Yes
Yes
Yes
No
Yes
Yes
Yes
No
No

No
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

X3J3/S8

Page 6-9

10

15

20

25

30

35

40

7 EXPRESSIONS AND ASSIGNMENT

This section describes the formation, interpretation, and evaluation rules for expressions and
the assignment statement.

7.1 Expressions. An expression represents a computation, the result of which is either
a scalar or an array object. An expression is formed from operands, operators, and paren-
theses. Simple forms of an operand are constants and variables, such as:

3.0
.FALSE.
A

B(I)
C(I:d)

An operand is either a scalar or an array. An operation is either intrinsic (7.2) or defined
(7.3). More complicated expressions can be formed using operands which are themselves
expressions.

7.1.1 Form of an Expression. Evaluation of an expression produces a value, which has a
type, type parameters (if appropriate), and a shape (7.1.4).

Examples of expressions are:

A+B
(A—B)*C
AxxB
C.AND.D
F//G

An expression is defined in terms of several categories: primary, level 1 expression, level 2
expression, level 3 expression, level 4 expression, level 5 expression, and level 6 expres-
sion.

These categories are related to the different operator precedence levels and, in general,
defined in terms of other categories. The simplest form of each expression category is a pri-
mary. The rules given below specify the syntax of an expression. The semantics are
specified in 7.2 and 7.3.

7.1.1.1 Primary.

R701 primary is constant
or variable
or array-constructor
or derived-type-construcior
or function-reference

. or (expr)
Examples of a primary are:
Example Syntactic Class
1.0 constant
A variable
[1.0,2.01 array-constructor
PERSON('Jones', 12) derived-type-constructor
F(X,Y) function-reference

Version 99 1986 March Page 7-1

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

(S+T) (expr)

7.1.1.2 Level-1 Expressions. Defined unary operators have the highest operator preced-
ence (Table 7.1). Level-1 expressions are primaries optionally operated on by defined unary
operators:

R702 level-1-expr is [defined-unary-op | primary
R322 defined-unary-op is . letter [letter 1... .
Simple examples of a level-1-expr are:

Example Syntactic Class

A primary

.INVERSE. B level-1-expr
A more complicated example of a level-1 expression is:
.INVERSE. (A + B)

7.1.1.3 Level-2 Expressions. Level-2 expressions level-1 are expressions optionally involv-
ing the numeric operators power-op, muit-op, and add-op.

R703 mult-operand is level-1-expr [power-op mult-operand |
R704 add-operand is [add-operand mult-op | mult-operand
R705 /level-2-expr is [add-op] add-operand

or level-2-expr add-op add-operand
R308 power-op is **
R309 muit-op is #*

or /
R310 add-op is +

or —

Simple examples of a level-2 expression are:

Example Syntactic Class

A level-1-expr
B*x(C mult-operand
D*E add-operand
F-1 level-2-expr
+ level-2-expr

A more complicated example of a level-2 expression is:
~— A+D#* E+B=*x C

7.1.1.4 Level-3 Expressions. Level-3 expressions are level-2 expressions optionally involv-
ing the bit operators bnot-op, band-op, and bor-op.

R706 band-operand is [bnot-op] level-2-expr

R707 bor-operand is [bor-operand band-op | band-operand
R708 level-3-expr is [level-3-expr bor-op | bor-operand
R311 bnot-op is .BNOT.

R312 band-op is .BAND.

Verslon 99 1986 March Page 7-2

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

R313 bor-op is .BOR.
or .BXOR.
Simple examples of a level-3 expression are:
Example Syntactic Class
A level-2-expr

.BNOT. B band-operand
C .BAND. D bor-operand
E .BOR. F level-3-expr
G .BXOR. H level-3-expr

A more complicated example of a level-3 expression is:

A .BXOR. B .BAND. .BNOT. C

7.1.1.5 Level-4 Expressions. Level-4 expressions are level-3 expressions optionally involv-
ing the character operator concat-op.

R709 Jevel-4-expr is [level-4-expr concat-op | level-3-expr

R314 concat-op is //

Simple examples of a level-4 expression are:

Example Syntactic Class

A level-3-expr
B//C level-4-expr

A more complicated example of a level-4 expression is:
X //Y // 'ABCD'

7.1.1.6 Level-5 Expressions. Level-5 expressions are level-4 expressions optionally involv-
ing the relational operators rel-op.

R710 Jevel-5-expr is [level-4-expr rel-op] level-4-expr

R315 rel-op Is .EQ.
or .NE.
or LT,
or .LE.
or .GT.
or .GE.
or ==
or <>
or <
or <=
or >
or >=

Simple examples of a level-5 expression are:

Example Syntactic Class

A level-4-expr
B .EQ. C level-5-expr
D<E level-5-expr

Version 99 1986 March Page 7-3

EXPRESSIONS AND ASSIGNMENT X3J3/88

10

15

20

25

30

35

40

A more complicated example of a level-5 expression is:
(A+B) .NE. C

7.1.1.7 Level-6 Expressions. Level-6 expressions are level-5 expressions optionally involv-
ing the logical operators not-op, and-op, or-op, and equiv-op.

R711 and-operand is [not-op] level-5-expr
R712 or-operand is [or-operand and-op | and-operand
R713 equiv-operand is [equiv-operand or-op | or-operand
R714 level-6-expr is [level-6-expr equiv-op | equiv-operand
R316 not-op is .NOT.
R317 and-op is .AND.
R318 or-op is .OR.
R319 equiv-op is .EQV.
or .NEQV.

Simple examples of a level-6 expression are:

Example Syntactic Class

A level-5-expr

.NOT. B and-operand
C .AND. D or-operand

E .OR. F equiv-operand
G .EQV. H Jevel-6-expr

S .NEQV. T Jevel-6-expr

A more complicated example of a level-6 expression is:
A .AND. B .EQV. .NOT. C
7.1.1.8 General Form of an Expression. The general form of an expression involves the

defined binary operators, which have the lowest precedence, and includes the previous cate-
gories of expressions.

R715 expr is [expr defined-binary-op] level-6-expr
R323 defined-binary-op is . letter [letter]... .
Simple examples of an expression are:

Example Syntactic Class

A level-6-expr

B .UNION. C expr
More complicated examples of an expression are:

(B .INTERSECT. C) .UNION. (X-Y)
A+B .EQ. C*D

.INVERSE. (A + B)

A+B .AND. C * D

E// G .EQ. H(1:1D)

Version 99 1986 March Page 7-4

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

20

25

30

35

40

45

50

7.1.2 Intrinsic Operations. An intrinsic operation is either an intrinsic unary operation or
an intrinsic binary operation. An intrinsic unary operation is an operation of the form
intrinsic-operator x, where x, is of an intrinsic type (4.3) which matches the type of the oper-
and for the intrinsic-operator given in Table 7.1.

An intrinsic binary operation is an operation of the form x, intrinsic-operator x, where
either x, and x, are of the intrinsic types (4.3) which match the types of the operands for the
intrinsic-operator given in Table 7.1, and are in shape conformance (7.1.5), or x4 and x; are
of the same derived-type (4.4), are in shape conformance (7.1.5), and the inirinsic-operator is
one of the relational operators .EQ., .NE., = =, or <>.

An intrinsic operator is the operator in an intrinsic operation.

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a
numeric-operator (+, —, *, /, or **). A numeric Intrinsic operator is the operator in a
numeric intrinsic operation.

For numeric intrinsic binary operations, the two operands may be of different numeric types
or different type parameters. Except for a value raised to an integer power, if the operands
do not have the same types or type parameters, each operand that differs in type or type
parameters from those of the result is converted to the type and type parameters of the
result before the operation is performed. When a value of type real, double precision, Or com-
plex is raised to an integer power, the integer operand need not be converted.

A bit intrinslc operation, character intrinsic operation, relational intrinsic operation, and
logical intrinsic operation are similarly defined in terms of a bit intrinsic operator (.BAND.,
.BOR., .BXOR., and .BNOT.), character intrinsic operator (//), relational intrinsic operator
(EQ., .NE., .GT.,, .GE,, .LT,, .LE,, ==, <>, >, >=, <, and < =), and logical intrinsic
operator ((AND., .OR., .NOT., .EQV., and .NEQV.), respectively.

A numeric relational intrinsic operation is a relational intrinsic operation where the oper-
ands are of numeric type. A character relational intrinsic operation is a relational intrinsic
operation where the operands are of type character. A bit relational intrinsic operation is
a relational intrinsic operation where the operands are of type bit and the operator is .EQ.,

.NE., ==, or <>. A derived-type relational Intrinsic operation is a relational intrinsic
operation where the operands are of the same derived type and the operator is .EQ., .NE.,
==,0r <>.

Table 7.1. Type of Operands and Result for the Intrinsic Operation [x,] op x,. (The symbols
I, R D, Z, B, C, L, and Dt stand for the types integer, real, double precision, complex, bit, char-
acter, logical, and derived-type, respectively. Where more than one type for x, is given, the
type of the result of the operation is given in the same relative position in the next column.)

Intrinsic Operator Type of Type of Type of

op Xq Xz [x1] op x3

unary +, — LR, D Z R D Z

binary +, —, *, /, %% | LR, D,Z R D Z

R LR, D,Z R/RDZ

D LR D Z D, DD Z

V4 LR D Z 2,72,2,2
.BNOT. B B
.BAND., .BOR., .BXOR. B B
// c C Cc

Version 99 1986 March Page 7-5

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

.EQ., .NE.,, ==, <> | LR, D Z L, L L L
R IR, D, Z L LLL
z LR,DZ LLLL
D LR D Z LLLL
C C L
B B L
Dt Same as x; L
.GT., .GE., .LT,, .LE. I IR, D L L L
>,>=,<, <= R IR, D L L L
D IR, D L L L
C C L
.NOT. L L
.AND., .OR., .EQV., NEQV. L L L

7.1.3 Defined Operations. A defined operation is either a defined unary operation or a
defined binary operation. A defined unary operation is an operation either of the form
defined-unary-op x, where there exists a function subprogram accessible to the program unit
containing defined-unary-op x, that specifies the operation (7.3) for the operator defined-
unary-op, or of the form intrinsic-operator x, where the type of x, does not match that for the
Intrinsic-operator given in Table 7.1, and there exists a function subprogram accessible to
the program unit containing intrinsic-operator x, that specifies the operation (7.3) for the
operator intrinsic-operator.

A defined binary operation is an operation either of the form x intrinsic-operator x, where
there exists a function subprogram accessible to the program unit containing x, intrinsic-
operator X that specifies the operation (7.3), or of the form x intrinsic-operator x, where the
types and/or shapes of x; and x, are not those required for a binary intrinsic operation
(7.1.2), and there exists a function subprogram accessible to the program unit containing x
intrinsic-operator x, that specifies the operation (7.3).

Note that an intrinsic operator can be defined as a nonintrinsic operation. In such a case,
the intrinsic operator is said to be an overloaded intrinsic operator.

A defined operator is the operator in a defined operation.

An extension operation is a defined operation in which the operator is of the form defined-
op (unary or binary). Note that the operator used in an extension operation may be over-
loaded in that more than one function subprogram accessible to the program unit specifying
the same extension operation defined-operator may exist.

7.1.4 Data Type, Type Parameters, and Shape of an Expression. The data type and
shape of an expression depend on the operators and on the data types and shapes of the
primaries used in the expression, and are determined recursively from the syntactic form of
the expression. The data type of an expression must be one of the intrinsic types (4.3) or of
a derived type (4.4).

Only an expression whose type is real, double precision, complex, or character has type para-
meters. The type parameters are determined recursively from the form of the expression.
The type parameters for an expression of type real, double precision, Or complex are its preci-
sion and range parameters. The type parameter for an expression of type character is the
length parameter.

Version 99 1986 March Page 7-6

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

7.1.4.1 Data Type, Type Parameters, and Shape of a Primary. The data type, type para-
meters, and shape of a primary are determined according to whether the primary is a con-
stant, variable, function reference, or parenthesized expression. If a primary is a constant,
its type and type parameters are determined by the constant (4.3). If it is a derived-type
constructor, its type, type parameters, and shape are determined by the constructor name
(4.4.2); if it is an array constructor, its type, type parameters, and shape are given in 4.5. If
it is a variable or function reference, its type, type parameters, and shape are determined by
the declaration for the variable (5.1) or by the name of the function subprogram (12.5.2.2),
respectively. Note that in the case of a function reference, the function may be generic
(13.9) or overloaded (12.5.4), in which case its type, type parameters, and shape are deter-
mined by the types, type parameters, and shapes of its actual arguments. If a primary is a
parenthesized expression, its type, type parameters, and shape are those of the expression.

7.1.4.2 Data Type, Type Paramecters, and Shape of the Result of an Operation. The
type of an expression [x1] op x, where op is an intrinsic operator is specified by Table 7.1.
The data type of an expression [x;] op x, where op is a defined operator is specified by the
function subprogram defining the operation (7.3).

An expression whose type is real, double precision, complex, or character has type parameters.
For an expression op x, where op is a numeric intrinsic unary operator and xo is of type
real, double precision, or complex, the type parameters of the expression are those of the oper-
and. For an expression x, op x, where op is a numeric intrinsic binary operator with one
operand of type integer and the other of type real, double precision, or complex, the type para-
meters of the expression are those of the real, double precision, Or complex operand. In the
case where both operands are any of type real, double precision, Or complex with type para-
meters p4, 4 and p,, r; where the p's are precision parameter values and the r’s are range
parameter values, the type parameters of the expression are max(p,,p,) and max(r,ra),
respectively. For an expression x, // x, where // is the intrinsic operator for character con-
catenation, the type parameter is the sum of the lengths of the operands.

The shape of an expression [x1] op x5, where op is an intrinsic operator, is the shape of x,,
if op is unary or x, is scalar, and the shape of x,, otherwise.

7.1.5 Conformability Rules for Intrinsic Operations. Two entities are in shape confor-
mance if both are arrays of the same shape, or both are scalars, or one is an array and the
other is a scalar.

For all intrinsic binary operations, the two operands must be in shape conformance. In case
one is a scalar and the other an array, the scalar is treated as if it were an array of the
same shape as the array operand with every element of the array equal to the value of the
scalar.

7.1.6 Kinds of Expressions. An expression is either a scalar expression or an array
expression.

7.1.6.1 Constant Expression. A constant expression is an expression in which each
operator is an intrinsic operator, and each primary is:

(1) A constant,

(2) An array constructor where each element is a constant expression,

(3) A derived-type constructor where each component is a constant expression,

(4) An intrinsic function reference where each argument is a constant expression,

(5) An inquiry function reference where each argument is either a constant expres-
sion or a variable whose type parameters or bounds inquired about are not

Version 99 1986 March Page 7-7

EXPRESSIONS AND ASSIGNMENT X3J3/s8

10

15

20

25

30

35

40

assumed or allocated, or
(6) A constant expression enclosed in parentheses.

A numeric constant expresslon is a constant expression whose type is integer, real, double
precision, or complex. An integer constant expression is a numeric constant expression
whose type is integer. A character constant expression is a constant expression whose
type is character. A logical constant expression is a constant expression whose type is
logical.

The following are examples of constant expressions:

3

-3+4

SQRT (9.0

|AB'

'AB' // 'CD'

("AB' // 'CD') // 'EF'
SIZE (A

DIGITS (X) + &

where A is an explicit-shaped array and X is of type default real.
7._1.6.2 Specification Expression. A restricted expression is an expression in that each
primary is:
(1) A constant,
(2) A variable that is a dummy argument,
() A variable that is in a common block,
(4) A variable that is made accessible by a USE statement,
(5) An array constructor where each element is a restricted expression,
(6) A derived-type constructor where each component is a restricted expression,
(7) An intrinsic function reference where each argument is a restricted expression, or
(8) A restricted expression enclosed in parentheses.
A specification expression is a restricted expression which is scalar and of type integer.
The following are examples of specification expressions:

DLBOUND (B, 1) + 5
M + LEN (C)

where B, M, and C are dummy arguments and B is an assumed-shape array.

7.1.7 Evaluation of Operations. This section applies to both intrinsic and defined opera-
tions.

Any variable or function reference used as an operand in an expression must be defined at
the time the reference is executed. An integer operand must be defined with an integer value rather than a
statement label value. All of the characters in a character data object reference must be defined.

When a reference to a whole array or an array section is made, all of the selected elements
must be defined. When a data object of a derived type is referenced, all of the nonvariant
and selected variant components must be defined.

Any numeric operation whose result is not mathematically defined is prohibited in the execu-
tion of an executable program. Examples are dividing by zero and raising a zero-valued

Version 99 1986 March Page 7-8

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

primary to a zero-valued or negative-valued power. Raising a negative-valued primary of
type real or double precision t0 & real or double precision power is also prohibited.

The execution of a function reference must not alter the value of any other variable within
the statement in which the function reference appears. The execution of a function refer-
ence in a statement must not alter the value of any other variable in common (5.4.2) or
made accessible by a USE statement (11.3.1) if it affects the value of any other function ref-
erence in the statement. However, execution of a function reference in the logical expres-
sion of an IF statement (8.1.2.4) or WHERE statement (7.5.2.1) is permitted to affect varia-
bles in the statement that is executed when the value of the expression is true. For exam-
ple, in the statements:

IF (F (X)) A=X
WHERE (G (X)) B = X

F or G may define X. If a function reference causes definition of an actual argument of the
function, that argument or any associated entities must not appear elsewhere in the same
statement. For example, the statements

A =F (D
Y=6 O +X

are prohibited if the reference to F defines | or the reference to G defines X.

The type of an expression in which a function reference appears does not affect the evalua-
tion of the actual arguments of the function. The type of an expression in which a function
reference appears does not affect and is not affected by the evaluation of the actual argu-
ments of the function, except that the result of a function may assume a type that depends
on the type of its arguments as specified in Sections 12 and 13.

Execution of an array element reference requires the evaluation of its subscripts. The type
of an expression in which a subscript appears does not affect, and is not affected by, the
evaluation of the subscript.

Execution of a substring reference requires the evaluation of its substring range. The type
of an expression in which a substring name appears does not affect, and is not affected by,
the evaluation of the substring expressions.

Execution of an array section reference requires the evaluation of its section subscripts. |t is
not necessary for a processor to evaluate any subscripts of a zero-sized array. The type of
an expression in which an array section appears does not affect, and is not affected by, the
evaluation of the array section subscripts.

When an intrinsic binary operator operates on a pair of operands and at least one of the
operands is an array operand, the operation is performed element-by-element on corre-
sponding array elements of the operands. For example, the array expression

A+B

produces an array the same shape as A and B. The individual array elements of the result
have the values of the first element of A added to the first element of B, the second ele-
ment of A added to the second element of B, etc. The processor may perform the element-
by-element operations in any order.

When an intrinsic unary operator operates on a single array operand, the operation is per-
formed element-by-element, in any order, and the result is the same shape as the operand.

Version 99 1986 March Page 7-9

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

7.1.7.1 Evaluation of Operands. It is not necessary for a processor to evaluate all of the
operands of an expression if the value of the expression can be determined otherwise. This
principle is most often applicable to logical expressions and zero-sized arrays, but it applies
to all expressions. For example, in evaluating the expression

X .GT. Y .O0R. L(D

where X, Y, and Z are real and L is a function of type logical, the function reference L(Z)
need not be evaluated if X is greater than Y. Similarly, in the array expression

X+ W @

where X is of size zero and W is a function, the function reference W(Z) need not be evalu-
ated. If a statement contains a function reference in a part of an expression that need not
be evaluated, all entities that would have become defined in the execution of that reference
become undefined at the completion of evaluation of the expression containing the function
reference. In the preceding examples, evaluation of these expressions causes Z to become
undefined if L or W defines its argument.

7.1.7.2 Integrity of Parentheses. The sections that follow state certain conditions under
which a processor may evaluate an expression different from the one specified by applying
the rules given in 7.1.1, 7.2, and 7.3. However, any expression contained in parentheses
must be treated as a data entity. For example, in evaluating the expression A + (B — C)
where A, B and C are of numeric types, the difference of B and C must be evaluated before
the addition operation is performed; the processor must not evaluate the mathematically
equivalent expression (A + B) — C.

7.1.7.3 Evaluation of Numeric Intrinsic Operations. The rules given in 7.2.1 specify the
interpretation of a numeric intrinsic operation. Once the interpretation has been established
in accordance with those rules, the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.

Two expressions of a numeric type are mathematically equivalent if, for all possible values of
their primaries, their mathematical values are equal. However, mathematically equivalent
expressions of type numeric may produce different computational results. For example, any
difference between the values of the expressions (1./3.)%3. and 1. is a computational
difference, not a mathematical difference.

The mathematical definition of integer division is given in 7.2.1.1. The difference between
the values of the expressions 5/2 and 5./2. is a mathematical difference, not a computa-
tional difference.

The following are examples of expressions with allowable alternative forms that may be used
by the processor in the evaluation of those expressions. A, B, and C represent arbitrary
real, double precision, or complex operands; | and J represent arbitrary integer operands; and
X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable Alternative Form

X+Y Y+X
X*Y Y*X
-X+Y Y-X
X+Y+2Z X+(Y+2)
X-Y+Z X-CY-2)
X*A/2 X*x(A/2)
X*xY-X*Z X*(Y-2)
A/B/C A/ (B*C)
A/5.0 0.2%A

Version 99 1986 March Page 7-10

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

The following are examples of expressions with forbidden alternative forms that must not be
used by a processor in the evaluation of those expressions.

Expression Nonallowable Alternative Form

172 0.5*1

X*1/J X*(1/J)
1/4/A I/(J*A)
(X*Y)=(X*Z) X*(Y-2)
X*(Y-2) X*Y=X*Z

In addition to the parentheses required to establish the desired interpretation, parentheses
may be included to restrict the alternative forms that may be used by the processor in the
actual evaluation of the expression. This is useful for controlling the magnitude and accu-
racy of intermediate values developed during the evaluation of an expression. For example,
in the expression

A+ (@B - 0O
the term (B —C) must be evaluated and then added to A.

Note that the inclusion of parentheses may change the mathematical value of an expression.
For example, the two expressions:

A*1/J
Ax (I/ P

may have different mathematical values if | and J are of type integer.

Each operand in a numeric intrinsic operation has a data type that may depend on the order
of evaluation used by the processor. For example, in the evaluation of the expression

Z+R+1I

where Z, R, and | represent terms of complex, real, and integer data type, respectively, the
data type of the operand that is added to | may be either complex or real, depending on
which pair of operands (Z and R, R and |, or Z and |) is added first.

7.1.7.4 Evaluation of Bit Intrinsic Operations. The rules given in 7.2.2 specify the inter-
pretation of bit intrinsic operations. Once the interpretation of an expression has been
established in accordance with those rules, the processor may evaluate any other expression
that is bit-wise equivalent, provided that the integrity of parentheses is not violated. For
example, for variables B1, B2, and B3 of type bit, the processor may choose to evaluate the
expression

B1 .BOR. B2 .BOR. B3
as
B1 .BOR. (B2 .BOR. B3)

Two expressions of type bit are bit-wise equivalent if their values are equal for all possible
values of their primaries.

7.1.7.5 Evaluation of the Character Intringic Operation. The rules given in 7.2.3 specify
the interpretation of a character intrinsic operation. A processor needs to evaluate only as
much of the character intrinsic operation as is required by the context in which the expres-
sion appears. For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
€1 =2C2// CF (C3

do not require the function CF to be evaluated, because only the value of C2 is needed to

Version 99 1986 March Page 7-11

EXPRESSIONS AND ASSIGNMENT X3J3/88

10

15

20

25

30

35

40

determine the value of C1.

7.1.7.6 Evaluation of Relational Intrinsic Operations. The rules given in 7.2.4 specify the
interpretation of relational intrinsic operations. Once the interpretation of an expression has
been established in accordance with those rules, the processor may evaluate any other
expression that is relationally equivalent. For example, the processor may choose to evalu-
ate the expression

I .GT. J
where | and J are integer variables, as
J—1.LT.0

Two relational intrinsic operations are relationally equivalent if their logical values are equal
for all possible values of their primaries.

7.1.7.7 Evaluation of Logical Intrinsic Operations. The rules given in 7.2.5 specify the
interpretation of logical intrinsic operations. Once the interpretation of an expression has
been established in accordance with those rules, the processor may evaluate any other
expression that is logically equivalent, provided that the integrity of parentheses is not vio-
lated. For example, for the variables L1, L2, and L3 of type logical, the processor may
choose to evaluate the expression

L1 .AND. L2 .AND. L3
as
L1 .AND. (L2 .AND. L3)

Two expressions of type logical are logically equivalent if their values are equal for all possi-
ble values of their primaries.

7.1.7.8 Evaluation of a Defined Operation. The rules given in 7.3 specify the interpreta-
tion of a defined operation. Once the interpretation of an expression has been established
in accordance with those rules, the processor may evaluate any other expression that is
equivalent, provided that the integrity of parentheses is not violated.

Two expressions of derived-type are equivalent if their values are equal for all possible
values of their primaries.

7.2 Interpretation of Intrinsic Operations. The intrinsic operations are those defined
in 7.1.2. These operations are divided into the following categories: numeric, bit, character,
relational, and logical. The interpretations defined in the following sections apply to both
scalars and arrays; for arrays, the interpretation for scalars is applied element-by-element.

The type, type parameters, shape, and interpretation of an expression that consists of an
operator operating on a single operand or a pair of operands are independent of the context
in which the expression appears. In particular, the type, type parameters, shape, and inter-
pretation of such an expression are independent of the type, type parameters, and shape of
any other larger expression in which it appears. For example, if X is of type real, J is of
type integer, and INT is the real-to-integer intrinsic conversion function, the expression INT
(X + J) is an integer expression and X + J is a real expression.

7.2.1 Numeric Intrinsic Operations. A numeric operation is used to express a numeric
computation. Evaluation of a numeric operation produces a numeric value. The permitted
data types and shapes for operands of the numeric intrinsic operations are specified in 7.1.2.
The permitted type parameters for operands of the numeric intrinsic operations are those
that yield type parameters (7.1.4) of an approximation method supported by the processor.

Version 99 1986 March Page 7-12

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

The numeric operators and their interpretation in an expression are given in Table 7.2,
where x, denotes the operand to the left of the operator and x, denotes the operand to the
right of the operator.

Table 7.2. Interpretation of the Numeric Intrinsic Operators.

Use of
Operator Representing Operator Interpretation

*¥ Exponentiation x; ** x, Raise x, to the power x,
/ Division Xy / X Divide x4 by x»

* Multiplication X1 * X2 Multiply x4 by x5

- Subtraction X; — X Subtract x, from x4

- Negation - Xz Negate x;

+ Addition Xy + Xz Add x, and x,

+ Identity + Xo Same as x»

The interpretation of a division may depend on the data types of the operands (7.2.1.1).

If M, and M, are of type integer and M, has a negative value, the interpretation of M, **
M, is the same as the interpretation of 1/(M, ** ABS(M,)), which is subject to the rules of
integer division (7.2.1.1). For example, 2¥*(—3) has the value of 1/(2##3), which is zero.

7.2.1.1 Integer Division. One operand of type integer may be divided by another operand
of type integer. Although the mathematical quotient of two integers is not necessarily an
integer, Table 7.1 specifies that an expression involving the division operator with two oper-
ands of type integer is interpreted as an expression of type integer. The result of such an
operation is the integer closest to the mathematical quotient and between zero and the
mathematical quotient inclusively. For example, the expression (—8)/3 has the value (—2).

7.2.1.2 Complex Exponentlation. In the case of a complex value raised to a complex
power, the value of the operation is the “principal value” determined by x ** x, = EXP(x»
* LOG(x4)), where EXP and LOG are functions described in 13.9.

7.2.2 Bit Intrinsic Operations. A bit operation is used to express a bit computation. Eval-
uation of a bit operation produces a result of type bit, with a value of B'0’ or B'1’. The per-
mitted data types and shapes for operands of the bit intrinsic operations are specified in
7.1.2.

The bit operators and their interpretation when used to form an expression are given in
Table 7.3, where x, denotes the operand to the left of the operator and x, denotes the oper-
and to the right of the operator.

Table 7.3. Interpretation of the Bit Intrinsic Operators.

Use of
Operator Representing Operator Interpretation
.BNOT. Bit Negation .BNOT. x, Bit negation of x5
.BAND. Bit Conjunction x4 .BAND. x, Bit conjunction of x4 and x,
.BOR. Bit Inclusive Disjunction x4 .BOR. x, Bit inclusive disjunction of x; and x,

.BXOR. Bit Exclusive Disjunction x, .BXOR. x, Bit exclusive disjunction of x, and x,

The values of bit intrinsic operations are shown in Table 7.4.

Table 7.4. The Values of Operations Involving Bit Intrinsic Operators
X1 Xo .BNOT. x, x4, .BAND. x5 X, .BOR. x; x; .BXOR. X2

Version 99 1986 March Page 7-13

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

B'1”’ Bt B0’ B'1’ B'1’ B0’
B'1”’ B0 B’1’ B0’ B't’ B’1’
B0’ B71 B0’ B0’ Bt B’1’
B0’ B0 B’1’ B0 B0’ B0’

7.2.3 Character Intrinsic Operation. The character intrinsic operator // is used to concat-
enate two operands of type character. Evaluation of the character intrinsic operation pro-
duces a result of type character. The permitted shapes for operands of the character intrin-
sic operation are specified in 7.1.2.

The interpretation of the character intrinsic operator // when used to form an expression is
given in Table 7.5, where x, denotes the operand to the left of the operator and x, denotes
the operand to the right of the operator.

Table 7.5. Interpretation of the Character Intrinsic Operator //.

Use of
Operator Representing Operator Interpretation

/! Concatenation x4 // x; Concatenate x; with x»

The result of a character intrinsic operation is a character string whose value is the value of
x4 concatenated on the right with the value of x, and whose length is the sum of the lengths
of x, and x,. Parentheses used to specify the order of evaluation have no effect on the
value of a character expression. For example, the value of ('AB’ // 'CDE’) // 'F’ is the
string 'ABCDEF’. Also, the value of 'AB’ // ('CDE’ // 'F’) is the string 'ABCDEF’.

7.2.4 Relational Intrinsic Operations. A relational intrinsic operator is used to compare
values of two operands using the relational intrinsic operators .LT., .LE., .GT., .GE., .EQ.,,
NE., <, <=, >, >=, ==, and <>. The permitted data types and shapes for operands
of the relational intrinsic operators are specified in 7.1.2. Note, as shown in Table 7.1, that a
relational intrinsic operator must not be used to compare the value of an expression whose
type is numeric with one whose type is bit, character, or logical. Also, two operands of type
logical must not be compared, and a complex operand can only be compared with another
numeric operand when the operator is .EQ. .NE., = =, or <>.

Evaluation of a relational intrinsic operation produces a result of type logical, with a value of
true or false.

The interpretation of the relational intrinsic operators is given in Table 7.6, where x, denotes
the operand to the left of the operator and x, denotes the operand to the right of the opera-
tor. The operators <, <=, >, >=, ==, and <> have the same semantics as the opera-
tors .LT., .LE., .GT., .GE., .EQ., and .NE., respectively.

Table 7.6. Interpretation of the Relational Intrinsic Operators.

Use of
Operator Representing Operator Interpretation

.LT. Less Than x; .LT. x2 x4 less than x,

< Less Than Xy < X2 X4 less than x,
.LE. Less Than Or Equal To x4 .LE. x5 x4 less than or equal to x5

e Less Than Or Equal To Xy <= X5 X less than or equal to x,

.GT. Greater Than x4 .GT. x5 x4 greater than x,

> Greater Than X, > Xz X, greater than x,
.GE. Greater Than Or Equal To x4 .GE. x, X, greater than or equal to x;

= Greater Than Or Equal To x4 >= x, x4 greater than or equal to x,

Version 99 1986 March Page 7-14

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

20

30

40

EQ. Equal To x4y .EQ. x5 x4 equal to x,
== Equal To Xy == Xz X;equalto x,
.NE. Not Equal To x4 .NE. x5 x4 not equal to x,
<> Not Equal To Xy <> X Xy not equal to x,

A numeric relational intrinsic operation is interpreted as having the logical value true if the
values of the operands satisfy the relation specified by the operator. A numeric relational
intrinsic operation is interpreted as having the logical value false if the values of the oper-
ands do not satisfy the relation specified by the operator.

If the two numeric operands are of different types or have different type parameters but are
in shape conformance, the value of the relational operation

x4 rel-op x,
is the value of the expression

((x1)—=(x2)) rel-op 0

where O (zero) is of the same type, type parameters, and shape as the expression
((x4)—(x2)), and rel-op is the same relational operator in both expressions.

A character relational intrinsic operation is interpreted as having the logical value true if the
values of the operands satisfy the relation specified by the operator. A character relational
intrinsic operation is interpreted as having the logical value false if the values of the oper-
ands do not satisfy the relation specified by the operator.

For a character relational intrinsic operation, the operands are compared one character at a
time in order, beginning with the first character of each character operand. At the first posi-
tion where the character operands differ, the character operand x, is considered to be less
than x, if the character value of x, at this position precedes the value of x, in the collating
sequence (3.1.4); x4 is greater than x if the character value of x, at this position follows the
value of x, in the collating sequence. If the operands are of unequal length, the shorter
operand is treated as if it were extended on the right with blanks to the length of the longer
operand. Note that the collating sequence depends partially on the processor; however, the
result of the use of the operators .EQ., .NE., = =, and <>. does not depend on the coliat-
ing sequence.

A derived-type relational intrinsic operation is interpreted as having the logical value true if
the values of the operands satisfy the relation specified by the operator. A derived-type
relational intrinsic operation is interpreted as having the logical value false if the values of
the operands do not satisfy the relation specified by the operator.

A derived-type operand x4 is considered to be equal to x, if the values of all corresponding
components (including variant components) of x, and x, are equal when of numeric, bit,
character, or derived-type or equivalent (.EQV.), when of logical type. Otherwise, x, is con-
sidered to be not equal to x,.

7.2.5 Logical Intrinsic Operations. A logical operation is used to express a logical compu-
tation. Evaluation of a logical operation produces a resuit of type logical, with a value of true
or false. The permitted data types and shapes for operands of the logical intrinsic opera-
tions are specified in 7.1.2.

The logical operators and their interpretation when used to form an expression are given in
Table 7.7, where x, denotes the operand to the left of the operator and x5 denotes the oper-
and to the right of the operator.

Table 7.7. Interpretation of the Logical Intrinsic Operators.

Use of

Version 99 1986 March Page 7-15

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

Operator Representing Operator Interpretation

.NOT. Logical Negation .NOT. x, Logical negation of x,

.AND. Logical Conjunction X1 -AND. x, Logical conjunction of x, and x,

.OR. Logical Inclusive Disjunction x; .OR. x, Logical inclusive disjunction of x; and x»
.NEQV. Logical Non-equivalence x4 .NEQV. x, Logical non-equivalence of x; and x,
.EQV. Logical Equivalence x4 .EQV. x, Logical equivalence of x; and x,

The values of the logical intrinsic operations are shown in Table 7.8.

Table 7.8. The Values of Operations Involving Logical Intrinsic Operators
X4 Xz .NOT. x, x;.AND.x, xy.0R.x, x;.EQV.x, x4.NEQV. x,

true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

7.3 Interpretation of Defined Operations. The interpretation of a defined operation is
provided by the function subprogram that defines the operation.

7.3.1 Unary Defined Operation. A function subprogram defines the unary operation op x»
if:

(1) The function subprogram is specified with a FUNCTION statement of the form
(12.5.2.2):

[RECURSIVE] [type-spec] FUNCTION function-name (d») &
[RESULT (res)] OPERATOR (operator)

(2) The interface to the function subprogram is explicit,
(3) The type of x, is the same as the type of dummy argument d,

(4) The type parameters, if any, of x, must match those of d,, for those type para-
meters of d, not specified with an asterisk (*), and

(5) d, is a scalar and x, is a scalar or array, or d; and x, are arrays of the same
shape.

7.3.2 Binary Defined Operation. A function subprogram defines the binary operation x,
op X, if:

(1) The function subprogram is specified with a FUNCTION statement of the form
(12.5.2.2):

[RECURSIVE] [type-spec] FUNCTION function-name &
(d4, d3) [RESULT (res)] OPERATOR (operator)

(2) The interface to the function subprogram is explicit,

(3) The types of x, and x, are the same as those of the dummy arguments d; and
d,, respectively,

(4) The type parameters, if any, of x; and x, must match those of d, and d,, respec-
tively, for those type parameters of d, and d, not specified with an asterisk (%),
and

Version 99 1986 March Page 7-16

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

(5) d, and d, are scalar and x; and x, have the same shape, or dy or d, (or both) is
an array and the shapes of x; and x, match those of d, and d,, respectively.

7.4 Precedence of Operators. There is a precedence among the intrinsic and exten-
sion operations implied by the general form in 7.1.1, which determines the order in which
the operands are combined, unless the order is changed by the use of parentheses. This
precedence order is summarized in Table 7.9.

Table 7.9. Categories of Operations and Relative Precedences.

Category
of Operation Operators Precedence
Extension defined-unary-op Highest
Numeric ok .
Numeric ® or /
Numeric unary + or —
Numeric binary + or —
Bit .BNOT.
Bit .BAND.
Bit .BOR. or .BXOR.
Character //

Relational .EQ., .NE, .LT,, .LE., .GT., .GE.
==,<>, <, <=,>,>=

Logical .NOT.

Logical .AND.

Logical .OR.

Logical .EQV. or .NEQV. ;
Extension defined-binary-op Lowest

Overloaded operations have the precedence of the intrinsic or extension operation associ-
ated with the operator with the same symbol name.

For example, in the expression
—A ** 2

the exponentiation operator (**) has precedence over the negation operator (—); therefore,
the operands of the exponentiation operator are combined to form an expression that is
used as the operand of the negation operator. The interpretation of the above expression is
the same as the interpretation of the expression '

— (A ** 2)

The general form of an expression (7.1.1) also establishes a precedence among operators in
the same syntactic class. This precedence determines the order in which the operands are
to be combined unless the order is changed by the use of parentheses. For example, in
interpreting a level-2-expr containing two or more binary operators + or —, each operation
(add-operand) is combined from left to right. Similarly, the same left to right interpretation for
a mult-operand in add-operand, or level-3-expr in level-4-expr, as well as for other kinds of
expressions, is a consequence of the general form (7.1.1). However, for interpreting a muit-
operand expression when two or more exponential operators ** combine level-1-expr oper-
ands, each level-1-expr is combined from right to left. For example, the expressions

2.1 +3.4+49
3.
3.

*

oA %
i
% 3

N NN

* 4.9
/4.9
4

VERSION 99 1986 MARCH PAGE 7-17

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

'AB' // 'CD' // 'EF'
have the same interpretations as the expressions

(2.1 +3.4) + 4.9
(2.1 * 3.4) » 4.9
(2.1 /7 3.4) 7 4.9

2 kk (3 k% 4)

("AB' // 'CD') // 'EF'

Note that as a consequence of the general form (7.1.1), only the first add-operand of a level-
2-expr may be preceded by the identity (+) or negation (—) operator. Note also that these
formation rules do not permit expressions containing two consecutive numeric operators,
such as A *x —B or A + —B. However, expressions such as A ** (—B) and A + (-B)
are permitted.

As another example, in the expression
A .OR. B .AND. C

the general form (7.1.1) implies a higher precedence for the .AND. operator than the .OR.
operator; therefore, the interpretation of the above expression is the same as the interpreta-
tion of the expression

A .OR. (B .AND. C)

An expression may contain more than one kind of operator. For example, the logical
expression

L .OR. A +B .GE. C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a
relational operator, and a logical operator. This expression would be interpreted the same
as the expression

L .OR. ((A + B) .GE. C)

7.5 Assignment. Execution of an assignment causes a variable to become defined or
redefined.

An assignment is either an assignment statement, a masked array assignment, or an ele-
ment array assignment.

7.5.1 Assignment Statement. Any variable may be defined or redefined by execution of
an assignment statement.

7.5.1.1 General Form.

R716 assignment-stmt is variable = expr

where variable is defined in 2.4.4 and expr is defined in 7.1.1.8.

variable must not include an array element more than once in an array section with vector
subscripts or in an identified array.

Examples of an assignment statement are:

A=35+X=*xY
I = INT (A)

Version 99 1986 March Page 7-18

EXPRESSIONS AND ASSIGNMENT X3J3/S8

An assignment statement is either intrinsic or defined.

7.5.1.2 Intrinsic Assignment Statement. An intrinsic assignment statement is an
assignment statement where:

(1) The types of variable and expr are intrinsic, as specified in Table 7.10 for assign-
5 ment, or

(2) The types of variable and expr are of the same derived type.

A numerlc intrinslc agsignment siatement is an intrinsic assignment statement for which
variable and expr are of numeric type. A character Intrinsic assignment statement is an
intrinsic assignment statement for which variable and expr are of type character. An array
10 Intrinsic assignment statement is an intrinsic assignment statement for which variable is an
array. A logical Intrinsic assignment statement is an intrinsic assignment statement for
which variable and expr are of type iogical. A bit Intrinslc assignment statement is an
intrinsic assignment statement for which variable and expr are of type bit. A derived-type
intrinsic assignment statement is an intrinsic assignment statement for which variable and
15 expr are of the same derived type.

Table 7.10. Type Conformance for the Assignment Statement variable = expr

Type of variable Type of expr
integer integer, real, double precision, complex
20 real integer, real, double precision, complex
double precision integer, real, double precision, complex
complex integer, real, double precision, complex
bit bit
character character
25 logical logical
derived type same derived type as variable

7.5.1.3 Defined Assignment Statement. A defined assignment statement is an assign-
ment statement which is not an intrinsic assignment statement, and for which there exists an
accessible subroutine subprogram that defines the assignment.

30 7.5.1.4 Intrinsic Assignment Conformance Rules. For the intrinsic assignment statement,
variable and expr must be in shape conformance, and if expr is an array, variable must also
be an array. The types of variable and expr must conform with the rules of Table 7.10.

For a numeric intrinsic assignment statement, variable and expr may have different numeric
types or different type parameters, in which case the value of expr is converted to the type
35 and type parameters of variable according to the rules of Table 7.11.

Table 7.11. Numeric Conversion and Assignment Statement of expr to variable (The func-
tions INT, REAL, DBLE and CMPLX are the generic functions defined in 13.9.)

Type of variable Value Assigned

40 integer INT(expr)

real REAL(expr, MOLD = variable)
45 double precision DBLE(expr)

complex CMPLX(expr, MOLD = variable)

Version 99 1986 March Page 7-19

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

For a character intrinsic assignment statement, variable and expr may have different type
parameters (lengths) in which case the conversion of expr to the length of variable is:

(1) If the length of variable is less than that of expr, the value of expr is truncated
from the right until it is the same length as variable;

(2) If the length of variable is greater than that of expr, the value of expr is extended
to the right with blanks until it is the same length as variable.

7.5.1.5 Interpretation of Intrinsic Assignments. Execution of an intrinsic assignment
causes, in effect, the evaluation of the expression expr and all expressions within variable
(7.1.7), the possible conversion of expr to the type and type parameters of variable (Table
7.11), and the definition of variable with the resulting value. The execution of the assign-
ment must appear as if the evaluation of all operations in expr and, if present, all operations
in the subscripts or section subscripts of variable occurred before any portion of variable is
defined by the assignment.

Both variable and expr may contain references to any portion of variable.

If expr in an assignment is a scalar and variable is an array, the expr is treated as if it were
an array of the same shape as variable with every element of the array equal to the scalar
value of expr.

When variable in an intrinsic assignment is an array, the assignment is performed element-
by-element on corresponding array elements of variable and expr. For example, where A
and B are arrays of the same shape, the array intrinsic assignment

A=8

assigns the corresponding elements of B to those of A; that is, the first element of B is
assigned to the first element of A, the second element of B is assigned to the second ele-
ment of A, etc. The processor may perform the element-by-element assignment in any
order.

When variable is an array section, the assignment does not affect the definition status or
value of the elements of the parent array not specified by the array section.

7.5.1.6 Interpretation of Defined Assignment Statements. The interpretation of a defined
assignment is provided by the subroutine subprogram that defines the operation.

A subroutine subprogram defines the defined assignment x; = x; if:

(1) The subroutine subprogram is specified with a SUBROUTINE statement of the
form (12.5.2.3):

SUBROUTINE subroutine-name (d, do) ASSIGNMENT
(2) The interface to the subroutine subprogram is explicit,

(3) The types of x4 and x, are the same as those of the dummy arguments dy and
d,, respectively,

(4) The type parameters, if any, of x; and x, must match those of d; and d,, respec-
tively, for those type parameters of d, and d, not specified with an asterisk (*),
and

(5) d, and d, are scalar and x, and x, have the same shape, or d; or d, (or both) is
an array and the shapes of x, and x, match those of d, and d,, respectively.

Version 99 1986 March Page 7-20

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

45

7.5.2 Masked Array Assignment (WHERE). The masked array assignment is used to
mask the evaluation of expressions and assignment of values in array assignment state-
ments, according to the value of a logical or bit array expression.

7.5.2.1 General Form of the Masked Array Assignment. A masked array assignment is
either a WHERE statement or WHERE construct.

R717 where-stmt is WHERE (array-mask-expr) array-assignment-stmt

R718 where-construct is where-construct-stmt
[array-assignment-stmt]...
[elsewhere-stmt
[array-assignment-stmt ... |
end-where-stmt

R719 where-construct-stmt Is WHERE (array-mask-expr)
R720 array-mask-expr is logical-expr
or bit-expr
R721 elsewhere-stmt is ELSEWHERE
R722 end-where-stmt is END WHERE
Constraint: The shape of the array-mask-expr and the variable being defined in each array-
assignment-stmt

must be the same.
Examples of a masked array assignment are:
WHERE (TEMP > 100.0) TEMP = TEMP — REDUCE_TEMP

WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0

END WHERE

7.5.2.2 Interpretation of Masked Array Assignments. The execution of a masked array
assignment causes the expression array-mask-expr to be evaluated. The array assignment
statements following the WHERE and ELSEWHERE keywords are executed in normal execu-
tion sequence. An array may be defined in more than one array assignment statement in a
WHERE construct. A reference to an array may appear subsequent to its definition in the
same WHERE construct.

When an array-assignment is executed in a masked-array-assignment, the expr in the where-
stmt or each expr in the array assignment statements, immediately following the WHERE
keyword, is evaluated for all elements where array-mask-expr is true (or for all elements
where array-mask-expr is false in the array assignment statements following ELSEWHERE),
and the result is assigned to the corresponding elements of variable. For each false value
of array-mask-expr (or true value for the array assignment statements after ELSEWHERE) the
value of the corresponding element of variable in each array assignment statement immedi-
ately following the WHERE keyword is not affected, and it is as if the expression expr were
not evaluated. If an array-mask-expr is of type BIT, the elements with value B'1’ are treated
as true and elements with value B’0’ are treated as false.

If a transformational function reference occurs in expr, it is evaluated without any masked
control by the array-mask-expr; that is, all of its argument expressions are fully evaluated and
the function is fully evaluated. Elements corresponding to true values in array-mask-expr
(false in the expr after ELSEWHERE) are selected for use in evaluating each expr.

Version 99 1986 March Page 7-21

EXPRESSIONS AND ASSIGNMENT X3J3/S8

In a masked array assignment, only a WHERE statement may be a branch target. Changes
to entities in array-mask-expr will not affect the execution of statements in the masked-array-
assignment. Execution of an END WHERE has no effect.

7.5.3 Element Array Assignment (FORALL). The element array assignment statement is
5 used to specify an array assignment in terms of array elements or array sections. The ele-
ment array assignment may be masked with a scalar logical or bit expression.

7.5.3.1 General Form of Element Array Assignment.
R723 forall-stmt is FORALL (forali-triplet-spec-list [,scalar-mask-expr |) forall-assignment
R724 forall-triplet-spec is subscript-name = subscript : subscript | : stride]

10 Constraint: subscript-name must be a scalar-symbolic-name of type integer.

Constraint: The subscripts and stride in a forall-triplet-spec must not contain any references
to any subscript-name in the forall-triplet-spec-list.

R725 forall-assignment is array-element = expr
or array-section = expr

15 Constraint: The array-section or array-element must contain references to all subscript
names in the forall-triplet-spec-list. expr in a forall-assignment must reference all
of the forall-triplet-spec subscript-names.

For each subscript name in the forall-assignment, the set of permitted values is determined
on entry to the statement and is

20 my + (k—1) x mg, where k = 1, 2, ..., INT((m3 - mq; + ma)/my)

and where m,, m,, and m, are the values of the first subscript, the second subscript, and
the stride respectively in the forall-triplet-spec. If stride is missing, it is as if it were present
with a value of the integer 1. The expression stride must not have the value 0. If for some
subscript name INT((m, - my + m3)/m3) < 0, the forall-assignment is not executed.

25 Examples of element array assignments are:
FORALL (I = 1:N, J=1:ND H (I,) =1.0/REAL (D +J - 1)

FORALL (I = 1:N, J = 1:N, A (I, J) .NE. 0.0) B (I,) =1.0/ A (I, D

7.5.3.2 Interpretation of Element Array Assignments. Execution of an element array
assignment consists of the evaluation in any order of the subscript and stride expressions in

30 the forall-triplet-spec-list, the evaluation of the scalar mask expression, and the evaluation of
the expr in the forall-assignment for all valid combinations of subscript names for which the
scalar mask expression is true, followed by the assignment of these values to the corre-
sponding elements of the array being assigned to. If the scalar mask expression is omitted,
it is as if it were present with value true. If the scalar mask expressian is of type BIT, an

35 expression with value B’1’ is treated as true and an expression value B'Q’ is treated as
false.

The forall-assignment must not cause any element of the array being assigned to be

assigned a value more than once. The scope of the subscript name is the FORALL state-

ment itself. A function reference appearing in any expression in the forall-assignment must
40 not redefine any subscript name.

Version 99 1986 March Page 7-22

10

15

20

25

30

35

8 EXECUTION CONTROL

Control constructs are used to control the execution sequence. These constructs include
executable constructs containing blocks and executable statements that may be used to
alter the execution sequence.

8.1 Executable Constructs Containing Blocks. The following are executable con-
structs containing blocks that may be used to control the execution sequence:

(1) IF Construct

(2) CASE Construct

(3) DO Construct

(4) ENABLE Construct
A block is a sequence of executable constructs that is treated as an integral unit.
R801 block is [execution-part ...

Executable constructs may be used to control which blocks of a program are executed or
how many times a block is executed. Blocks are always bounded by statements that are
particular to the construct in which they are embedded. Note that a block may be empty.

Any of these four constructs may be named with a symbolic name. If a construct is named,
the name must be the first lexical element of the first statement of the construct and the last
lexical element of the construct. In fixed form, the preceding name must be placed after column 6.

There is a simplified form of the IF construct (the IF statement) that contains a single action
statement.

8.1.1 Rules Governing Blocks.

8.1.1.1 Executable Constructs in Blocks. If a block contains an executable construct, the
executable construct must be entirely contained within the block.

8.1.1.2 Control Flow in Blocks. Transfer of control to the interior of a block from outside
the block is prohibited. Transfers within a block may occur. For example, if a statement
inside the block has a statement label, a GO TO statement using that label may appear in
the same block. CALL statements and function references may appear in a block
(12.4.2,12.4.4).

8.1.1.3 Execution of a Block. Execution of a block begins with the execution of the first
executable construct in the block. Unless there is a transfer of control out of the block, the
execution of the block is completed when the last executable construct in the sequence is
executed. The action that takes place at the terminal boundary depends on the position of
the block within a particular construct. It is usually a transfer of control.

8.1.2 IF Construct. The IF construct selects for execution no more than one of its constit-
uent blocks. The IF statement controls the execution of a single statement.

8.1.2.1 Form of the IF Construct.

R802 if-construct is if-then-stmt
block
[else-if-stmt

Version 99 1986 March Page 8-1

EXECUTION CONTROL X3J3/s8

block]...
[else-stmt
block]
end-if-stmt
5 R803 if-then-stmt is [if-construct-name :] IF (scalar-mask-expr) THEN
R804 else-if-stmt is ELSE IF (scalar-mask-expr) THEN
R805 else-stmt is ELSE
R806 end-if-stmt is END IF [if-construct-name |

Constraint: If an if-construct-name is present, the same name must be specified on both
10 the if-then-stmt and the corresponding end-if-stmt.

8.1.2.2 Execution of an IF Construct. At most one of the blocks contained within the IF
construct is executed. If there is an ELSE statement in the construct, exactly one of the
blocks contained within the construct will be executed. The block that is executed is the
one following the first scalar mask expression that evaluates to the value .TRUE. If none of
156 the scalar mask expressions evaluate to the value .TRUE., the block following the ELSE
statement, if any, is executed. The scalar mask expressions are evaluated in the order of
their appearance in the construct until a true value is found or an ELSE statement or END IF
statement is encountered. If a true value or an ELSE statement is found, the block immedi-
ately following is executed and this completes the execution of the construct. The expres-
20 sions in any remaining ELSE IF statements of the IF construct are not evaluated.

If none of the evaluated expressions are true and there is no ELSE statement, the execution
of the construct is completed without the execution of any blocks within the construct.

If the scalar mask expression if of type BIT, an expression with value B’'1’ is treated as true
and an expression with value B’0’ is treated as false.

25 An ELSE IF statement or an ELSE statement must not be a branch target. It is permissible
to branch to an END IF statement from within the IF construct, and also from outside the construct.

8.1.2.3 Examples of IF Constructs.

IF (CVAR .EQ. 'RESET') THEN
1=0;J=0;K=0
30 END IF

IF (PROP) THEN
WRITE (3, '("QED')")
STOP
ELSE
35 PROP = NEXTPROP
END IF

IF (A .GT. 0) THEN
B =C/A
IF (B .GT. 0) THEN
40 0D=1.0
END IF
ELSE IF (C .GT. 0) THEN
B = A/C
D=-1.0
45 ELSE
B

ABS (MAX (A, C»

VERSION 99 1986 MARCH PAGE 8-2

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

D=0
END IF
8.1.2.4 IF Statement. The IF statement controls a single action statement (R218).
R807 if-stmt is IF (scalar-mask-expr) action-stmt
Constraint: The action-stmt in the if-stmt must not be an if-stmt.

Execution of an IF statement causes evaluation of the scalar mask expression. If the value
of the expression is true, the action statement is executed. If the value is false, the action
statement is not executed and execution continues as though a CONTINUE statement were
executed.

If the scalar mask expression if of type BIT, an expression with value B'1’ is treated as true
and an expression with value B'0’ is treated as false.

The execution of a function reference in the scalar mask expression is permitted to affect
entities in the action statement.

8.1.3 CASE Construct. The CASE construct selects for execution exactly one of its con-
stituent blocks.

8.1.3.1 Form of the CASE Construct.

R808 case-construct is select-case-stmi
[case-stmt
block 1...
end-select-stmt
R809 select-case-stmt is [select-construct-name : | SELECT CASE (case-expr)
R810 case-stmt Is CASE case-selector
R811 end-select-stmt is END SELECT [select-construct-name |

Constraint: If a select-construct-name is present, the same name must be specified on both
the select-case-stmt and the corresponding end-select-stmt.

R812 case-expr Is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr
or scalar-bit-expr

R813 case-selector is (case-value-range-list)
or DEFAULT

Constraint: Only one DEFAULT case-selector may appear in any given case-construct.

R814 case-value-range is case-value
or [case-value | : [case-value]

R815 case-value is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr
or scalar-bit-constant-expr

The case selector may specify a value or a range. For a given CASE construct, the case
value in the case selectors must be of the same type as the case expression that appears in
the SELECT CASE statement. For character type, length differences are allowed.

Version 99 1986 March Page 8-3

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

8.1.3.2 Execution of a CASE Construct. The execution of the SELECT CASE statement
causes the case expression to be evaluated. The resulting value is called the case index
and must match one of the selectors of one of the CASE statements of the construct. For a
case value range list, a match occurs if the case index matches any of the case-value
ranges in the list. For a case index with a value of ¢, a match is determined as follows:

(1) If the case value range contains a single value v without a colon, a match occurs
for data type logical if the expression ¢ .EQV. v is true. A match occurs for data
type integer, character, or bit if the expression ¢ .EQ. v is true.

(2) If the case value range is of the form low : high, the data type must not be logical
and a match occurs if the expression low .LE. ¢ .AND. ¢ .LE. high is true.

(3) If the case value range is of the form low :, the data type must not be logical and
a match occurs if the expression low .LE. c¢ is true.

(4) |f the case value range is of the form : high, the data type must not be logical and
a match occurs if the expression ¢ .LE. high is true.

(5) If the case-value range is of the form :, the data must not be logical or bit and a
match always occurs. A case construct containing such a case selector must not
contain any other case selector except possibly a DEFAULT selector.

(6) If no other selector matches, a DEFAULT selector must be present, and it
matches the case index.

The case value ranges in different selectors must not overlap; that is, there must be no pos-
sible value of the data type that matches more than one selector. Case-value ranges within
a single case selector may overlap.

The block following the CASE statement containing the matching selector is executed. This
completes execution of the construct.

One and only one of the blocks of a CASE construct is executed.

A CASE statement must not be a branch target. It is permissible to branch to an END
SELECT statement only from within the CASE construct.

8.1.3.3 Examples of CASE Constructs. An integer signum function:

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)
CASE (:-1)
SIGNUM = -1
CASE (O
SIGNUM = 0
CASE (1)
SIGNUM = 1
END SELECT
END

A code fragment to check for balanced parentheses:
CHARACTER LINE (80)

LEVEL=0
po1=1, 8
SELECT CASE (LINE(I:I))
CASE ('(")
LEVEL = LEVEL + 1
CASE (")

VERSION 99 1986 MARCH PAGE 8-4

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

45

LEVEL = LEVEL - 1
IF (LEVEL .LT. 0) THEN
PRINT %, 'UNEXPECTED RIGHT PARENTHESIS'
EXIT
END IF
CASE DEFAULT
IIGNORE ALL OTHER CHARACTERS
END SELECT
END DO
IF (LEVEL .GT. 0) THEN
PRINT *, 'MISSING RIGHT PARENTHESIS®
END IF

The following three fragments are equivalent:

IF (SILLY .EQ. 1) THEN
CALL THIS

ELSE
CALL THAT

END IF

SELECT CASE (SILLY .EQ. 1)
CASE (.TRUE.)
CALL THIS
CASE (.FALSE.)
CALL THAT
END SELECT

SELECT CASE (SILLY .EQ. 1)
CASE DEFAULT
CALL THAT
CASE (.TRUE.)
CALL THIS
END SELECT

8.1.4 Ilteration Control. The DO construct is used to provide iteration control by specifying
the repeated execution of a sequence of executable constructs.

8.1.4.1 Form of the DO Construct.

R816 do-construct Is do-stmt
do-body
do-termination
R817 do-stmt Is [do-construct-name :] DO [label] [{,] loop-control |
R818 loop-control is do-variable = scalar-numeric-expr, scalar-numeric-expr |, scalar-numeric-e;

or (scalar-int-expr TIMES)
Constraint: The do-variable must be a scalar integer, real, or double precision variable.
R819 do-body is [execution-part]...

R820 do-termination is end-do-stmt
or continue-stmt
or do-term-stmt
or do-construct

Version 99 1986 March Page 8-5

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

R821 do-term-stmt is action-stmt

Constraint: If the /abel is omitted in a do-stmt, the corresponding do-termination must be an
end-do-stmt.

Constraint: If a label appears in the do-stmt and the corresponding do-termination is not a
do-construct, the do-termination must be identified with that label.

Constraint: If the do-termination is a continue-stmt or do-term-stmt, the corresponding do-stmt
must contain a label.

Constraint: A do-term-stmt must not be a continue-stmt, goto-stmt, return-stmt, stop-stmt, exit-stmt, cycle-stmt,
arithmetic-if-stmt, assigned-goto-stmt, computed-goto-stmt, nor an if-stmt that causes a transfer of con-
trol.

Constraint: If the do-termination is a do-construct, both of the corresponding do-stmts must specify the same label.
Constraint: If a do-termination is a do-construct, the do-termination of that do-construct must not be an end-do-stmt.
R822 end-do-stmt is END DO [do-construct-name |

Constraint: If a do-construct-name is used on the do-simt, the corresponding do-termination
must be an end-do-stmt that uses the same do-construct-name. If a do-
construct-name does not appear on the do-stmt, a do-construct-name must not
appear on the corresponding do-termination.

R823 exit-stmt is EXIT [do-construct-name]
R824 cycle-stmt is CYCLE [do-construct-name}

An EXIT statement of CYCLE statement is said to belong to a specific DO construct. If the
EXIT statement or CYCLE statement contains a construct name, it belongs to the DO con-
struct using that name. Otherwise, it belongs to the innermost DO construct in which it
appears.

8.1.4.2 Range of a DO Construct. The range of a DO construct consists of the do-body
and the continue-stmt, do-term-stmt, or termination do-construct, if any. The range must satisfy the
rules for blocks (8.1.1).

Within a program unit, all DO constructs whose DO statements use the same label are said
to share the statement identified with that label. Note that the statement so identified must
be a CONTINUE statement or do-term-stmt that serves as the do termination of the inner-
most of these DO constructs.

Note that if the do-termination is an END DO statement, the range is a block (8.1). If the
do-termination is a continue-stmt, do-term-stmt, or do-construct, a terminal boundary delimiting
the range is assumed (8.1.1.3).

8.1.4.3 Active and Inactive DO Constructs. A DO construct is either active or inactive.
Initially inactive, a DO construct becomes active only when its DO statement is executed.

Once active, the DO construct becomes inactive only when the construct it specifies is termi-
nated (8.1.4.4.4).

When a DO construct becomes inactive, the do-variable, if any, retains its last defined value.

8.1.4.4 Execution of a DO Construct. A DO construct specifies a loop. A loop is a
sequence of executable constructs that is executed repeatedly. There are three phases in
the execution of a DO construct: initiation of the loop, execution of the loop body, and termi-
nation of the loop.

Version 99 1986 March Page 8-6

EXECUTION CONTROL X3J3/S8

10

15

20

25

35

40

8.1.4.4.1 Loop Initiation. When the DO statement is executed, the DO construct becomes
active. If there is loop-control of the form do-variable = num-expry, num-expr, [, num-exprs),
the following steps are performed in sequence:

(1) The initial parameter m,, the terminal parameter m,, and the incrementation param-
eter m, are established by evaluating num-expr,, num-expr, and num-expr,,
respectively, including, if necessary, conversion to the type of the do-variable
according to the rules for numeric conversion (Table 7.10). If num-expr, does not
appear, m, has a value of one. m, must not have a value of zero.

() The DO variable becomes defined with the value of the initial-parameter m,.
(3) The Iteration count is established and is the value of the expression
MAX((m, — m, + m,) / m,, 0)
Note that the iteration count is zero whenever:

m, > m, and my > 0, or
m < m, and m, < 0.

If loop-control takes the form scalar-int-expr TIMES, the scalar-int-expr is evaluated. If the
resulting value is nonnegative, it becomes the iteration count; otherwise, the iteration count
is zero.

At the completion of the execution of the DO statement, the execution cycle begins.

8.1.4.4.2 The Execution Cycle. The execution cycle of a DO construct consists of the
following steps performed in sequence:

(1) The iteration count, if any, is tested. If the iteration count is zero, the do-construct
becomes inactive. If, as a result, all of the do-constructs sharing the do-term-stmt or continue-stmt are
inactive, normal execution continues with execution of the next executable construct following the do-term-
stmt or continue-stmt. However, if some of the DO constructs sharing the do-term-stmt or continue-stmt are
active, execution continues with step (3) of the execution cycle of the active DO construct whose DO state-
ment was most recently executed.

(2) If the iteration count is nonzero, the range of the DO construct is executed.

(3) The iteration count, if any, is decremented by one. The do-variable, if any, is
incremented by the value of the incrementation parameter m,.

(4) This cycle is executed repeatedly from step (1) until the loop is terminated.

Except for the incrementation of the DO variable that occurs in step (3), the DO variable
must neither be redefined nor become undefined while the DO construct is active. Execu-
tion of the do-termination occurs as a result of the normal execution sequence or as a result
of a transfer of control from within the range of the DO construct. Unless execution of the do-term-
stmt, if any, results in a transfer of control, execution continues with step (3) of the execution cycle.

8.1.4.4.3 Cycle Interruption. Execution of a CYCLE statement that belongs to a DO con-
struct causes immediate execution of step (3) of the current execution cycle of that DO con-
struct.

8.1.4.4.4 Loop Termination. The execution of the loop is complete when one of the fol-
lowing conditions occurs:

(1) The iteration count, tested during step (1) of the execution cycle, is determined to
be zero.

(2) An EXIT statement that belongs to this DO construct, or to a DO construct that
contains this one, is executed.

Version 99 1986 March Page 8-7

EXECUTION CONTROL

10

15

20

25

30

35

45

X3J3/58

(38) A CYCLE statement that belongs to a DO construct that contains this one is exe-

cuted.

(4 A RETURN statement within the range is executed.

(5) Control is transferred outside the range by the execution of a statement that
causes a transfer of control.

(6) A STOP statement anywhere in the program is executed, or execution is termi-
nated for any other reason.

8.1.4.5 Examples of DO Constructs. Example 1:

DO

IF (X .GT. Y) THEN

Z=X
EXIT
END IF
CALL NEWX (X)
END DO

Example 2:

SuiM=0

READ *, N

DO (N TIMES)
READ *, P, Q

CALL CALCULATE (P, Q, R)

SUM = SUM + R

IF (SUM .GT. SMAX) EXIT

END DO

After execution of the above program fragment, | = 11,J = 10, K = 6,L = §, and N =

50.
Example 3:

N=0
DO

-

1, 10

SLH

I
K=5,1
L=K

N=N+1
END DO
END DO

After execution of the above program fragment, 1=11, J=10, K=5, N=0. L is not defined.

Example 4:
N=0

VERSION 99

1986 MARCH

PAGE 8-8

EXECUTION CONTROL X3J3/S8

=1
DO100K=1,5
. L=K
5 100 N=N+1
After execution of the above statements, | = 11,J = 10, K = 6, L = 5, and N = 50.
Example 5:
=0
D0200I =1, 10
10 J =1
DO 200 K =5, 1
L=K
200 N=N+1

After execution of the above statements | = 11,J = 10, K = 5, N = 0. L is not defined.

15 8.1.5 ENABLE Construct. The ENABLE construct permits control of the execution
sequence when it is desirable to check for exceptional conditions. An exceptional condition
represents an event that is either intrinsically defined or user defined. When enabled, a
condition may be signaled (set on, explicitly or implicitly) when the associated event occurs.
Signaling a condition causes a transfer of control to a sequence of statements called a con-

20 dition handler.

8.1.5.1 Form of the ENABLE Construct.

R825 enable-construct is enable-stmt
block
[handle-stmt
25 block]...
end-enable-stmt

R826 enable-stmt is [enable-construct-name : | ENABLE [(condition-name-list) |

R827 handle-stmt is HANDLE (condition-name-list)
or HANDLE (*)

30 R828 end-enable-stmt is END ENABLE [enable-construct-name]

Constraint: A condition-name must not appear more than once in a single condition-name-
list.

Constraint: A condition-name appearing in an enable-stmt or handle-stmt must not be a
dummy argument.

35 Constraint: HANDLE (*) may appear at most once in an ENABLE construct.

Constraint: [|f an enable-construct-name is present, the same name must be specified on
both the enable-stmt and the corresponding end-enable-stmt.

The block immediately following the ENABLE statement is the ENABLE block. Each block
following a HANDLE statement is called a HANDLE block.

40 A condition may be signaled explicitly by a SIGNAL statement.

R829 signal-stmt Is SIGNAL (condition-name)
or SIGNAL (*)

Constraint: SIGNAL (*) is permitted only in a HANDLE block.

Version 99 1986 March Page 8-9

EXECUTION CONTROL X3J3/S8

10

15

20

25

30

35

40

45

The blocks in an ENABLE construct may contain SIGNAL statements.

8.1.5.2 Execution of an ENABLE Construct. Upon execution of an ENABLE construct,
first the specified conditions are enabled and then the ENABLE block is executed. If none
of the enabled conditions is signaled, either by the processor or explicitly by a SIGNAL
statement, the execution of the construct is complete when the execution of the block is
complete.

8.1.5.2.1 Condition Enabling. Conditions are explicitly enabled by an ENABLE statement.
Intrinsic conditions (8.1.5.4) also may be enabled by the processor.

All conditions that are enabled prior to an ENABLE statement remain enabled throughout the
ENABLE construct. Conditions in the condition name list of the ENABLE statement are ena-
bled only within the ENABLE construct.

8.1.5.2.2 Condition Signaling. Conditions may be signaled implicitly by the processor or
explicitly by a SIGNAL statement.

The intrinsic conditions, if they are enabled, are signaled by the processor whenever the
events they represent occur.

A condition is signaled indeterminately if it is detected during expression evaluation or
assignment. An indeterminately signaled condition affects entities in the innermost ENABLE
construct or program unit that contains the operation causing the signal (8.1.5.2). If circum-
stances are such that two independent operations could each signal a condition indetermi-
nately in the same block, the condition that serves as the basis for transfer of control is proc-
essor dependent.

A condition is signaled determinately if it is detected in any other way. A determinately sig-
naled condition can affect only entities in the statement in which the condition is detected
(8.1.5.3).

Execution of a SIGNAL statement signals determinately the condition indicated by the condi-
tion name that appears in the statement. If the SIGNAL statement appears in a HANDLE
block and the condition name is specified by #*, the condition signaled is the condition that
caused the transfer to the block. Signaling a dummy condition is equivalent to signaling the
corresponding actual argument. A condition need not be enabled to be signaled explicitly.

8.1.5.2.3 Condition Handling. If a condition is signaled in an ENABLE block and the
ENABLE construct contains a HANDLE block for that condition, the ENABLE construct is said
to supply the handler for that condition. An ENABLE construct never supplies a handler for
a condition detected in one of its handlers. The block following a HANDLE (*) statement is
the default handler for that ENABLE construct. It handles for all conditions not otherwise
handled explicitly in that ENABLE construct.

When a condition is signaled, control is transferred to the HANDLE block, supplied by the
ENABLE construct in which the condition was enabled.

Execution of the HANDLE block completes the execution of the ENABLE construct.

If a condition is signaled but no handler is supplied, and the program unit is not a main pro-
gram, the condition is propagated. If the current program unit is a function or subroutine,
the condition is signaled in the invoking program unit. If the current program unit is a func-
tion or assignment subroutine (12.5.2.3), the condition is signaled indeterminately in the
innermost ENABLE block or program unit invoking the current program unit. If the current
program unit is a subroutine other than an assignment subroutine, the condition is signaled
determinately in the statement invoking the current program unit.

Version 99 1986 March Page 8-10

EXECUTION CONTROL X3J3/S8

If no handler exists for a signaled condition, program execution is terminated.

8.1.5.3 Effects of Signaling on Definition. The signaling of a condition may cause enti-
ties to become undefined. When a condition is signaled determinately in a statement, the
entities affected are those whose definition status could have been affected by the state-

5 ment had no condition been signaled. When a condition is signaled indeterminately in a
block, the entities affected are those whose definition status has been affected or could
have been affected by statements in the block had no condition been signaled.
8.1.5.4 Intrinsic Conditions. A processor must be able to detect the following list of
intrinsic conditions:

10 (1) NUMERIC_ERROR. This condition occurs when the processor is unable to pro-
duce an acceptable result for an intrinsic numeric operation, either because the
result is mathematically undefined or because the processor has no adequate rep-
resentation for the mathematical result.

(2) BOUND__ERROR. This condition occurs when an array subscript, array section

15 subscript, or substring range expression violates its bounds. Note that this does
not include violations of the requirements derived from the size of an assumed-
size array.

(3) 1O0_ERROR. This condition occurs when an error occurs in an input/output state-
ment containing no IOSTAT = or ERR = specifier.

20 (4) END_OF__FILE. This condition occurs when an end-of-file condition (9.422) is
encountered in an input statement containing no IOSTAT= or END = specifier.

(5) ALLOCATION_ERROR. This condition occurs when the processor is unable to
perform an allocation requested by an ALLOCATE statement (6.2.1).
8.1.5.5 Examples of ENABLE Constructs. Example 1:
25 IO CHECK: ENABLE (IO ERROR, END_OF FILE)
READ (*, '(IS)") I
HANDLE (END_OF FILE)
30 I1=-
HANDLE (I0_ERROR)
I=0
END ENABLE I0_CHECK
35 Example 2:
ENABLE (SINGULARITY_ERROR)
DO (5 TIMES)
CALL MAT_INV (MATRIX, VMATRIX, SDET, DONE)
40 IF (DONE) EXIT
| RESCALE PROBLEM AND TRY AGAIN
END DO
IF (.NOT. DONE) SIGNAL (SINGULARITY_ERROR)
VERSION 99 1986 MARCH PAGE 8-11

EXECUTION CONTROL X3J3/S8

10

15

20

25

30

35

40

45

HANDLE (SINGULARITY_ERROR)
WRITE (3, *) ''CANNOT INVERT MATRIX
sToP

END ENABLE

CONTAINS
REAL FUNCTION DETERMINANT (X, N)
REAL X (N, N)

IF (DIAG == 0.0) SIGNAL (SINGULARITY_ERROR)
END FUNCTION DETERMINANT

SUBROUTINE MAT_INV (MAT, INV, DET)
FLAG = .TRUE.
ENABLE (NUMERIC_ERROR)

DET = DETERMINANT (MAT, N)

HANDLE (NUMERIC_ERROR)
HANDLE (SINGULARITY_ERROR)
INV = 0.0
DET = 0.0
FLAG = .FALSE.
END ENABLE
END SUBROUTINE MAT_INV
END

When SINGULARITY_ERROR is signaled in DETERMINANT, the signal is propagated to
MAT__INV, which contains the handler for that condition. When the same condition is sig-
naled in the main program, the handler in the main program is executed.

8.2 Branching. Branching is used to alter the normal execution sequence. A branch
causes a transfer of control from one statement in a program unit to a labeled branch target
statement in the same program unit. A branch target statement is an action-stmt, an end-
program-stmt, an end-function-stmt, an end-subroutine-stmt, an if-then-stmt, an end-if-stmt, a
select-stmt, an end-select-stmt, a do-stmt, a do-termination, an enable-stmt, an end-enable-
stmt, or a where-construct-stmt.

It is permissible to branch to an END SELECT statement only from within its CASE con-
struct.

It is permissible to branch to a DO termination only from within its DO construct.

It is permissible to branch to an END ENABLE statement only from within its ENABLE con-
struct.

8.2.1 Statement Labels. Statement labels provide a means of referring to individual
statements. Any statement may be identified with a label, but only branch target statements,
FORMAT statements, and DO terminations may be referred to by the use of statement
labels (3.3.3).

Version 99 1986 March Page 8-12

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

8.2.2 GO TO Statement.
R830 goto-stmt is GO TO /abel

Constraint: /abel must be the statement label of a branch-target that appears in the same
program unit as the go-to-stmt.

Execution of a GO TO statement causes a transfer of control so that the branch target
identified by the label is executed next.

8.2.3 Computed GO TO Statement.
R831 computed-goto-stmt is GO TO (fabellist) [,] scalar-int-expr

Constraint: Each /abel in label-list must be the statement label of a branch target that appears in the same program
unit as the computed-goto-stmt.

The same statement label may appear more than once in a label list.

Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value is i such that
1 < I = n where n is the number of labels in labelfist, a transfer of control occurs so that the next statement executed
is the one identified by the ith label in the list of labels. If i is less than 1 or greater than n, the execution sequence con-
tinues as though a CONTINUE statement were executed.

8.2.4 ASSIGN and Assighed GO TO Statement.
R832 assign-stmt Is ASSIGN fabel TO scalar-int-variable
Constraint: Jabel must be the statement label of a branch target or a format-stmt.

RB33 assigned-goto-stmt is GO TO scalar-int-variable ({, | (label-list) |

Constraint: Each label in labelist must be the statement label of a branch target that appears in the same program
unit as the assigned-goto-stmt.

Execution of an ASSIGN statement causes a statement label to be assigned to an integer variable. The statement label
must be the label of a statement that appears in the same program unit as the ASSIGN statement.

Execution of an ASSIGN statement is the only way that a variable may be defined with a statement label value.

When an assigned GO TO statement is executed, its integer variable must be defined with the label of a branch target.
When an input/output statement containing the integer variable as a format identifier (9.4.1.1) is executed, the integer
variable must be defined with the label of a FORMAT statement. While defined with a statement label value, the integer
variable must not be referenced in any other context.

An integer variable defined with a statement label value may be redefined with a statement label value or an integer
value.

At the time of execution of an assigned GO TO statement, the integer variable must be defined with the value of a state—
ment label of a branch target that appears in the same program unit. Note that the variable may be defined with a
statement label value only by an ASSIGN statement in the same program unit as the assigned GO TO statement.

The execution of the assigned GO TO statement causes a transter of control so that the branch target identified by the
statement label currently assigned to the integer variable is executed next.

I the parenthesized list is present, the statement label assigned to the integer variable must be one of the statement
labels in the list.

8.2.5 Arithmetic IF Statement.

R834 arithmetic-if-stmt is IF (scalar-numeric-expr) label, label, label
Constraint: Each Jabel must be the label of a branch target that appears in the same program unit as the
arithretic-if-stmt.

Version 99 1986 March Page 8-13

EXECUTION CONTROL X3J3/58

10

15

20

Constraint: The scalar-numeric-expr must not be a complex expression.
The same label may appear more than once in one arithmetic IF statement.

Execution of an arithmelic IF statement causes evaluation of the numeric expression followed by a transfer of control.
The branch target identified by the first label, the second lakel, or the third label is executed next as the value of the
numeric expression is less than zero, equal to zero, or greater than zero, respectively.

8.3 CONTINUE Statement.
Execution of a CONTINUE statement has no effect.
R835 continue-stmt is CONTINUE

CONTINUE statements are usually identified by labels that also appear in control statements,
such as the DO statement.

8.4 STOP Statement.
R836 stop-simt Is STOP [access-code]

R837 access-code is char-constant
or digit [digit [digit [digit [digit]]]]

Execution of a STOP statement causes termination of execution of the executable program.
At the time of termination, the access code if any, is accessible. Leading zero digits are
significant.

8.5 PAUSE Statement.
R838 pause-stmt is PAUSE [access-code |

Execution of a PAUSE statement causes a suspension of execution of the executable program. Execution must be
resumable. At the time of suspension of execution, the access code is accessible. Resumption of execution is not under
control of the program. If execution is resumed, the exscution sequence continues as though a CONTINUE statement
were executed. Leading zero digits in the access code are significant.

Version 99 1986 March Page 8-14

10

15

20

25

30

35

40

9 INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from external media to internal
storage or from an internal file to internal storage. This process is called reading. Output
statements provide the means of transferring data from internal storage to external media or
from internal storage to an internal file. This process is called writing. Some input/output
statements specify that editing of the data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements to
manipulate the external medium, or to describe or inquire about the properties of the con-
nection to the external medium.

The input/output statements are the OPEN, CLOSE, READ, WRITE, PRINT, BACKSPACE,
ENDFILE, REWIND, and INQUIRE statements.

The READ statement is a data transfer Input statement. The WRITE statement and the
PRINT statement are data transfer output statements. The OPEN statement and the
CLOSE statement are file connection statements. The INQUIRE statement is a file inquiry
statement. The BACKSPACE, ENDFILE, and REWIND statements are file positioning
statements.

9.1 Records. A record is a sequence of values or a sequence of characters. For exam-
ple, a line on a terminal is usually considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are three kinds of records:

(1) Formatted
(@ Unformatted
(3) Endfile

9.1.1 Formatted Record. A formatted record consists of a sequence of characters that
are capable of representation in the processor. The length of a formatted record is mea-
sured in characters and depends primarily on the number of characters put into the record
when it is written. However, it may depend on the processor and the external medium. The
length may be zero. Formatted records may be read or written only by formatted
input/output statements.

Formatted records may be prepared by means other than Fortran; for example, by some
manual input device.

9.1.2 Unformatted Record. An unformatted record consists of a sequence of values in a
processor-dependent form and may contain both character and noncharacter data or may
contain no data. The length of an unformatted record is measured in processor-dependent
units and depends on the input/output list (3.4.2) used when it is written, as well as on the
processor and the external medium. The length may be zero.

Unformatted records may be read or written only by unformatted input/output statements.

9.1.3 Endfile Record. An endfile record is written explicitly by the ENDFILE statement.
The file must be connected for sequential access. An endfile record is written implicitly to a
file connected for sequential access when the last operation on the file is an output state-
ment other than the ENDFILE statement, and:

(1) A REWIND or BACKSPACE statement references the unit, or

Version 99 1986 March Page 9-1

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

(2) The unit (file) is closed, either explicitly by a CLOSE statement or implicitly by a
program termination not caused by an error condition.

An endfile record may occur only as the last record of a file. An endfile record does not
have a length property.

9.2 Files. A file is a sequence of records.
There are two kinds of files:

(1) External

(2) Internal

9.2.1 External Flles. An external file is any file that exists in a medium external to the
executable program.

At any given time, there is a processor-determined set of allowed access methods, a
processor-determined set of allowed forms, and a processor-determined set of allowed
record lengths for a file.

A file may have a name; a file that has a name is called a named file. The name of a
named file is a character string. The set of allowable names is processor dependent and
may be empty.

An external file that is connected to a unit has a position property (9.2.1.3).

9.2.1.1 File Existence. At any given time, there is a processor-determined set of external
files that are said to exist for an executable program. A file may be known to the processor,
yet not exist for an executable program at a particular time. For example, there may be
security reasons that prevent a file from existing for an executable program. A file may exist
and contain no records; an example is a newly created file not yet written.

To create a flle means to cause a file to exist that did not previously exist. To delete a file
means to terminate the existence of the file.

All input/output statements may refer to files that exist. An INQUIRE, OPEN, CLOSE,
WRITE, PRINT, REWIND, or ENDFILE statement may also refer to a file that does not exist.

9.2.1.2 File Access. There are two methods of accessing the records of an external file,
sequential and direct. Some files may have more than one allowed access method; other
files may be restricted to one access method. For example, a processor may allow only
sequential access to a file on magnetic tape. Thus, the set of allowed access methods
depends on the file and the processor.

The method of accessing the file is determined when the file is connected to a unit (9.3.2).

9.2.1.2.1 Sequentlal Access. When connected for sequential access, an external file has
the following properties:

(1) The order of the records is the order in which they were written if the direct
access method is not a member of the set of allowed access methods for the file.
If the direct access method is also a member of the set of allowed access meth-
ods for the file, the order of the records is the same as that specified for direct
access. In this case, the first record accessed by sequential access is the record
whose record number is 1 for direct access. The second record accessed by
sequential access is the record whose record number is 2 for direct access, etc.
A record that has not been written since the file was created must not be read.

Version 99 1986 March Page 9-2

INPUT/OUTPUT STATEMENTS X3J3/S8

5

10

15

20

25

30

35

40

(2) The records of the file are either all formatted or all unformatted, except that the
last record of the file must be an endfile record.

(3) The records of the file must not be read or written by direct access input/output
statements.

9.2.1.2.2 Direct Access. When connected for direct access, an external file has the fol-
lowing properties:

(1) Each record of the file is uniquely identified by a positive integer called the record
number. The record number of a record is specified when the record is written.
Once established, the record number of a record can never be changed. Note
that a record may not be deleted; however, a record may be rewritten. The order
of the records is the order of their record numbers. The records may be read or
written in any order.

(2) The records of the file are either all formatted or all unformatted. If the sequential
access method is also a member of the set of allowed access methods for the file,
its endfile record, if any, is not considered to be part of the file while it is con-
nected for direct access. If the sequential access method is not a member of the
set of allowed access methods for the file, the file must not contain an endfile
record.

(3) Reading and writing records is accomplished only by direct access input/output
statements.

(4) All records of the file have the same length.

(5) Records need not be read or written in the order of their record numbers. Any
record may be written into the file while it is connected to a unit. For example, it
is permissible to write record 3, even though records 1 and 2 have not been writ-
ten. Any record may be read from the file while it is connected to a unit, provided
that the record has been written since the file was created.

(6) The records of the file must not be read or written using list-directed (10.8) or
name-directed formatting (10.9).

9.2,1.3 File Position. Execution of certain input/output statements affects the position of a
file. Certain circumstances can cause the position of a file to become indeterminate.

The initial point of a file is the position just before the first record. The terminal point is
the position just after the last record.

If a file is positioned within a record, that record is the current record; otherwise, there is no
current record.

Let n be the number of records in the file. If 1 < i < n and a file is positioned within the
ith record or between the (i — 1)th record and the ith record, the (i — 1)th record is the pre-
ceding record. If n = 1 and the file is positioned at its terminal point, the preceding record
is the nth and last record. If n = 0 or if a file is positioned at its initial point or within the
first record, there is no preceding record.

1 < i < nand a file is positioned within the ith record or between the ith and (i + 1)th
record, the (/ + 1)th record is the next record. If n = 1 and the file is positioned at its ini-
tial point, the first record is the next record. If n = 0 or if a file is positioned at its terminal
point or within the nth (last) record, there is no next record.

Version 99 1986 March Page 9-3

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.2.1.3.1 File Position Prior to Data Transfer. The positioning of the file prior to data
transfer depends on the method of access: sequential or direct.

For sequential access on input, the file is positioned at the beginning of the next record.
This record becomes the current record. On output, a new record is created and becomes
the last record of the file.

For direct access, the file is positioned at the beginning of the record specified by the record
specifier. This record becomes the current record.

If the file contains an endfile record, the file must not be positioned after the endfile record
prior to data transfer.

9.2.1.3.2 File Position After Data Transfer. If an end-of-file condition exists as a result of
reading an endfile record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the file is positioned after the last record
read or written and that record becomes the preceding record. A record written on a file
connected for sequential access becomes the last record of the file.

If the file is positioned after the endfile record, execution of a data transfer input/output
statement is prohibited. However, a REWIND or BACKSPACE statement may be used to
reposition the file.

If an error condition exists, the position of the file is indeterminate.

9.2.2 Inteinal Files. Internal files provide a means of transferring and converting data from
internal storage to internal storage.

9.2.2.1 Internal File Properties. An internal file has the following properties:

(1) The file is a character variable other than an array section with any vector sub-
scripts.

(2) A record of an internal file is a scalar character variable.

(3) If the file is a scalar character variable, it consists of a single record whose length
is the same as the length of the scalar character variable. If the file is a character
array or array section, it is treated as a sequence of character array elements.
Each array element, if any, is a record of the file. The ordering of the records of
the file is the same as the ordering of the array elements in the array (6.2.4.2) or
the array section (6.2.4.3). Every record of the file has the same length, which is
the length of an array element in the array.

(4) A record of the internal file becomes defined by writing the record. If the number
of characters written in a record is less than the length of the record, the remain-
ing portion of the record is filled with blanks. If the number of characters to be
written is greater than the length of the record, the effect is as though characters
equal to the length are written and remaining characters truncated.

(5) A record may be read only if the record is defined.

(6) A record of an internal file may become defined (or undefined) by means other
than an output statement. For example, the character variable may become
defined by a character assignment statement.

(7) An internal file is always positioned at the beginning of the first record prior to
data transfer.

Version 99 1986 March Page 9-4

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

9.2.2.2 Internal File Restrictions. An internal file has the following restrictions:

(1) Reading and writing records must be accomplished only by sequential access for-
matted input/output statements that do not specify name-directed formatting.

() An internal file must not be specified in a file connection statement, a file position-
ing statement, or a file inquiry statement.

9.3 File Connection. A unit, specified by an jo-unit, provides a means for referring to a
file.

R901 jo-unit is external-file-unit
or *
or internal-file-unit
RO02 external-file-unit Is scalar-int-expr
RO03 internal-flle-unit is char-variable

A scalar-int-expr that identifies an external file unit must be zero or positive.

The jo-unit in a file positioning statement, a file connection statement, or a file inquiry state-
ment must not be an asterisk or an internal-file-unit.

The external unit identified by the value of scalar-int-expr is the same external unit in all pro-
gram units of the executable program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N=6
REWIND N

The value 6 used in both program units identifies the same external unit.

An asterisk identifies a particular processor-dependent external unit that is preconnected for
formatted sequential access.

9.3.1 Unit Existence. At any given time, there is a processor-determined set of units that
are said to exist for an executable program.

All input/output statements may refer to units that exist. The INQUIRE statement and the
CLOSE statement also may refer to units that do not exist.

9.3.2 Connection of a File to a Unit. A unit has a property of being connected or not
connected. If connected, it refers to a file. A unit may become connected by preconnection
or by the execution of an OPEN statement. The property of connection is symmetric; if a
unit is connected to a file, the file is connected to the unit.

All input/output statements except an OPEN, a CLOSE, or an INQUIRE statement must ref-
erence a unit that is connected to a file and thereby make use of or affect that file.

A file may be connected and not exist. An example is a preconnected new file.

A unit must not be connected to more than one file at the same time, and a file must not be
connected to more than one unit at the same time. However, means are provided to
change the status of a unit and to connect a unit to a different file.

Version 99 1986 March Page 9-5

INPUT/OUTPUT STATEMENTS X3J3/S8

After a unit has been disconnected by the execution of a CLOSE statement, it may be con-
nected again within the same executable program to the same flle or to a different flle.
After a file has been disconnected by the execution of a CLOSE statement, it may be con-
nected again within the same executable program to the same unit or to a different unit.

5 Note, however, that the only means of referencing a file that has been disconnected is by
the appearance of its name in an OPEN or INQUIRE statement. There may be no means of
reconnecting an unnamed file once it is disconnected.

9.3.3 Preconnection. Preconnection means that the unit is connected to a file at the
beginning of execution of the executable program and therefore it may be specified in
10 input/output statements without the prior execution of an OPEN statement.

9.3.4 The OPEN Statement. The OPEN statement may be used to connect an existing
file to a unit, create a file that is preconnected, create a file and connect it to a unit, or
change certain specifiers of a connection between a file and a unit.

An external unit may be connected by an OPEN statement in any program unit of an execut-
15 able program and, once connected, a reference to it may appear in any program unit of the
executable program.

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is
permitted. If the FILE= specifier is not included in an OPEN statement, the file to be con-
nected to the unit is the same as the file to which the unit is connected.

20 If the file to be connected to the unit does not exist but is the same as the file to which the
unit is preconnected, the properties specified by an OPEN statement become a part of the
connection.

If the file to be connected to the unit is not the same as the file to which the unit is con-
nected, the effect is as if a CLOSE statement without a STATUS = specifier had been exe-
25 cuted for the unit immediately prior to the execution of an OPEN statement.

If the file to be connected to the unit is the same as the file to which the unit is already con-
nected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT = specifiers may have a
value different from the one currently in effect. Execution of an OPEN statement causes the
new value of the BLANK=, DELIM=, and PAD = specifiers to be in effect. The position of

30 the file is unaffected. The values of specifiers other than BLANK= , DELIM= , PAD=
ERR= , and IOSTAT = remain in effect.

If a file is already connected to a unit, execution of an OPEN statement on that file and a
different unit is not permitted.

R904 open-stmt is OPEN (connect-spec-list)
35 R905 connect-spec is [UNIT =] external-file-unit
or |IOSTAT = jostat-variable
or ERR= /abel

or FILE= scalar-char-expr

or STATUS = scalar-char-expr
40 or ACCESS = scalar-char-expr

or FORM = scalar-char-expr

or RECL = scalar-int-expr

or BLANK = scalar-char-expr

or POSITION = scalar-char-expr
45 or ACTION = scalar-char-expr

or DELIM = scalar-char-expr

or PAD= scalar-char-expr

Version 99 1986 March Page 9-6

INPUT/QUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

Constraint: Each specifier must not appear more than once in a given open-stmt; the
UNIT = specifier must appear.

Constraint: If the STATUS = specifier is 'OLD’ or 'NEW’, the FILE = specifier must be pre-
sent.

Constraint: If the STATUS = specifier is 'SCRATCH’, the FILE = specifier must be absent.

Constraint: The RECL = specifier must be given when the ACCESS = specifier evaluates
to DIRECT; otherwise, it must be omitted.

A specifier that requires a scalar-char-expr may have a limited list of character values.
These values are listed for each such specifier. Any trailing blanks are ignored. If a proc-
essor is capable of representing letters in both upper and lower case, the value specified is
as if all letters were in upper case. Some specifiers have an assumed value if the specifier
is omitted.

The IOSTAT= specifier and ERR= specifier are described in Sections 9.4.1.4 and 9.4.1.5,
respectively.

9.3.4.1 FILE= Specifier in the OPEN Statement. The value of the FILE = specifier is the
name of the file to be connected to the specified unit. The file name must be a name that
is allowed by the processor. If this specifier is omitted and the unit is not connected to a
file, it may become connected to a processor-determined file.

9.3.4.2 STATUS= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to 'OLD’, 'NEW’, 'SCRATCH’, or 'UNKNOWN’. If OLD is specified, the file must exist. |f
NEW is specified, the file must not exist.

Successful execution of an OPEN statement with NEW specified creates the file and
changes the status to OLD. If SCRATCH is specified with an unnamed file, the file is con-
nected to the specified unit for use by the executable program but is deleted at the execu-
tion of a CLOSE statement referring to the same unit or at the termination of the executable
program. SCRATCH must not be specified with a named file. If UNKNOWN is specified,
the status is processor dependent. If this specifier is omitted, a value of UNKNOWN is
assumed.

9.3.4.3 ACCESS= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to 'SEQUENTIAL’' or 'DIRECT’. The ACCESS = specifier specifies the access method for
the connection of the file as being sequential or direct. If this specifier is omitted, the
assumed value is SEQUENTIAL. For an existing file, the specified access method must be
included in the set of allowed access methods for the file. For a new file, the processor
creates the file with a set of allowed access methods that includes the specified method.

9.3.4.4 FORM= Specifier in the OPEN Statement. The scalar-char-expr must evaluate to
'FORMATTED’ or 'UNFORMATTED’. The FORM= specifier determines whether the file is
being connected for formatted or unformatted input/output. If the FORM = specifier is omit-
ted, a value of UNFORMATTED is assumed if the file is being connected for direct access,
and a value of FORMATTED is assumed if the file is being connected for sequential access.
For an existing file, the specified form must be included in the set of allowed forms for the
file. For a new file, the processor creates the file with a set of allowed forms that includes
the specified form.

9.3.4.5 RECL= Specifier in the OPEN Statement. The value of the RECL= specifier
must be positive.

It specifies the length of each record in a file being connected for direct access. If the file is
being connected for formatted input/output, the length is the number of characters. If the

Version 99 1986 March Page 9-7

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

file is being connected for unformatted input/output, the length is measured in processor-
dependent units. For an existing file, the value of the RECL = specifler must be included in
the set of allowed record lengths for the file. For a new file, the processor creates the file
with a set of allowed record lengths that includes the specified value.

9.3.4.6 BLANK= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to 'NULL’ or "ZERO’. The BLANK= specifier is permitted only for a file being connected for
formatted input/output. If NULL is specified, all blank characters in numeric formatted input
fields on the specified unit are ignored, except that a field of all blanks has a value of zero.
If ZERO is specified, all blanks other than leading blanks are treated as zeros. If the
BLANK = specifier is omitted, a value of NULL is assumed.

9.3.4.7 POSITION= Specifier in the OPEN Statemant. The scalar-char-expr must evalu-
ate to 'ASIS’, 'REWIND’, or '"APPEND’. ASIS causes the file to be opened without changing
its position. REWIND paositions the file at its initial point. APPEND positions a file that exists
at its terminal point such that the endfile record is the next record. A file that does not exist
(a NEW file, either specified explicitly or by default) is positioned at its initial point. The con-
nection must be for sequential access. If this specifier is omitted, the value ASIS is
assumed.

9.3.4.8 ACTION= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to 'READ’, 'WRITE’, or 'READ/WRITE’. READ specifies that the WRITE, PRINT, and
ENDFILE statements may not refer to this connection. WRITE specifies that READ state-
ments may not refer to this connection, READ/WRITE permits any 1/0 statements to refer to
this connection. If this specifier is omitted, the value READ/WRITE is assumed.

9.3.4.9 DELIM = Specifier in the OPEN Statement. The scalar-char-expr must evaluate to
’APOSTROPHE’, 'QUOTE’, or 'NONE’. If APOSTROPHE is specified, the apostrophe will be
used to delimit character constants written with list-directed or name-directed formatting and
all internal apostrophes will be doubled. If QUOTE is specified, the quotation mark will be
used to delimit character constants written with list-directed or name-directed formatting and
all internal quotation marks will be doubled. If the value of this specifier is NONE, the char-
acter constant when written will not be delimited by apostrophes or quotation marks. If this
specifier is omitted, a value of NONE is assumed. This specifier is permitted only for a file
being connected for formatted input/output. This specifier is ignored during input of a for-
matted record.

9.3.4.10 PAD= Specifier in the OPEN Statement. The scalar-char-expr must evaluate to
'YES' or 'NO’. If YES is specified, a formatted input record is logically padded with blanks
when an input list is specified and the format specification requires more data from a record
than the record contains. If NO is specified, the input list and the format specification must
not require more characters from a record than the record contains. If this specifier is omit-
ted, a value of NO is assumed.

9.3.5 The CLOSE Statement. The CLOSE statement is used to terminate the connection
of a particular file to a unit.

R906 close-stmt is CLOSE (close-spec-list)

R907 close-spec is [UNIT =] external-file-unit
or |OSTAT = iostat-variable
or ERR= /abel
or STATUS = scalar-char-expr

Version 99 1986 March Page 9-8

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

Constraint: A given specifier must not appear more than once in a given close-stmt; the
unit specifier must appear.

Constraint: The io-unit must be an external-file-unit.

The IOSTAT = specifier and ERR = specifier are described in Sections 9.4.1.4 and 9.4.1.5,
respectively.

A specifier that requires a scalar-char-expr may have a limited list of character values.
These values are listed for each such specifier. Any trailing blanks are ignored. If a proc-
essor is capable of representing letters in both upper and lower case, the value specified is
as if all letters were in upper case. Some specifiers have an assumed value if the specifier
is omitted.

9.3.5.1 STATUS= Specifier in the CLOSE Statement. The scalar-char-expr must evalu-
ate to 'KEEP’ or 'DELETE’. The STATUS= specifier determines the disposition of the file
that is connected to the specified unit. KEEP must not be specified for a file whose status
prior to execution of a CLOSE statement is SCRATCH. If KEEP is specified for a file that
exists, the file continues to exist after the execution of a CLOSE statement. If KEEP is
specified for a file that does not exist, the file will not exist after the execution of a CLOSE
statement. If DELETE is specified, the file will not exist after the execution of a CLOSE
statement. If this specifier is omitted, the assumed value is KEEP, unless the file status
prior to execution of the CLOSE statement is SCRATCH, in which case the assumed value
is DELETE.

Execution of a CLOSE statement that refers to a unit may occur in any program unit of an
executable program and need not occur in the same program unit as the execution of an
OPEN statement referring to that unit.

Execution of a CLOSE statement specifying a unit that does not exist or has no file con-
nected to it is permitted and affects no file.

After a unit has been disconnected by execution of a CLOSE statement, it may be con-
nected again within the same executable program, either to the same file or to a different
file. After a file has been disconnected by execution of a CLOSE statement, it may be con-
nected again within the same executable program, either to the same unit or to a different
unit, provided that the file still exists.

At termination of execution of an executable program for reasons other than an error condi-
tion, all units that are connected are closed. Each unit is closed with status KEEP unless
the file status prior to termination of execution was SCRATCH, in which case the unit is
closed with status DELETE. Note that the effect is as though a CLOSE statement without a
STATUS = specifier were executed on each connected unit.

9.4 Data Transfer Statements. The READ statement is the data transfer input state-
ment. The WRITE statement and PRINT statement are the data transfer output statements.

Termination of an input/output data transfer statement occurs when any of the following con-
ditions are met:

(1) All elements of the input-item-list or output-item-list have been read or written, with
or without editing, to or from the specified file.

(2) An error condition is encountered.
(3) An end-of-file condition is encountered.

(4) An end-of-record mark (/) is encountered in the record being read during list-
directed or name-directed input.

Version 99 1986 March Page 9-9

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

R908 read-stmt is READ (io-control-spec-list) [input-item-list]
or READ format [, input-item-list |

R909 write-stmt Is WRITE (io-control-spec-list) [output-item-list]

R910 print-stmt is PRINT format [, output-item-list]

9.4.1 Control Information List. The jo-control-spec-list is a control information list that
includes:

(1) A reference to the source or destination of the data to be transferred
(2) Optional specification of editing processes
(3) Optional specification to identify a record
(4) Optional specification of exception handling
(5) Optional return of counts of values transmitted and values skipped
(6) Optional return of status

The control information list governs the data transfer.

R911 Jjo-control-spec is [UNIT =] io-unit
or [FMT =] format
or REC = scalar-int-expr
or PROMPT = scalar-char-expr
or IOSTAT = iostat-variable
or ERR= /abel
or END = label
or NULLS = scalar-int-variable
or VALUES = scalar-int-variable

Constraint: An jo-control-spec-list must contain exactly one jo-unit and may contain at most
one of each of the other specifiers.

Constraint: A NULLS = specifier must not appear in a write-stmt or print-stmt.

If the optional characters UNIT = are omitted from the unit specifier, the unit specifier must
be the first item in the control information list.

If the optional characters FMT= are omitted from the format specifier, the format specifier
must be the second item in the control information list and the first item must be the unit
specifier without the optional characters UNIT =.

If the unit specifier specifies an internal file, the io-control-spec-list must contain a format
other than ** and must not contain a REC = specifier.

9.4.1.1 Format Specifier.

R912 format Is char-expr
or label
or *
or %%
or scalar-int-variable

The label must be the statement label of a FORMAT statement.

The scalar-int-variable must have been assigned (8.2.4) the statement label of a FORMAT
statement that appears in the same program unit as the format.

Version 99 1986 March Page 9-10

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

The scalar-char-expr must evaluate to a character object that is a valid format item list (10.2).
Note that scalar-char-expr includes a character constant.

if the control information list contains a format, the statement is a formatted input/output
statement; otherwise, it is an unformatted input/output statement.

If format is *, the statement is a list-directed input/output statement. If format is **, the
statement is a name-directed input/output statement. A REC= specifier must not be pre-
sent when format is * or #*,

9.4.1.2 Record Number. The REC = specifier specifies the number of the record that is to
be read or written in a file connected for direct access. If the control information list con-
tains a REC = specifier, the statement is a direct access input/output statement an END=
specifier must not be present; otherwise, it is a sequential access input/output statement.

9.4.1.3 Prompt Specifier. For a formatted external READ statement, the scalar-char-
variable specified in the PROMPT = specifier is written to the connected unit without line
spacing following it. The input statement is then executed. |f the connection is to a device
that does not permit both input and output, the PROMPT= specifier is ignored. The
PROMPT + specifier is not permitted in a WRITE statement.

9.4.1.4 Input/Output Status.

R913 Jostat-variable Is scalar-int-variable

Execution of an input/output statement containing the IOSTAT= specifier causes iostat-
variable to become defined:

(1) With a zero value if neither an error condition nor an end-of-file condition is
encountered by the processor,

(2) With a processor-dependent positive integer value if an error condition is encoun-
tered, or

(3) With a processor-dependent negative integer value if an end-of-file condition is
encountered and no error condition is encountered. Note that this condition may
occur only during a sequential input statement.

Consider the example:

READ (FMT = "'(E8.3)", UNIT=3, IOSTAT = 10SS) X
IF (10SS < 0) THEN

| PERFORM END-OF-FILE PROCESSING ON THE FILE
| CONNECTED TO UNIT 3.

CALL END_PROCESSING

ELSE IF (I0SS > 0) THEN
| PERFORH ERROR PROCESSING
CALL ERROR_PROCESSING

END IF

Verslon 99 1986 March Page 9-11

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.4.1.5 Error Branch. If an input/output statement contains an ERR= specifier and the
processor encounters an error condition during execution of the statement:

(1) Execution of the input/output statement terminates,
(@) The position of the file specified in the input statement becomes indeterminate,

(3) If the input/output statement also contains an iostat-variable, the iostat-variable
becomes defined with a processor-dependent positive integer value, and

(4) Execution continues with the statement specified in the ERR= specifier. The
statement label must be in the same program unit as the input/output statement.

The statement label must be in the same program unit as the input/output statement.

9.4.1.6 End of File Branch. If an input statement contains an END= specifier and the
processor encounters an end-of-file condition and encounters no error condition during exe-
cution of the statement:

(1) Execution of the READ statement terminates,

(2 If the input statement also contains an IOSTAT= specifier, the iostat-variable
becomes defined with a processor-dependent negative integer value, and

(3) Execution continues with the statement specified in the END= specifier. The
statement label must be in the same program unit as the input/output statement.

In a WRITE statement, the control information list must not contain an END= specifier.
The statement label must be in the same program unit as the input/output statement.

9.4.1.7 Nulls Count. A null value is a value that has no effect on the definition status of
the corresponding input list item. If the input list item is defined, it retains its previous value:
if it is undefined, it remains undefined. A null value must not be used as either the real or
imaginary part of a complex constant, but a single null value may represent an entire com-
plex constant.

When an input statement terminates, the variable specified in the NULLS = specifier is
defined to be the count of the null values read by the input statement. The value of the
variable can be nonzero only for list-directed or name-directed input.

9.4.1.8 Values Count. When an input/output statement terminates, the variable specified
in the VALUES = specifier is defined to be the count of the number of values successfully
read or written, with or without editing, by the input/output statement.

Any null values are included in the count of values.

9.4.2 Data Transfer Input/Output List. An input/output list specifies the entities whose
values are transferred by a data transfer input/output statement.

R914 input-item Is variable
or io-implied-do
R915 output-item is expr
or io-implied-do
R916 io-implied-do is (io-implied-do-object-list , io-implied-do-control)
R917 io-implied-do-object Is input-item

or output-item
R918 Jjo-implied-do-control is scalar-numeric-expr , (]

Version 99 1986 March Page 9-12

INPUT/QUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

45

O scalar-numeric-expr , | scalar-numeric-expr]

Constraint: In an input-item-list, an io-implied-do-object must be an input-item. In an output-
item-list, an io-implied-do-object must be an output-item.

Constraint: An input-item must not appear as, nor be associated with, the do-variable of any
iosimplied-do that contains the input-item.

Constraint: The do-variable of an io-implied-do that is contained within another io-implied-do
must not appear as, nor be associated with, the do-variable of the containing
io-implied-do.

If an array name or array section name appears as an input/output list item, it is treated as
if all of the elements, if any, of the array or array section were specified in the order given
by the ordering of the array elements in the array (6.2.4.2) or the array section (6.2.4.3). The
name of an assumed-size dummy array must not appear as an input/output list tem. An input/output list for a
name-directed formatted data transfer input/output statement must not contain an io-implied-
do.

If the name of a derived-type object appears as an input/output list item, it is treated as if all
of the components of the object were specified in the same order as in the definition of the
derived type. Note that in the case of an input list item of a derived type having a variant
component, the selection of the set of components to correspond to the variant component
(4.4.1.2) is affected by the transmission of a value (other than a null value) to the tag compo-
nent. (See 9.4.3.4.)

Note that a constant, an expression involving operators or function references, or an expres-
sion enclosed in parentheses may appear as an output list item but must not appear as an
input list item.

An io-implied-do must not appear in the input/output list of a name-directed formatted data
transfer input/output statement.

9.4.2.1 Error and End-of-File Conditions. The set of input/output error conditions is proc-
essor dependent.

An end-of-file condition exists if either of the following events occurs:

(1) An endfile record is encountered during the reading of a file connected for
sequential access. In this case, the file is positioned after the endfile record.

(2) An attempt is made to read a record beyond the end of an internal file.

Note that an end-of-file condition can aoccur at the beginning of an input statement or within
a formatted input statement when more than one record is required by the interaction of the
input/output list and the format.

If an error condition occurs during execution of an input/output statement, execution of the
input/output statement terminates and the position of the file becomes indeterminate.

If an error condition or an end-of-file condition occurs during execution of a READ statement,
execution of the READ statement terminates. The VALUES = specifier, if any, is defined
with the count of values successfully read or written. Any remaining list items of the
input/output list are undefined. For any specific error condition, the number of values
defined is processor dependent. Note that for list-directed and name-directed input, some
elements of the input/output list may not have had their definition status changed due to null
values.

Let n be the value of the variable specified in a VALUES = specifier. If the nth value of an
input/output list, when related to the format list by the normal matching process, is in the
range of one or more io-implied-dos, the DO variable is defined with the count of values

Version 99 1986 March Page 9-13

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

successfully transferred for that io-implied-do. Any DO variable defined prior to the occur-
rence of the error condition in the matching process remains defined. Any remaining do-
variable in the input/output list are undsfined.

If an error condition occurs during execution of an input/output statement that contains nei-
ther an I0OSTAT = nor an ERR = specifier, or if an end-of-file condition occurs during execu-
tion of a READ statement that contains neither an lostat-variable nor an END = specifier, the
intrinsic condition IO_ERROR is signaled.

9.4.3 Execution of a Data Transfer Input/Output Statement. The effect of executing a
data transfer input/output statement must be as if the following operations were performed
in the order specified:

(1) Determine the direction of data transfer
(2) Identify the unit

(3) Establish the format if one is specified
(4) Position the file prior to data transfer

(5) Transfer data between the file and the entities specified by the input/output list (if
any)

(6) Position the file after data transfer

(7) Cause iostat-variable (if any) to become defined, and cause the variables in the
VALUES = and NULLS = specifiers, if specified, to become defined.

9.4.3.1 Direction of Data Transfer. Execution of a READ statement causes values to be
transferred from a file to the entities specified by the input list, if one is specified. Execution
of a WRITE or PRINT statement causes values to be transferred to a file from the entities
specified by the output list and format specification, if any. Execution of a WRITE or PRINT
statement for a file that does not exist creates the file unless an error condition occurs.

9.4.3.2 Identifying a Unit. A data transfer input/output statement that contains an
input/output control list includes a file unit specifier that identifies an external unit or an
internal file. A READ statement that does not contain an input/output control list specifies a
particular processor-determined unit, which is the same as the unit identified by * in a READ
statement that contains an input/output control list. The PRINT statement specifies some
other processor-determined unit, which is the same as the unit identified by * in a WRITE
statement. Thus, each data transfer input/output statement identifies an external unit or an
internal file.

The unit identified by a data transfer input/output statement must be connected to a file
when execution of the statement begins. Note that the file may be preconnected.

9.4.3.3 Establishing a Format. If the input/output control list contains * as a format, list-
directed formatting is established. If the format is **, name-directed formatting is estab-
lished.

Otherwise, the format specification identified by the format specifier is established. If the
format is an array, the effect is as if all elements of the array were concatenated in subscript
order value.

On output, if an internal file has been specified, a format specification that is in the file or is
associated with the file must not be specified.

Version 99 1986 March Page 9-14

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

9.4.3.4 Data Transfer. Data are transferred between records and entities specified by the
input/output list. The list items are processed in the order of the input/output list for all data
transfer input/output statements except name-directed formatted data transfer input state-
ments. The list items for a name-directed formatted data transfer input statement are pro-
cessed in the order of the entities specified within the input records.

All values needed to determine which entities are specified by an input/output list item are
determined at the beginning of the processing of that item.

All values are transmitted to or from the entities specified by a list item prior to the process-
ing of any succeeding list item for all data transfer input/output statements except name-
directed formatted data transfer input statements. In.the example,

READ (3) N, A(N)

two values are read; one is assigned to N, and the second is assigned to A(N) for the new
value of N.

All values following the name= part of the name-directed entity (10.9) within the input
records are transmitted to the matching entity specified by the list item prior to processing
any succeeding entity within the input record for name-directed formatted data transfer input
statements. If an entity is specified more than once within the input record during a name-
directed formatted data transfer input statement, the last occurrence of the entity specifies
the value or values to be used for that entity.

An input list item, or an entity associated with it, must not contain any portion of the estab-
lished format specification.

If an internal file has been specified, an input/output list item must not be in the file or asso-
ciated with the file.

A DO variable becomes defined at the beginning of processing of the items that constitute
the range of an io-implied-do.

On output, every entity whose value is to be transferred must be defined.

On input, an attempt to read a record of a file connected for direct access that has not pre-
viously been written causes all entities specified by the input list to become undefined.

9.4.3.4.1 Unformatted Data Transfer. During unformatted data transfer, data are transfer-
red without editing between the current record and the entities specified by the input/output
list. Exactly one record is read or written.

On input, the file must be positioned so that the record read is an unformatted record or an
endfile record.

On input, the number of values required by the input list must be less than or equal to the
number of values in the record.

On input, the type of each value in the record must agree with the type of the corresponding
entity in the input list, except that one complex value may correspond to two real list entities
or two real values may correspond to one complex list entity. If an entity in the input list is
of type character, the length of the character entity must agree with the length of the char-
acter value.

On output to a file connected for direct access, the output list must not specify more values
than have been specified by the RECL = specifier.

On output, if the file is connected for direct access and the values specified by the output
list do not fill the record, the remainder of the record is undefined.

Version 99 1986 March Page 9-15

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

If the file is connected for formatted input/output, unformatted data transfer is prohibited.
The unit specified must be an external unit.

9.4.3.4.2 Formatted Data Transfer. During formatted data transfer, data are transferred
with editing between the entities specified by the input/output list and the file. Format con-
trol is initiated and editing is performed as described in Section 10. The current record and
possibly additional records are read or written.

Objects of intrinsic or derived types may be transferred through a formatted data transfer
statement. However, the requirement that the format be established prior to any transfer of
data (9.4.3) and the possibility of variant components may effectively prevent explicitly for-
matted (10.1) input to objects of derived types containing variant components, because of
the interdependence of the input/output list and format specification.

On input, the file must be positioned so that the record read is a formatted record or an
endfile record.

If the file is connected for unformatted input/output, formatted data transfer is prohibited.

On input, the input list and format specification must not require more characters from a
record than the record contains. However, blank padding to satisfy this condition may be
specified by a PAD = specifier in an OPEN statement.

If the file is connected for direct access, the record number is increased by one as each
succeeding record is read or written.

On output, if the file is connected for direct access or is an internal file and the characters
specified by the output list and format do not fill a record, blank characters are added to fill
the record.

On output, if the file is connected for direct access or is an internal file, the output list and
format specification must not specify more characters for a record have been specified by
the RECL = spacifier.

9.4.3.5 List-Directed Formatting. If list-directed formatting has been established, editing
is performed as described in Section 10.8.

9.4.3.6 Name-Directed Formatting. The characters in one or more name-directed records
constitute a sequence of name, values, and value separators.

If name-directed formatting has been established, editing is performed as described in Sec-
tion 10.9.

9.4.4 Printing of Formatted Records. The transfer of information in a formatted record to
certain devices determined by the processor is called printing. If a formatted record is
printed, the first character of the record is not printed. The remaining characters of the
record, if any, are printed in one line beginning at the left margin.

The first character of such a record determines vertical spacing as follows:
Character Vertical Spacing Before Printing

Blank One Line

0 Two Lines

1 To First Line of Next Page
+ No Advance

If there are no characters in the record, the vertical spacing is one line and no characters
other than blank are printed in that line.

Version 99 1986 March Page 9-16

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

The PRINT statement does not imply that printing will occur, and the WRITE statement does
not imply that printing will not occur.

9.5 File Positioning Statements.

R919 backspace-stmt Is BACKSPACE external-file-unit

or BACKSPACE (position-spec-list)
R920 endfile-stmt is ENDFILE external-file-unit

or ENDFILE (position-spec-list)
R921 rewind-stmt is REWIND external-file-unit

or REWIND (position-spec-list)

Constraint: BACKSPACE, ENDFILE, and REWIND apply only to files connected for sequen-
tial access.

R922 position-spec is [UNIT =] external-file-unit
' or IOSTAT = iostat-variable
or ERR = Jabel

Constraint: A position-spec-list must contain exactly one externalfile-unit and may contain at
most one of each of the other specifiers.

Execution of a BACKSPACE statement causes the file connected to the specified unit to be
positioned before the preceding record. If there is no preceding record, the position of the
file is not changed. Note that if the preceding record is an endfile record, the file becomes
positioned before the endfile record.

Backspacing a file that is connected but does not exist is prohibited.
Backspacing over records written using list-directed or name-directed formatting is prohibited.

Execution of an ENDFILE statement writes an endfile record as the next record of the file.
The file is then positioned after the endfile record. If the file may also be connected for
direct access, only those records before the endfile record are considered to have been writ-
ten. Thus, only those records may be read during subsequent direct access connections to
the file.

After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be
used to reposition the file prior to execution of any data transfer input/output statement.

Execution of an ENDFILE statement for a file that is connected but does not exist creates
the file.

Execution of a REWIND statement causes the specified file to be positioned at its initial
point. Note that if the file is already positioned at its initial point, execution of this statement
has no effect on the position of the file.

Execution of a REWIND statement for a file that is connected but does not exist is permitted
but has no effect.

9.6 File Inquiry. The INQUIRE statement may be used to inquire about properties of a
particular named file or of the connection to a particular unit. There are two forms of the
INQUIRE statement: inquire by file and inquire by unit. All value assignments are per-
formed according to the rules for assignment statements.

An INQUIRE statement may be executed before, while, or after a file is connected to a unit.
All values assigned by an INQUIRE statement are those that are current at the time the
statement is executed.

Version 99 1986 March Page 9-17

INPUT/OUTPUT STATEMENTS X3J3/S8

10

18

20

25

30

35

40

45

R923 inquire-stmt is INQUIRE (inquire-spec-list) [output-item-list |

9.6.1 Inquiry Specifiers. Unless constrained, the following inquiry specifiers may be used
in either form of the INQUIRE statement:

R924 inquire-spec is FILE = scalar-char-expr
or UNIT = external-file-unit
or IOSTAT = jostat-variable
or ERR = /abel
or EXIST = scalar-logical-variable
or OPENED = scalar-logical-variable
or NUMBER = scalar-int-variable
or NAMED = scalar-logical-variable
or NAME = scalar-char-variable
or ACCESS = scalar-char-variable
or SEQUENTIAL = scalar-char-variable
or DIRECT = scalar-char-variable
or FORM = scalar-char-variable
or FORMATTED = scalar-char-variable
or UNFORMATTED = scalar-char-variable
or RECL = scalar-int-variable
or NEXTREC = scalar-int-variable
or BLANK = scalar-char-variable
or POSITION = scalar-char-variable
or ACTION = scalar-char-variable
or DELIM = scalar-char-variable
or PAD = scalar-char-variable
or IOLENGTH = scalar-int-variable

Constraint: An INQUIRE statement must contain one FILE= specifier or one UNIT=
specifier, but not both, and at most one of each of the other specifiers.

Constraint: The IOLENGTH= specifier and the output-item-list must both appear if either
appears.

When a returned value is of type character and the processor is capable of representing let-
ters in both upper and lower case, the value returned is in upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry
specifier variables except the one in the IOSTAT = specifier become undefined.

Note that the specifier variables in the EXIST= and OPENED = specifiers always become
defined unless an error condition occurs.

9.6.1.1 FILE= Specifier in the INQUIRE Statement. The value of scalar-char-expr in the
FILE= specifier when any trailing blanks are removed specifies the name of the file being
inquired about. The named file need not exist or be connected to a unit. The value of
scalar-char-expr must be of a form acceptable to the processor as a file name.

9.6.1.2 EXIST= Specifier in the INQUIRE Statement. Execution of an INQUIRE by file
statement causes scalar-logical-variable in the EXIST= specifier to be assigned the value
true if there exists a file with the specified name; otherwise, false is assigned. Execution of
an INQUIRE statement by unit causes true to be assigned if the specified unit exists; other-
wise, false is assigned.

Version 99 1986 March Page 9-18

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

9.6.1.3 OPENED= Specifier in the INQUIRE Statement. Execution of an INQUIRE by file
statement causes scalar-logical-variable in the OPENED = specifier to be assigned the value
true if the file specified is connected to a unit; otherwise, false is assigned. Execution of an
INQUIRE statement by unit causes scalar-logical-variable to be assigned the value true if the
specified unit is connected to a file; otherwise, false is assigned.

9.6.1.4 NUMBER= Specifier in the INQUIRE Statement. The scalar-int-variable in the
NUMBER = specifier is assigned the value of the external unit identifier of the unit that is
currently connected to the file. If there is no unit connected to the file, the value —1 is
assigned.

9.6.1.5 NAMED= Specifier in the INQUIRE Statement. The scalar-logical-variable in the
NAMED = specifier is assigned the value true if the file has a name; otherwise, it is
assigned the value false.

9.6.1.6 NAME= Specifler in the INQUIRE Statement. The scalar-char-variable in the
NAME = specifier is assigned the value of the name of the file if the file has a name; other-
wise, it becomes undefined. Note that if this specifier appears in an INQUIRE by file state-
ment, its value is not necessarily the same as the name given in the FILE= specifier. For
example, the processor may return a file name qualified by a user identification. However,
the value returned must be suitable for use as the value of scalar-char-expr in the FILE =
specifier in an OPEN statement.

9.6.1.7 ACCESS= Specifier in the INQUIRE Statement. The scalar-char-variable in the
ACCESS= specifier is assigned the value SEQUENTIAL if the file is connected for sequen-
tial access, and DIRECT if the file is connected for direct access. If there is no connection,
it is assigned the value UNDEFINED.

9.6.1.8 SEQUENTIAL = Specifier in the INQUIRE Statement. The scalar-char-variable in
the SEQUENTIAL= specifier is assigned the value YES if SEQUENTIAL is included in the
set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set of
allowed access methods for the file, and UNKNOWN if the processor is unable to determine
whether or not SEQUENTIAL is included in the set of allowed access methods for the file.

9.6.1.9 DIRECT= Specifier in the INQUIRE Statement. The scalar-char-variable in the
DIRECT = specifier is assigned the value YES if DIRECT is included in the set of allowed
access methods for the file, NO if DIRECT is not included in the set of allowed access meth-
ods for the file, and UNKNOWN if the processor is unable to determine whether or not
DIRECT is included in the set of allowed access methods for the file.

9.6.1.10 FORM= Specifier in the INQUIRE Statement. The scalar-char-variable in the
FORM= specifier is assigned the value FORMATTED if the file is connected for formatted
input/output, and is assigned the value UNFORMATTED if the file is connected for unformat-
ted input/output. If there is no connection, it is assigned the value UNDEFINED.

9.6.1.11 FORMATTED= Specifier in the INQUIRE Statement. The scalar-char-variable in
the FORMATTED = specifier is assigned the value YES if FORMATTED is included in the
set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed
forms for the file, and UNKNOWN if the processor is unable to determine whether or not
FORMATTED is included in the set of allowed forms for the file.

Version 99 1986 March Page 9-19

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

9.6.1.12 UNFORMATTED= Specifier in the INQUIRE Statement. The scalar-char-variable
in the UNFORMATTED = specifier is assigned the value YES if UNFORMATTED is included
in the set of allowed forms for the file, NO if UNFORMATTED is not included in the set of
allowed forms for the file, and UNKNOWN if the processor is unable to determine whether or
not UNFORMATTED is included in the set of allowed forms for the file.

9.6.1.13 RECL= Specifier in the INQUIRE Statement. The scalar-int-variable in the
RECL = specifier is assigned the value of the record length of the file connected for direct
access. If the file is connected for formatted input/output, the length is the number of char-
acters. If the file is connected for unformatted input/output, the length is measured in
processor-dependent units. If there is no connection or if the connection is not for direct
access, scalar-int-variable becomes undefined.

9.6.1.14 NEXTREC= Specifier in the INQUIRE Statement. The scalar-int-variable in the
NEXTREC = specifier is assigned the value n + 1, where n is the record number of the last
record read or written on the file connected for direct access. If the file is connected but no
records have been read or written since the connection, scalar-int-variable is assigned the
value 1. If the file is not connected for direct access or if the position of the file is indetermi-
nate because of a previous error condition, scalar-int-variable becomes undefined.

9.6.1.15 BLANK= Specifier in the INQUIRE Statement. The scalar-char-variable in the
BLANK = specifier is assigned the value NULL if null blank control is in effect for the file
connected for formatted input/output, and is assigned the value ZERO if zero blank control
is in effect for the file connected for formatted input/output. If there is no connection, or if
the connection is not for formatted input/output, scalar-char-variable is assigned the value
UNDEFINED.

9.6.1.16 POSITION = Specifier in the INQUIRE Statement. The scalar-char-variable in the
POSITION = specifier is assigned the value REWIND if the file is connected by an OPEN
statement for positioning at its initial point, APPEND if the file is connected for positioning at
its terminal point, and ASIS if the file is connected without changing its position. If there is
no connection, scalar-char-variable is assigned the value UNDEFINED. If the file has been
repositioned since the connection, scalar-char-variable is assigned the value UNDEFINED.

9.6.1.17 ACTION= Specifier in the INQUIRE Statement. The scalar-char-variable in the
ACTION = specifier is assigned the value READ if the file is connected for input only,
WRITE if the file is connected for output only, and READ/WRITE if it is connected for both
input and output. If there is no connection, scalar-char-variable is assigned the value UNDE-
FINED.

9.6.1.18 DELIM= Specifier in the INQUIRE Statement. The scalar-char-variable in the
DELIM= specifier is assigned the value APOSTROPHE if the apostrophe is to be used to
delimit character data written by list-directed or name-directed formatting. If the quotation
mark is used to delimit these data, the value QUOTE is assigned. If neither the apostrophe
nor the quote is used to delimit the character data, the value NONE is assigned. If there is
no connection or if the connection is not for formatted input/output, scalar-char-variable is
assigned the value UNDEFINED.

9.6.1.19 PAD= Specifier in the INQUIRE Statement. The scalar-char-variable in the
PAD = specifier is assigned the value YES if the connection of the file to the unit included
the PAD = specifier and its value was YES. Otherwise, scalar-char-variable is assigned the
value NO.

Version 99 1986 March Page 9-20

INPUT/OUTPUT STATEMENTS X3J3/s8

10

15

20

25

30

35

40

9.6.1.20 IOLENGTH= Specifier in the INQUIRE Statement. The scalar-int-variable in the
IOLENGTH = specifier is assigned the processor-dependent value that results from the use
of the input/output list in an unformatted output statement. It must be suitable as a RECL =
specifier in an OPEN statement that connects a file for unformatted direct access when
there are input/output statements with the same input/output list.

9.6.1.21 Restrictions on Inquiry Specifiers. A variable that may become defined or
undefined as a result of its use as a specifier in an INQUIRE statement, or any associated
entity, must not appear as another specifier in the same INQUIRE statement.

The inquire-spec-list in an INQUIRE by file statement must contain exactly one FILE=
specifier and must not contain a UNIT = specifier.

Execution of an INQUIRE by file statement causes the variables specified in the NAMED =,
SEQUENTIAL=, DIRECT=, FORMATTED=, and UNFORMATTED= specifiers to be
assigned values only if the external-file-unit specified is acceptable to the processor as a file
name and if there exists a file with the name; otherwise, the scalar-logical-variable in the
NAMED = specifier is assigned a value of false, the scalar-char-variable in the NAME=
specifier becomes undefined, and the scalar-char-variable in the SEQUENTIAL =, DIRECT =,
FORMATTED =, and UNFORMATTED = specifier are assigned the value UNKNOWN. Note
that the scalar-int-variable in the NUMBER = specifier is always defined unless an error con-
dition occurs during the execution of the INQUIRE statement. Note aiso that the specifier
variables in the ACCESS=, FORM=, and BLANK= spacifiers always become defined
unless an error condition occurs during the execution of the INQUIRE statement.

The inquire-spec-list in an INQUIRE by unit statement must contain exactly one UNIT=
specifier and must not contain a FILE= specifier. The unit specified need not exist or be
connected to a file. If it is connected to a file, the inquiry is being made about the connec-
tion and about the file connected.

Execution of an INQUIRE by unit statement causes the specifier variables or array elements
in the NUMBER = specifier, NAMED = specifier, FORM= specifier, ACCESS= specifier,
SEQUENTIAL = specifier, DIRECT = specifier, NAME = specifier, FORMATTED = specifier,
UNFORMATTED = specifier, RECL= specifier, NEXTREC= specifier, and BLANK=
specifier to be assigned values only if the specified unit exists and if a file is connected to
the unit; otherwise, the scalar-int-variable in the NUMBER = specifier is assigned the value
—1, the scalar-logical-variable in the NAMED= specifier is assigned the value false, the
scalar-char-variable in the FORM= specifier is undefined, the scalar-char-variable in the
ACCESS = and FILE = specifiers are assigned the value UNDEFINED, and the scalar-char-
variable in the SEQUENTIAL=, DIRECT=, FORMATTED=, and UNFORMATTED=
specifiers are assigned the value UNKNOWN.

9.7 Restrictions on Function References and List ltems. A function reference
must not appear in an expression anywhere in an input/output statement if such a reference
causes another input/output statement to be executed. Note that restrictions in the evalua-
tion of expressions (7.1.7) prohibit certain side effects.

9.8 Restriction on Input/Output Statements. If a unit, or a file connected to a unit,
does not have all of the properties required for the execution of certain input/output state-
ments, those statements must not refer to the unit.

Version 99 1986 March Page 9-21

10

15

20

25

30

35

40

10 INPUT/OUTPUT EDITING

A format used in conjunction with an input/output statement provides information that directs
the editing between the internal representation of data and the character strings of a record
or a sequence of records in a file.

A format specifier (9.4.1.1) in an input/output statement may refer to a FORMAT statement
or to a character expression that contains a format specification. A format specification pro-
vides explicit editing information. The format specifier also may be an asterisk (*) which
indicates list-directed formatting (10.8), or a double asterisk (**) which indicates name-
directed formatting (10.9).

10.1 Explicit Format Specification Methods. Explicit format specification may be
given:

(1) In a FORMAT statement, or

(2) As the value of a character expression

10.1.1 FORMAT Statement.

R1001 format-stmt is FORMAT format-specification
R1002 format-specification is ([format-item-list])
Constraint: The format-stmt must be labeled.

Constraint: The comma used to separate format-items in a format-item-list may be omitted
as follows:

(1) Between a P edit descriptor and an immediately following F, E, EN, D, or G edit
descriptor (10.6.5)

(2) Before or after a slash edit descriptor when the optional repeat specification is not
present (10.6.2)

(3) Before or after a colon edit descriptor (10.6.3)

Note that, for source form purposes, the format specification is considered to be a from of
character context (3.3.1).

10.1.2 Character Format Specification. A character expression used as a format specifier
in a formatted input/output statement must contain a character string whose value consti-
tutes a valid format specification. Note that the format specification begins with a left paren-
thesis and ends with a right parenthesis.

All character positions up to and including the final right parenthesis of the format
specification must be defined at the time the input/output statement is executed, and must
not become redefined or undefined during the execution of the statement. Character posi-
tions, if any, following the right parenthesis that ends the format specification need not be
defined and may contain any character data with no effect on the format specification.

If the format specifier identifies a character array entity, the length of the format specification
may exceed the length of the first element of the array. A character array format
specification is considered to be a concatenation of all the array elements of the array in the
order given by the subscript order value (6.2.4.2). However, if a format specifier refers to a
character array element, the format specification must be contained entirely within that array
element.

Version 99 1986 March Page 10-1

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

10.2 Form of a Format Item List.

R1003 format-item is. [r] data-edit-desc
or control-edit-desc
or char-string-edit-desc
or [r] (format-item-list)

R1004 r is int-constant
Constraint: r must be positive. It is called a repeat specification.

Constraint: The character underscore (_) is prohibited in an int-constant in a format
specification.

Blank characters may precede the initial left parenthesis of the format specification. Addi-
tional blank characters may appear at any point within the format specification, with no effect
on the format specification, except within a character string edit descriptor (10.7.1 and
10.7.2).

10.2.1 Edit Descriptors. An edit descriptor is used to specify the form of a record and to
direct the editing between the characters in a record and internal representations of data.
The internal representation of a datum corresponds to the internal representation of a con-
stant of the corresponding type.

An edit descriptor is either a data edit descriptor, a control edit descriptor, or a character

string edit descriptor.

R1005 data-edit-desc islw[.m]
orFw.d
orEw.d[Ee]
or ENw.d[Ee]
orGw.d[Ee]
orBw
orLw
orA[w]
or Dw.d

R1006 w is scalar-int-constant

R1007 m Is scalar-int-constant

R1008 d is scalar-int-constant

R1009 e Is scalar-int-constant

Constraint: w and e must be positive and d and m must be zero or positive.
Constraint: The value of m, d, and e may be restricted further by the value of w.
I, F, E, EN, b, G, B, L, and A indicate the manner of editing.

R1010 control-edit-desc is position-edit-desc
or[r]/
or:
or sign-edit-desc
or kP
or blank-interp-edit-desc

R1011 k Is scalar-signed-int-constant
R1012 position-edit-desc Is Tn

Version 99 1986 March Page 10-2

INPUT/QOUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

or TL n
orTRn
ornX

R1013 n is scalar-int-constant

R1014 sign-edit-desc is S
or SP
or SS

R1015 blank-interp-edit-desc is BN
or BZ

n must be positive.
In kP, k is called the scale factor.
T, TL, TR, X, slash, colon, S, SP, SS, P, BN, and BZ indicate the manner of editing.

R1016 char-string-edit-desc is char-constant
or ¢ H character [character |...

R1017 ¢ is int-constant
Constraint: ¢ must be positive.

Each character in a character string edit descriptor must be one of the characters capable of
representation by the processor.

The character string edit descriptors provide constant data to be output, and are not valid for

input.

Within a character constant, appearances of the delimiter character itself, apostrophe or
quote, must be as consecutive pairs without intervening blanks. Each such pair represents
a single occurrence of the delimiter character.

In the H edit descriptor, ¢ specifies the number of characters following the H that comprise
the descriptor.

10.2.2 Fields. A field is a part of a record that is read on input or written on output when
format control encounters a data edit descriptor or a character string edit descriptor. The
field width is the size in characters of the field.

10.3 Interaction Between Input/Output List and Format. The beginning of format-
ted data transfer using a format specification initiates format control. Each action of format
control depends on information jointly provided by:

(1) The next edit descriptor contained in the format specification, and

(2) The next effective item in the input/output list, if one exists. Zero-sized arrays,
zero-sized array sections, and implied-DO lists with iteration counts of zero are
ignored in determining the next effective item (9.4.2).

If an input/output list specifies at least one list item, at least one data edit descriptor must
exist in the format specification. Note that an empty format item list of the form () may be
used only if no input/output list items are specified; in this case, one input record is skipped
or one output record containing no characters is written. Except for a format item preceded
by a repeat specification r, a format specification is interpreted from left to right.

A format item preceded by a repeat specification is processed as a list of r items, each iden-
tical to the format item but without the repeat specification and separated by commas. Note
that an omitted repeat specification is treated in the same way as a repeat specification

Version 99 1986 March Page 10-3

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

whose value is one.

To each data edit descriptor interpreted in a format specification, there corresponds one
effective item specified by the input/output list (9.4.2), except that an input/output list item of
type complex requires the interpretation of two F, E, EN, D, or G edit descriptors. For each
control edit descriptor or character edit descriptor, there is no corresponding item specified
by the input/output list, and format control communicates information directly with the record.

Whenever format control encounters a data edit descriptor in a format specification, it deter-
mines whether there is a corresponding effective item specified by the input/output list. If
there is such an item, it transmits appropriately edited information between the item and the
record, and then format control proceeds. If there is no such item, format control termi-
nates.

If format control encounters a colon edit descriptor in a format specification and another
effective input/output list item is not specified, format control terminates.

If format control encounters the rightmost parenthesis of a complete format specification and
another effective input/output list item is not specified, format control terminates. However,
if another effective input/output list item is specified, the file is positioned at the beginning of
the next record and format control then reverts to the beginning of the format item list termi-
nated by the last preceding right parenthesis. If there is no such preceding right parenthe-
sis, format control reverts to the first left parenthesis of the format specification. If such
reversion occurs, the reused portion of the format specification must contain at least one
data edit descriptor. If format control reverts to a parenthesis that is preceded by a repeat
specification, the repeat specification is reused. Reversion of format control, of itself, has no
effect on the scale factor (10.6.5.1), the sign control edit descriptors (10.6.4), or the blank
interpretation edit descriptors (10.6.6).

10.4 Positioning by Format Control. After each data edit descriptor or character
string edit descriptor is processed, the file is positioned after the last character read or writ-
ten.

After each T, TL, TR, X, or slash edit descriptor is processed, the file is positioned as
described in 10.6.1.

If format control reverts as described in 10.3, the file is positioned in a manner identical to
the way it is positioned when a slash edit descriptor is processed (10.6.2).

During a read operation, any unprocessed characters of the record are skipped whenever
the next record is read.

10.5 Data Edit Descriptors. Data edit descriptors cause the conversion of data to or
from its internal representation. On input, the specified variable becomes defined. On out-
put, the specified expression is evaluated.

10.5.1 Numeric Editing. The |, F, E, EN, D, and G edit descriptors are used to specify the
input/output of integer, real, double precision, and complex data. The following general rules
apply:

(1) On input, leading blanks are not significant. The interpretation of blanks, other
than leading blanks, is determined by a combination of any BLANK= specifier
(9.3.4.6) and any BN or BZ blank control that is currently in effect for the unit
(10.6.6). Plus signs may be omitted. A field containing only blanks is considered
to be zero.

(2 On input, with F, E, EN, D, and G editing, a decimal point appearing in the input
field overrides the portion of an edit descriptor that specifies the decimal point

Version 99 1986 March Page 10-4

INPUT/OUTPUT EDITING X3J3/58

10

20

30

40

location. The input field may have more digits than the processor uses to approxi-
mate the value of the datum.

(3) On input, single underscores may be inserted between otherwise adjacent digits
of a constant to improve readability (4.3.1.1). Underscores do not affect the value
of the constant.

(4) On output, the representation of a positive or zero internal value in the field may
be prefixed with a plus, as controlled by the S, SP, and SS edit descriptors or the
processor. The representation of a negative internal value in the field must be
prefixed with a minus. However, the processor must not produce a negative
signed zero in a formatted output record.

(5) On output, the representation is right-justified in the field. If the number of charac-
ters produced by the editing is smaller than the field width, leading blanks will be
inserted in the field.

(6) On output, if the number of characters produced exceeds the field width or if an
exponent exceeds its specified length using the Ew.dEe, ENw.dEe, or Gw.dEe
edit descriptor, the processor must fill the entire field of width w with asterisks.
However, the processor must not produce asterisks if the field width is not
exceeded when optional characters are omitted. Note that when an SP edit
descriptor is in effect, a plus is not optional.

(7) On output, the processor must not produce underscores in numeric fields.

10.5.1.1 Integer Editing. The Iw and lw.m edit descriptors indicate that the field to be
edited occupies w positions. The specified input/output list item must be of type integer.

On input, an lw.m edit descriptor is treated identically to an Ilw edit descriptor.

In the input field, the character string must be in the form of an optionally signed integer
constant, except for the interpretation of blanks.

The output field for the lw edit descriptor consists of zero or more leading blanks foliowed by
a minus if the value of the internal datum is negative, or an optional plus otherwise, followed
by the magnitude of the internal value in the form of an unsigned integer constant without
leading zeros. Note that an integer constant always consists of at least one digit.

The output field for the lw.m edit descriptor is the same as for the lw edit descriptor, except
that the unsigned integer constant consists of at least m digits and, if necessary, has leading
zeros. The value of m must not exceed the value of w. If m is zero and the value of the
internal datum is zero, the output field consists of only blank characters, regardless of the
sign control in effect.

10.5.1.2 Real and Double Precision Editing. The F, E, EN, D, and G edit descriptors
specify the editing of real, double precision, and complex data. An input/output list item corre-
sponding to an F, E, EN, D, or G edit descriptor must be real, double precision, or complex.

10.5.1.2.1 F Editing. The Fw.d edit descriptor indicates that the field occupies w posi-
tions, the fractional part of which consists of d digits.

The input field consists of an optional sign, followed by a string of digits optionally containing
a decimal point, including any blanks interpreted as zeros. If the decimal point is omitted,
the rightmost d digits of the string, with leading zeros assumed if necessary, are interpreted
as the fractional part of the value represented. The string of digits may contain more digits
than a processor uses to approximate the value of the constant. The basic form may be fol-
lowed by an exponent of one of the following forms:

Version 99 1986 March Page 10-5

INPUT/OUTPUT EDITING X3J3/88

10

15

20

25

30

35

40

(1) Signed integer constant

(2) E followed by zero or more blanks, followed by an optionally signed integer con-
stant, except for the interpretation of blanks

(3) D followed by zero or more blanks, followed by an optionally signed integer constant
An exponent containing a D is processed identically to an exponent containing an E.

The output field consists of blanks, if necessary, followed by a minus if the internal value is
negative, or an optional plus otherwise, followed by a string of digits that contains a decimal
point and represents the magnitude of the internal value, as modified by the established
scale factor and rounded to d fractional digits. Leading zeros are not permitted except for
an optional zero immediately to the left of the decimal point if the magnitude of the value in
the output field is less than one. The optional zero must appear if there would otherwise be
no digits in the output field.

10.5.1.2.2 E and D Editing. The Ew.d, Dw.d, and Ew.dEe edit descriptors indicate that the
external field occupies w positions, the fractional part of which consists of d digits, unless a
scale factor greater than one is in effect, and the exponent part consists of e digits. The e
has no effect on input.

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1).
The form of the output field for a scale factor of zero is:
[£]1[0]. x1x2 - - - xg0XP
where:
+ signifies a plus or a minus.
XX2 - - * Xg are the d most significant digits of the datum value after rounding.

exp is a decimal exponent having one of the following forms:

Edit Absolute Value Form of
Descriptor of Exponent Exponent
Ew.d |exp| < 99 E+z4z;0or £0z42,
99 < |exp| = 999 +£242Z5Z3
Ew.dEe lexp| < 10° — 1 E+z4zp, - 2,
pw.d |exp| < 99 DxZZporE 242,
or £0z2,
99 < |exp| <999 +2Z4Z5Z3

where z is a digit. The sign in the exponent is required. A plus sign must be used if the
exponent value is zero. The forms Ew.d and ow.d must not be used if |exp| >999.

The scale factor k controls the decimal normalization (10.2.1). If —d < k =< 0, the output
field contains exactly |k| leading zeros and d — |k| significant digits after the decimal point.
If 0 < k < d + 2, the output field contains exactly k significant digits to the left of the deci-
mal point and d — k + 1 significant digits to the right of the decimal point. Other values of k
are not permitted.

Version 99 1986 March Page 10-6

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

10.5.1.2.3 EN Editing. The EN edit descriptor will produce an output field of a real num-
ber in engineering notation such that the decimal exponent is divisible by three and the
absolute value of the mantissa is greater than or equal to one and less than 1000, except
when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field
occupies w positions, the fractional part of which consists of d digits and the exponent part
consists of e digits.

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1), and
the scale factor, if present, has an effect.

The form of the output field is:

[£]yyy.x1x2: - Xq€xp
where:

+ signifies a plus or a minus.

yyy are the 1 to 3 decimal digits representative of the most significant digits of the
value of the datum after rounding (yyy is an integer such that 1 < yyy < 999 or yyy =
0).

XiXo -+ - Xg are the d next most significant digits of the value of the datum after
rounding.

exp is a decimal exponent, divisible by three, of one of the following forms:

Edit Absolute Value Form of
Descriptor of Exponent Exponent

ENw.d lexp| < 99 E+z.z; or £0z42z,
99 < |exp| = 999 +Z1Z2Z34

ENw.dEe lexp] <= 10° —1 Exzzy-- - 2,

where z is a digit.

The sign in the exponent is required. A plus sign must be used if the exponent value is
zero. The form ENw.d must not be used if |exp| >999.

Examples:
Internal Value Output field Using EN12.3

6.421 6.421E + 00
-5 —500.000E - 03
.00217 2.170E-03
4721.3 4.721E +03

10.5.1.2.4 G Editing. The Gw.d and Gw.dEe edit descriptors indicate that the external
field occupies w positions, the fractional part of which consists of d digits, unless a scale fac-
tor greater than one is in effect, and the exponent part consists of e digits.

The form of the input field is the same as for F editing (10.5.1.2.1).

The method of representation in the output field depends on the magnitude of the datum
being edited. Let N be the magnitude of the internal datum. 10 < N < 0.1 or N = 107,
Gw.d output editing is the same as kPEw.d output editing and Gw.dEe output editing is the

Version 99 1986 March Page 10-7

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

45

same as kPEw.dEe output editing, where k is the scale factor currently in effect. If
0.1 = N < 107 or N is identically 0, the scale factor has no effect, and the value of N deter-
mines the editing as follows:

Magnitude of Datum Equivalent Conversion

N=0 Fw — n).(d — 1), n(’b")
01i=N<1 Fw — n).d, n('b")

1=N<10 F(w — n).{d — 1), n('b’)

10925 N < 109~' Fw — n).1, n(b')
109-T< N < 10¢ F(w — n).0, n('b")

where b is a blank. n is 4 for Gw.d and e + 2 for Gw.dEe.

Note that the scale factor has no effect unless the magnitude of the datum to be edited is
outside of the range that permits effective use of F editing.

10.5.1.3 Complex Editing. A complex datum consists of a pair of separate real data;
therefore, the editing is specified by two F, E, EN, D, or G edit descriptors. The first of the
edit descriptors specifies the real part; the second specifies the imaginary part. The two edit
descriptors may be different. Control and character string edit descriptors may be processed
between the two successive F, E, D, or G edit descriptors.

10.5.2 B Editing. The Bw edit descriptor indicates that the field occupies w positions.
The specified input/output list item must be of type bit.

The input field consists of w — 1 blanks and either a 0 or a 1, in any order. The output field
consists of w — 1 blanks followed by either a 0 or a 1. The specifiers BZ and BN have no
effect on bit editing.

10.5.3 L Editing. The Lw edit descriptor indicates that the field occupies w positions. The
specified input/output list item must be of type logical.

The input field consists of optional blanks, optionally followed by a decimal point, followed by
a T for true or F for false. The T or F may be followed by additional characters in the field.
Note that the logical constants .TRUE. and .FALSE. are acceptable input forms.

The output field consists of w — 7 blanks followed by a T or F, depending on whether the
value of the internal datum is true or false, respectively.

10.5.4 A Editing. The A[w] edit descriptor is used with an input/output list item of type
character.

If a field width w is specified with the A edit descriptor, the field consists of w characters. If
a field width w is not specified with the A edit descriptor, the number of characters in the
field is the length of the character input/output list item.

Let len be the length of the input/output list item. If the specified field width w for A input is
greater than or equal to /len, the rightmost /en characters will be taken from the input field. |f
the specified field width is less than fen, the w characters will appear left-justified with
len — w trailing blanks in the internal representation.

If the specified field width w for A output is greater than /en, the output field will consist of
w — len blanks followed by the /en characters from the internal representation. If the
specified field width w is less than or equal to /en, the output field will consist of the leftmost

Version 99 1986 March Page 10-8

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

w characters from the internal representation.

10.6 Control Edit Descriptors. A control edit descriptor does not cause the transfer of
data nor the conversion of data to or from internal representation, but may affect the conver-
sion performed by subsequent data edit descriptors.

10.6.1 Position Editing. The T, TL, TR, and X edit descriptors specify the position at
which the next character will be transmitted to or from the record.

The position specified by a T edit descriptor may be in either direction from the current posi-
tion. On input, this allows portions of a record to be processed more than once, possibly
with different editing.

The position specified by an X edit descriptor is forward from the current position. On input,
a position beyond the last character of the record may be specified if no characters are
transmitted from such positions. Note that an nX edit descriptor has the same effect as a
TRn edit descriptor.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be trans-
mitted and therefore does not by itself affect the length of the record. If characters are
transmitted to positions at or after the position specified by a T, TL, TR, or X edit descriptor,
positions skipped and not previously filled are filled with blanks. The result is as if the entire
record were initially filled with blanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit
descriptor never directly causes a character already placed in the record to be replaced.
Such edit descriptors may result in positioning such that subsequent editing causes a
replacement.

10.6.1.1 T, TL, and TR Editing. The Tn edit descriptor indicates that the transmission of
the next character to or from a record is to occur at the nth character position.

The TLn edit descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters backward from the current position.
However, if the current position is less than or equal to position n, the TLn edit descriptor
indicates that the transmission of the next character to or from the record is to occur at posi-
tion one of the current record.

The TRn edit descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters forward from the current position.

Note that n must be specified, and must be greater than zero.

10.6.1.2 X Editing. The nX edit descriptor indicates that the transmission of the next char-
acter to or from a record is to occur at the position n characters forward from the current
position. Note that the n must be specified and must be greater than zero.

10.6.2 Slash Editing. The slash edit descriptor indicates the end of data transfer on the
current record.

On input from a file connected for sequential access, the remaining portion of the current
record is skipped and the file is positioned at the beginning of the next record. This record
becomes the current record. On output to a file connected for sequential access, a new
record is created and becomes the last and current record of the file.

Note that a record that contains no characters may be written on output. If the file is an
internal file or a file connected for direct access, the record is filled with blank characters.
Note also that an entire record may be skipped on input. The repeat specification is optional

Version 99 1986 March Page 10-9

INPUT/OUTPUT EDITING X3J3/s8

10

15

20

25

30

35

40

45

on the slash edit descriptor. If it is not specified, a value of 1 is implied.

For a file connected for direct access, the record number is increased by one and the file is
positioned at the beginning of the record that has that record number. This record becomes
the current record.

10.6.3 Colon Editing. The colon edit descriptor terminates format control if there are no
more effective items in the input/output list (9.4.2). The colon edit descriptor has no effect if
there are more effective items in the input/output list.

10.6.4 S, SP, and SS Editing. The S, SP, and SS edit descriptors may be used to control
optional plus characters in numeric output fields. At the beginning of execution of each for-
matted output statement, the processor has the option of producing a plus in numeric output
fields. If an SP edit descriptor is encountered in a format specification, the processor must
produce a plus in any subsequent position that normally contains an optional plus. If an SS
edit descriptor is encountered, the processor must not produce a plus in any subsequent
position that normally contains an optional plus. If an S edit descriptor is encountered, the
option of producing the plus is restored to the processor.

The S, SP, and SS edit descriptors affect only |, F, E, EN, D, and G editing during the exe-
cution of an output statement. The S, SP, and SS edit descriptors have no effect during the
execution of an input statement.

10.6.5 P Editing. The kP edit descriptor sets the value of the scale factor to k. The scale
factor may affect the editing of numeric quantities.

10.6.5.1 Scale Factor. The value of the scale factor is zero at the beginning of execution
of each input/output statement. It applies to all subsequently interpreted F, E, EN, D, and G
edit descriptors until another P edit descriptor is encountered, and then a new scale factor is
established. Note that reversion of format control (10.3) does not affect the established
scale factor.

The scale factor k affects the appropriate editing in the following manner:

(1) On input, with F, E, EN, D, and G editing (pi'ovided that no exponent exists in the
field) and F output editing, the scale factor effect is that the externally represented
number equals the internally represented number multiplied by 10%.

2 On input, with F, E, EN, D, and G editing, the scale factor has no effect if there is
an exponent in the field.

(3) On output, with E and D editing, the significand (4.3.1.2) part of the quantity to be
produced is multiplied by 10¢ and the exponent is reduced by k.

(4) On output, with G editing, the effect of the scale factor is suspended unless the
magnitude of the datum to be edited is outside the range that permits the use of
F editing. If the use of E editing is required, the scale factor has the same effect
as with E output editing.

(5) On output, with EN editing, the scale factor has no effect.

10.6.6 BN and BZ Editing. The BN and BZ edit descriptors may be used to specify the
interpretation of blanks, other than leading blanks, in numeric input fields. At the beginning
of execution of each formatted input statement, nonleading blank characters are interpreted
as zeros or are ignored, depending on the value of the BLANK = specifier (9.3.4.6) currently
in effect for the unit. If a BN edit descriptor is encountered in a format specification, all
nonleading blank characters in succeeding numeric input fields are ignored. The effect of
ignoring blanks is to treat the input field as if blanks had been removed, the remaining

Version 99 1986 March Page 10-10

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

portion of the field right-justified, and the blanks replaced as leading blanks. However, a
field containing only blanks has the value zero. If a BZ edit descriptor is encountered in a
format specification, all nonleading blank characters in succeeding numeric input fields are
treated as zeros.

The BN and BZ edit descriptors affect only |, F, E, EN, D, and G editing during execution of
an input statement. They have no effect during execution of an output statement.

10.7 Character String Edit Descriptors. A character string edit descriptor must not be
used on input.

10.7.1 Character Constant Edit Descriptor. The character constant edit descriptor causes
characters to be written from the enclosed characters of the edit descriptor itself, including
blanks. Note that a delimiter is either an apostrophe or quote.

For a character constant edit descriptor, the width of the field is the number of characters
contained in, but not including, the delimiting characters. Within the field, two consecutive
delimiting characters with no intervening blanks are counted as a single character.

10.7.2 H Editing. The cH edit descriptor causes character information to be written from
the next ¢ characters (including blanks) following the H of the cH edit descriptor in the
format-list itself. The H edit descriptor must not be used on input. If a cH edit descriptor
occurs within a character constant delimited by apostrophes and the H edit descriptor
includes an apostrophe, the apostrophe must be represented by two consecutive apostro-
phes which are counted as one character in specifying c. If a cH edit descriptor occurs
within a character constant delimited by quotes and the H edit descriptor includes a quote,
the quote must be represented by two consecutive quotes which are counted as one charac-
ter in specifying c.

10.8 List-Directed Formatting. The characters in one or more list-directed records
constitute a sequence of values and value separators. The end of a record has the same
effect as a blank character, unless it is within a character constant. Any sequence of two or
more consecutive blanks is treated as a single blank, unless it is within a character constant.

Each value is either a constant, a null value, or of one of the forms:

rxc
r*

where r is an unsigned, nonzero, integer constant. The r*c form is equivalent to r succes-
sive appearances of the constant ¢, and the r* form is equivalent to r successive appear-
ances of the null value. Neither of these forms may contain embedded blanks, except
where permitted within the constant c.

A value separator is one of the following:

(1) A comma optionally preceded by one or more contiguous blanks and optionally fol-
lowed by one or more contiguous blanks

(2) A slash optionally preceded by one or more contiguous blanks and optionally fol-
lowed by one or more contiguous blanks

(3) One or more contiguous blanks between two nonblank values or following the last
nonblank value, where a nonblank value is a constant, an r¥c form, or an r* form.

Version 99 1986 March Page 10-11

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

10.8.1 List-Directed Input. Input forms acceptable to edit descriptors for a given type are
acceptable for list-directed formatting, except as noted below. The form of the input value
must be acceptable for the type of the input list item. Blanks are never used as zeros, and
embedded blanks are not permitted in constants, except within character constants and com-
plex constants as specified below. Note that the end of a record has the effect of a blank,
except when it appears within a character constant.

When the corresponding input list item is of type real or double precision, the input form is that
of a numeric input field. A numeric input field is a field suitable for F editing (10.5.1.2.1) that
is assumed to have no fractional digits unless a decimal point appears within the field.

When the corresponding list item is of type complex, the input form consists of a left paren-
thesis followed by an ordered pair of numeric input fields separated by a comma, and fol-
lowed by a right parenthesis. The first numeric input field is the real part of the complex
constant and the second is the imaginary part. Each of the numeric input fields may be pre-
ceded or followed by blanks. The end of a record may occur between the real part and the
comma or between the comma and the imaginary part.

When the corresponding list item is of type logical, the input form must not include slashes,
blanks, or commas among the optional characters permitted for L editing.

When the corresponding list item is of type character, the input form consists of a character
constant. Character constants may be continued from the end of one record to the begin-
ning of the next record, but the end of record must not occur between a doubled apostrophe
in an apostrophe-delimited constant, nor between a doubled quote in a quote-delimited con-
stant.. The end of the record does not cause a blank or any other character to become part
of the constant. The constant may be continued on as many records as needed. The char-
acters blank, comma, and slash may appear in character constants.

If the corresponding input list item is of type character and:

(1) The character constant does not contain the characters blank, comma, or siash,
and

(2) The datum does not cross a record boundary, that is, does not contain an end-of-
record mark, and

(8) The first nonblank character is not a quotation mark or an apostrophe, and
(4) The leading characters are not numeric followed by an asterisk,

the delimiting apostrophes or quotation marks are not required. If the delimiters are omitted,
the character constant is terminated by the first blank, comma, or slash character and apos-
trophes and quotation marks within the datum are not to be doubled.

Let /en be the length of the list item, and let w be the length of the character constant. If
len is less than or equal to w, the leftmost len characters of the constant are transmitted to
the list item. If len is greater than w, the constant is transmitted to the leftmost w characters
of the list item and the remaining len — w characters of the list item are filled with blanks.
Note that the effect is as though the constant were assigned to the list item in a character
assignment statement (7.5.1.4).

10.8.1.1 Null Values. A null value is specified by having no characters between succes-
sive value separators, no characters preceding the first value separator in the first record
read by each execution of a list-directed input statement, or the r* form. Note that the end
of a record following any other separator, with or without separating blanks, does not specify
a null value. A null value has no effect on the definition status of the corresponding input
list item.

Version 99 1986 March Page 10-12

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

A slash encountered as a value separator during execution of a list-directed input statement
causes termination of execution of that input statement after the assignment of the previous
value. If there are additional items in the input list, the effect is as if null values had been
supplied for them.

Any DO variable in the input list is defined as though enough null values had been supplied
for any remaining input list items.

Note that all blanks in a list-directed input record are considered to be part of some value
separator except for the following:

(1) Blanks embedded in a character constant
(2) Embedded blanks surrounding the real or imaginary part of a complex constant

(3) Leading blanks in the first record read by each execution of a list-directed input
statement, unless immediately followed by a slash or comma

10.8.2 List-Directed Output. The form of the values produced is the same as that
required for input, except as noted otherwise. With the exception of nondelimited character
constants, the values are separated by (1) one or more blanks or (2) a comma optionally pre-
ceded by one or more blanks and optionally followed by one or more blanks.

The processor may begin new records as necessary, but, except for complex constants and
character constants, the end of a record must not occur within a constant and blanks must
not appear within a constant.

Logical output constants are T for the value true and F for the value false.
Bit output constants are 1 for the value B’1’ and 0 for the value B’0’.
Integer output constants are produced with the effect of an lw edit descriptor.

Real and double precision constants are produced with the effect of either an F edit descriptor
or an E edit descriptor, depending on the magnitude x of the value and a range 10% < x
< 10%, If the magnitude x is within this range, the constant is produced using OPFw.d;
otherwise, 1PEw.dEe is used.

For numeric outputs, reasonable processor-dependent integer values of w, d, and e are used
for each of the cases involved. Note that underscores are not produced.

Complex constants are enclosed in parentheses, with a comma separating the real and
imaginary parts. The end of a record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than, an entire record. The only embed-
ded blanks permitted within a complex constant are between the comma and the end of a
record and one blank at the beginning of the next record.

Character constants produced for a file opened without a DELIM = specifier (9.3.4.9) or with
a DELIM = specifier (9.3.4.9) with a value of NONE:

(1) Are not delimited by apostrophes or quotation marks,
(2) Are not preceded or followed by a value separator,

(3) Have each internal apostrophe or quotation mark represented externally by one
apostrophe or quotation mark, and

(4) Have a blank character inserted by the processor for carriage control at the begin-
ning of any record that begins with the continuation of a character constant from
the preceding record.

Character constants produced for a file opened with a DELIM= specifier with a value of
QUOTE are delimited by quotes, are preceded and followed by a value separator, and have

Version 99 1986 March Page 10-13

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

45

each internal quote represented on the external medium by two quotes.

Character constants produced for a file opened with a DELIM= specifier with a value of
APOSTROPHE are delimited by apostrophes, are preceded and followed by a value separa-
tor, and have each internal apostrophe represented on the external medium by two apostro-
phes.

If two or more successive values in an output record have identical values, the processor
has the option of producing a repeated constant of the form r*c instead of the sequence of
identical values.

Slashes, as value separators, and null values are not produced by list-directed formatting.

Each output record begins with a blank character to provide carriage control when the record
is printed.

10.9 Name-Directed Formatting. The characters in one or more name-directed
records constitute a sequence of name-value subsequences, each of which consists of a
name followed by an equals and followed by one or more values and value separators. The
equals may optionally be preceded or followed by zero, one, or more contiguous blanks.
The end of a record has the same effect as a blank character, unless it is within a character
constant. Any sequence of two or more consecutive blanks is treated as a single blank,
unless it is within a character constant.

The name may be any name in the input/output list.
Each value is either a constant, a null value, or one of the forms:

rxc
rx

where r is an unsigned, nonzero, integer constant. The rxc¢ form is equivalent to r succes-
sive appearances of the constant ¢, and the r* form is equivalent to r successive null
values. Neither of these forms may contain embedded blanks, except where permitted
within the constant c.

A value separator for name-directed formatting is the same as for list-directed (10.8) except
that a value separator containing a slash must not immediately precede a value.

10.9.1 Name-Directed Input. Input for name-directed formatting consists of a sequence of
zero or more name-value subsequences separated by value separators. In each name-value
subsequence, the name must be the name of an input list item, optionally qualified as noted.

If a processor is capable of representing letters in both upper and lower case, the name
may be in either case. Any subscripts or substring ranges appearing in the name must con-
tain only integer constant expressions.

Within the input data, each name must correspond to a specific input list name. Subscripts
within input list names must be integer constants. If an input list name is the name of an
array, the name in the input record corresponding to it may be either the array name or the
name of an element of that array, indicated by qualifying the array name with constant sub-
scripts. If the input list name is the name of a variable of derived type, the name in the
input record may be either the name of the variable or of one of its components, indicated
by qualifying the variable name with the appropriate component name. Successive
qualifications may be applied as appropriate to the shape and type of the variable repre-
sented.

The order of names in the input records need not match the order of the input list items.
The input records need not contain all the names of the input list items. The definition sta-
tus of any names from the input list that do not occur in the input record remains

Version 99 1986 March Page 10-14

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

45

50

unchanged. The name in the input record may be preceded and followed by one or more
optional blanks but must not contain embedded blanks.

The datum c is any input value acceptable to format specifications for a given type, except
as noted. The form of the input value must be acceptable for the type of the input list item.
The number and forms of the input values which may follow the equals in a name-value sub-
sequence depend on the shape and type of the object represented by the name in the input
record. When the name in the input record is the name of a scalar variable of an intrinsic
type, the equals must not be followed by more than one value. This value must be of a
form acceptable to format specifications for that type, except as noted. Blanks are never
used as zeros, and embedded blanks are not permitted in constants except within character
constants.

When the name in the input record is the name of an array of length n, at most n input
values may follow the equals. The array element values must be specified in subscript
order value.

The name-directed input statement is terminated by a slash encountered as a value separa-
tor during execution of a name-directed input statement after the assignment of the previous
values.

When the corresponding input list item is of type real or double precision, the input form of the
input value is that of a numeric input field. A numeric input field is a field suitable for F edit-
ing (10.5.1.2.1) that is assumed to have no fractional digits unless a decimal point appears
within the field.

When the corresponding list item is of type complex, the input form of the input value con-
sists of a left parenthesis followed by an ordered pair of numeric input fields separated by a
comma and followed by a right parenthesis. The first numeric input field is the real part of
the complex constant and the second part is the imaginary part. Each of the numeric input
fields may be preceded or followed by blanks. The end of a record may occur between the
real part and the comma or between the comma and the imaginary part.

When the corresponding list item is of type logical, the input form of the input value must not
include either slashes, blanks, equals, or commas among the optional characters permitted
for L editing (10.5.3).

When the corresponding list item is of type character, the input form of the input value con-
sists of a nonempty string of characters enclosed in apostrophes or gquotation marks. Each
apostrophe within a character constant delimited by apostrophes must be represented by two
consecutive apostrophes without an intervening blank or end of record. Each quotation mark
within a character constant delimited by quotation marks must be represented by two con-
secutive quotation marks without an intervening blank or end of record. Character constants
may be continued from the end of one record to the beginning of the next record. The end
of the record does not cause a blank or any other character to become part of the constant.
The constant may be continued on as many records as needed. The characters blank,
comma, equals, and slash may appear in character constants.

Let /en be the length of the list item, and let w be the length of the character constant. If
len is less than or equal to w, the leftmost len characters of the constant are transmitted to
the list item. If len is greater than w, the constant is transmitted to the leftmost w characters
of the list item and the remaining len — w characters of the list item are filled with blanks.
Note that the effect is as though the constant were assigned to the list item in a character
assignment statement (7.5.1.4).

If the corresponding list item is of type character and (1) the character constant does not
contain the value separators blank, comma, slash, or equals, (2) the character constant does
not cross a record boundary, (3) the first nonblank character is not a quotation mark or an
apostrophe, and (4) the leading characters are not numeric followed by an asterisk, then the

Version 99 1986 March Page 10-15

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

enclosing apostrophes or quotation marks are not required and apostrophes or quotation
marks within the character constant are not to be doubled.

10.9.1.1 Null Values. A null value is specified by:
(1) r* form
(2) Blanks between two consecutive value separators following an equals

(38) Zero or more blanks preceding the first value separator and following an equals,
or

(4) Two consecutive nonblank value separators

A null value has no effect on the definition status of the corresponding input list item. If the
input list item is defined, it retains its previous value; if it is undefined, it remains undefined.
A null value must not be used as either the real or imaginary part of a complex constant, but
a single null value may represent an entire complex constant.

Note that the end of a record following a value separator, with or without intervening bianks,
does not specify a null value.

10.9.1.2 Blanks. All blanks in a name-directed input record are considered to be part of
some value separator except for:

(1) Blanks embedded in a character constant,
() Embedded blanks surrounding the real or imaginary part of a complex constant,

(3) Leading blanks following the equals unless followed immediately by a slash or
comma, and

(4) Blanks between a name and the following equals.

10.9.2 Name-Directed Output. The form of the output produced is the same as that
required for input, except as noted otherwise. If the processor is capable of representing
letters in both upper and lower case, the name in the output is in upper case. With the
exception of nondelimited character constants, the values are separated by (1) one or more
blanks or (2) a comma optionally preceded by one or more blanks and optionally followed by
one or more blanks.

The processor may begin new {records as necessary. However, except for complex con-
stants and character constants, the end of a record must not occur within a constant or a
name, and blanks must not appear within a constant or a name.

Logical output constants are T for the value true and F for the value false.
Bit output constants are 1 for the value B’1’ and 0 for the value B'O’.
Integer output constants are produced with the effect of an lw edit descriptor.

Real and double precision constants are produced with the effect of either an F edit descriptor
or an E edit descriptor, depending on the magnitude x of the value and a range
10%" < x < 10%. If the magnitude x is within this range, the constant is produced using
OPFw.d; otherwise, 1PEw.dEe is used.

For numeric output, reasonable processor-dependent integer values of w, d, and e are used
for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating the real and
imaginary parts. The end of a record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than, an entire record. The only embed-
ded blanks permitted within a complex constant are between the comma and the end of a

Version 99 1986 March Page 10-16

INPUT/QOUTPUT EDITING X3J3/S8

10

15

20

25

record and one blank at the beginning of the next record.

Character constants produced for a file opened without a DELIM = specifier (9.3.4.9) or with
a DELIM = specifier with a value of NONE:

(1) Are not delimited by apostrophes or quotation marks
(2) Are not preceded or followed by a value separator

(8) Have each internal apostrophe or quotation mark and represented externally by
ohe apostrophe or quotation mark

(4) Have a blank character inserted by the processor for carriage control at the begin-
ning of any record that begins with the continuation of a character constant from
the preceding record.

Character constants produced for a file opened with a DELIM= specifier with a value of
QUOTE are delimited by quotes, are preceded and followed by a value separator, and have
each internal quote represented on the external medium by two quotes.

Character constants produced for a file opened with a DELIM= specifier with a value of
APOSTROPHE are delimited by apostrophes, are preceded and followed by a value separa-
tor, and have each internal apostrophe represented on the external medium by two apostro-
phes.

If two or more successive values in an array in an output record produced have identical
values, the processor has the option of producing a repeated constant of the form r+c
instead of the sequence of identical values.

The name of each output list item is placed in the output record followed by an equals and
one or more values of the output list item.

A slash will be produced by name-directed formatting to indicate the end of the name-
directed formatting.

A null value will not be produced by name-directed formatting.

Each output record begins with a blank character to provide carriage control when the record
is printed.

Version 99 1986 March Page 10-17

10

15

20

25

30

35

i1 PROGRAM UNITS

The terms and basic concepts of program unit were introduced in 2.2. An external program
unit may be a main program, procedure subprogram, module subprogram, or block data subpro-
gram. An internal program unit is a procedure subprogram.

This section describes all of these program units except procedure subprograms, which are
described in Section 12.

11.1 Main Program.

R200 main-program is [program-stmt)
program-unit-body
end-program-stmt
R1101 program-stmt is PROGRAM program-name
R1102 end-program-stmt is END [PROGRAM [program-name] |

Constraint: The program-name may be included in the end-program-stmt only if the optional
program-stmt is used and, if included, must be identical to the program-name
specified in the program-stmt.

The program name is global to the executable program, and must not be the same as the
name of any other external program unit, external procedure, or common block in the execut-
able program, nor the same as any local name in the main program.

11.1.1 Main Program Specifications. The specifications in the main program must not
include an OPTIONAL statement, an INTENT statement, a PUBLIC statement, a PRIVATE
statement, or the equivalent attributes (5.1.2). A SAVE statement has no effect in a main
program.

11.1.2 Main Program Executable Part. The sequence of execution-part statements
specifies the actions of the main program during program execution. Execution of an exe-
cutable program (R201) begins with the first executable construct of the main program. A
main program execution-part statement may be any of those listed in syntax rules R214,
R217, and R218 of Section 2.1, except a RETURN statement or an ENTRY statement.

A main program must not be recursive; that is, a reference to it must not appear in any pro-
gram unit in the executable program, including itself.

Execution of an executable program ends with execution of the END PROGRAM statement
of the main program, with the signalling of a condition in the main program for which there is
no handler, or with execution of a STOP statement in any program unit of the executable
program.

11.1.3 Main Program Internal Procedures. Any definitions of procedures internal to the
main program follow the CONTAINS statement. Internal procedures are described in Sec-
tion 12. The main program is called the host of its internal procedures, but not of proce-
dures internal to them.

11.2 Procedure Subprograms. Procedure subprograms are described in Section 12.

Version 99 1986 March Page 11-1

PROGRAM UNITS X3J3/58

10

15

20

25

30

35

40

11.3 Module Subprograms. A module contains a set of specifications and definitions
that are to be used by other program units.

R200 module-subprogram is module-stmt
program-unit-body
end-module-stmt

R1103 module-stmt is MODULE module-name
R1104 end-module-stmt is END [MODULE [module-name | |

Constraint: If the module-name is specified in the end-module-stmt, it must be identical to
the module-name specified in the module-stmt.

The module name is global to the executable program, and must not be the same as the
name of any other external program unit, external procedure, or common block in the execut-
able program, nor the same as any local name in the module subprogram.

A USE statement specifying a module name is a module reference. At the time a module
reference is processed, the public portions of the specified moduie subprogram must be
available. A module subprogram must not reference itself, either directly or indirectly.

The accessibility, public or private, of specifications and definitions in a module to a program
unit making reference to the module may be controlled in both the module and the program
unit making the reference. In the module, the PRIVATE statement, the PUBLIC statement
(5.2.3), and the equivalent attributes (5.1.2.2) are used to control the accessibility of module
entities outside the module.

In a program unit making reference to a module, options on the USE statement may be
used to further limit the availability, to that referencing program unit, of the public entities in
the module.

A module specification may be any of those listed in syntax rule R216 of Section 2.1, except
an INTENT statement, an OPTIONAL statement, and the equivalent INTENT and OPTIONAL
attributes.

11.3.1 The USE Statement. The USE statement provides the means by which a program
unit accesses entities in a module subprogram or, in the case of an internal procedure, in its
host.

R1105 use-stmt is USE [module-name | [[,] all-clause]

or USE [module-name | [,] ONLY ([only-list])
R1106 all-ciause is ALL ([rename-list |)

or ALL [([rename-list] }] EXCEPT (except-list)
R1107 rename is use-name = > local-name
R1108 except is use-name
R1109 only is use-name [= > local-name]
R1110 wuse-name is variable-name

or procedure-name
or type-name

or condition-name

or constant-name

The USE statement with neither the ALL option nor the ONLY option implies the ALL option
with an empty rename-list.

Version 99 1986 March Page 11-2

PROGRAM UNITS X3J3/S8

10

15

20

25

30

35

40

In a USE statement, the module name must not be omitted except in an internal procedure
and, in this case, access is provided to entities in its host. If an internal procedure has no
such USE statement, it is as if it contained a USE ALL () statement. A program unit may
contain more than one USE statement with the module name omitted or more than one USE
statement for a single module name.

Each use-name must be the name of a public entity in the module or an entity in the host. If
a local-name appears in a rename-list or an only-list, it is the local name for the entity
original-name; otherwise, the local name is the use-name.

A USE statement with the ONLY option provides access to those entities whose names
appear as use names in its only-list. Such entities are explicitly accessible.

A USE statement with an explicit ALL option provides access to those entities whose names
appear as use names in its rename-list. Such names are explicitly accessible. In addition, a
USE statement with an implicit or explicit ALL option provides access to certain entities that
are not explicitly listed. Entities accessible by this means are implicitly accessible. All
public eligible entities in the accessed program unit that are simple variables, symbolic con-
stants, types, procedures, or conditions are implicitly accessible except:

(1) Any entity named in an except-list,
(2) Any entity named in the rename-list (these are explicitly accessible),

(3) In the case of a USE statement in a procedure, any entity whose name is the
same as the name of a dummy argument of the procedure, and

(4) In the case of a USE statement in a function subprogram, any entity whose name
is the same as the name of the function or its result variable.

An entity may be made implicitly accessible with the same name as an entity made implicitly
or explicitly accessible from a different host or module if the entity is the same one (ulti-
mately acquired from the same source). In a program unit, two or more entities given
implicit accessibility by USE statements may have the same name provided no entity is
accessed by this name in the program unit. Except for this, the local name of any entity
given accessibility by a USE statement must differ from the local names of all other entities
accessible from the program unit through USE statements and otherwise. Note that an
entity may be accessed by more than one local name.

A local name of an entity given accessibility by a USE statement in a program unit may
appear in a PRIVATE or PUBLIC statement, but in no other specification statement in the
program unit.

If a program unit has implicit accessibility to entities of a second program unit, this includes
the entities to which the second program unit has implicit accessibility.

Examples:

USE STATS_LIB

provides access to all public entities in the module STATS__LIB.
USE ONLY O

ensures that an internal procedure has no access to entities in its host except through argu-
ment association and COMMON asscciation.

USE MATH_LIB, ALL EXCEPT (ML_X15)
makes accessible all public entities in the module MATH__LIB except ML__X15.
USE MATH_LIB; USE STATS_LIB, ALL (PROD => SPROD)

Version 99 1986 March Page 11-3

PROGRAM UNITS) X3J3/S8

10

16

20

25

30

35

40

makes all public entities in both MATH__LIB and STATS_LIB accessible. If MATH__LIB
contains an entity called PROD, it is accessible by its own name while the entity PROD of
STATS__LIB is accessible by the name SPROD. Both modules may contain an entity called
SUMM, for example, if SUMM does not appear in the program unit containing the USE state-
ments and SUMM is not declared in a type statement in the program unit.

11.3.2 Examples of Modules.

11.3.2.1 Identical Common Blocks. A common block and all its associated specification
statements may be placed in a module named, for example, COMMON and accessed by a
USE statement of the form

USE COMMON

that accesses the whole module without any renaming. This ensures that all instances of
the common block are identical. Module COMMON could contain more than one common
block.

11.3.2.2 Global Data. A module may contain just data objects, for example

MODULE DATA_MODULE

REAL A(10), B, €(20,200
INTEGER, INITIAL :: I=0
INTEGER, PARAMETER :: J=10
COMPLEX D(J,J)

END MODULE

Note that data objects made global in this manner may have any combination of data types.
Access to some of these may be made by a USE statement with the ONLY option, such as:
USE DATA_MODULE, ONLY (A, B, D)

and access to all of them may be made by the following USE statement

USE DATA_MODULE

Access to all of them with some renaming to avoid name conflicts may be made by:

USE DATA_MODULE, ALL (A => AMODULE, D => DMODULE)

11.3.2.3 Data Structures. A derived type may be defined in a module for use in a number
of external program units. This is the only way to access the same type definition in more
than one program unit. For example:

MODULE SPARSE

TYPE NONZERO
REAL A
INTEGER I, J

END TYPE

END MODULE

defines a type consisting of a real component and two integer components for holding the
numerical value of a nonzero matrix element and its row and column indices.

11.3.2.4 Global Allocatable Arrays. Many programs need large global allocatable arrays
whose sizes are not known before program execution. A simple form for such a program is:

PROGRAM GLOBAL_WORK
CALL CONFIGURE_ARRAYS | PERFORM THE APPROPRIATE ALLOCATIONS
CALL COMPUTE | USE THE ARRAYS IN COMPUTATIONS

VERSION 99 1986 MARCH PAGE 11-4

PROGRAM UNITS X3J3/S8

10

15

20

25

30

35

40

45

END PROGRAM GLOBAL_WORK

MODULE WORK_ARRAYS | AN EXAMPLE SET OF WORK ARRAYS
INTEGER N

REAL, ALLOCATABLE, SAVE :: A(:z), B(:,:), C(:,:,0)

END MODULE WORK_ARRAYS

SUBROUTINE CONFIGURE_ARRAYS ! PROCESS TO SET UP WORK ARRAYS
USE YORK_ARRAYS

READ (INPUT,*) N

ALLOCATE ¢ ACN), B(N,N), C(N,N,2*N))

END SUBROUTINE CONFIGURE_ARRAYS

SUBROUTINE COMPUTE

USE WORK_ARRAYS

I COMPUTATIONS INVOLVING ARRAYS A, B, AND C
END SUBROUTINE COMPUTE

Typically, many procedures need access to the work arrays, and all such procedures would
contain the statement

USE WORK_ARRAYS

11.3.2.5 Procedure Libraries. Interfaces to external procedures in a library may be gath-
ered into a module. This permits the use of keyword and optional arguments, and allows
static checking of the references. Different versions may be constructed for different appli-
cations, using keywords in common use in each application. An example is the following
library module:

MODULE LIBRARY_LLS
INTERFACE
SUBROUTINE LLS (X, A, F, FLAG)
REAL (*, *) X (:,)
REAL (*, *), ARRAY (SIZE (X, 2)) :: A, F
INTEGER FLAG
END INTERFACE
END MODULE

This module allows the subroutine LLS to be invoked:
USE LIBRARY_LLS

CALL LLS (X = ABC, A =D, F = XX, FLAG = IFLAG)

11.3.2.6 Operator Extensions. To extend the operator + to have the meaning .BOR. for
bit operands, the following may be written:

MODULE BIT_PLUS
FUNCTION OR(B1,B2) OPERATOR(+)
BIT :: OR, B1, B2
OR = B1 .BOR. B2
END FUNCTION
END MODULE

A module might contain several such functions. If the operation is written in a language
other than Fortran, it may be written as an external function and its procedure interface
placed in the module.

Version 99 1986 March Page 11-5

PROGRAM UNITS X3J3/58

10

15

20

11.4 Data Abstraction. A module may encapsulate a derived-type definition and all the
operations on values of this type. An example is given in Appendix C for set operations.

11.5 Block Data Subprograms. A block data subprogram is used to provide initial values for data enti-
ties in named common blocks.

R1111 block-data-subprogram is biock-data-stmt
program-unit-body
end-block-data-stmt

R1112 block-data-stmt is BLOCK DATA [block-data-name |
R1113 end-block-cata-stmt is END [BLOCK DATA { block-data-name |
Constraint: The block-data-name may be included in the end-block-data-stmt only if it was provided in the block-

data-stmt and, if included, must be identical to the block-data-name in the block-data-stmt.

The specifications of a block data subprogram may contain only the following ctatements: type declaration, IMPLICIT,
PARAMETER, SAVE, COMMON, DATA, DIMENSION, and EQUIVALENCE.

If an entity in a named common block is initially defined, all entities having storage units in the common block storage
sequence must be specified even if they are not all initially defined. More than one named common block may have
objects initially defined in a single block data subprogram. Note, therefore, that the primary constituents of a block data
subprogram are type declarations of common block entities, COMMON statements, and DATA statements.

Only an entity in a named common block may be initially defined in a block data subprogram. Note that entities associ=
ated with an entity in a common block are considered to be in that common block.

The same named common block may not be specified in more than one block data subprogram in an executable pro-
gram.

There must not be more than one unnamed block data subprogram in an executable program.

Version 99 1986 March Page 11-6

10

15

20

25

30

35

12 PROCEDURES

The concept of a procedure was introduced in 2.2.3. This section contains a complete
description of procedures. The action specified by a procedure is performed when the pro-
cedure is invoked by execution of a reference to it. The reference may identify, as actual
arguments, entities that are associated during execution of the procedure reference with cor-
responding dummy arguments in the procedure definition.

12.1 Procedure Classifications. A procedure is classified according to the form of its
reference and the way it is defined.

12.1.1 Procedure Classification by Reference. The definition of a procedure specifies it
to be a function or a subroutine. A reference to a function appears as a primary within an
expression. A reference to a subroutine is a CALL statement or a defined assignment state-
ment.

A procedure is classified as elemental if its reference to a subroutine is an elemental refer-
ence (12.4.3, 12.4.5).

12.1.2 Procedure Classification by Means of Definition. A procedure is either an intrin-
sic procedure, an external or internal procedure, a dummy procedure, or a statement function.

12.1.2.1 Intrinsic Procedures. A procedure that is provided as an inherent part of the
processor is an intrinsic procedure.

12.1.2.2 External and Internal Procedures. A procedure that is defined by a procedure
subprogram is either an external procedure or an internal procedure. If the procedure sub-
program is not contained in another program unit, the procedure is an external procedure.
If the procedure subprogram is contained in another program unit, the procedure is an inter-
nal procedure. Means other than Fortran may also be used to define an external or internal
procedure.

If a procedure subprogram contains one or more ENTRY statements, it defines a procedure for each ENTRY statement
and a procedure for the SUBROUTINE or FUNCTION statement.

12.1.2.3 Dummy Procedures. A dummy argument that is specified as a procedure or
appears in a procedure reference is a dummy procedure.

12.1.2.4 Statement Functions. A function that is defined by a single statement is a statement function.

12.2 Characteristics of Procedures. The characteristics of a procedure consist of the
classification of the procedure as a function or subroutine, the characteristics of its argu-
ments, and the characteristics of its result value if it is a function.

12.2.1 Characteristics of Dummy Arguments. Each dummy argument is either a dummy
data object, a dummy procedure, a dummy condition, or an asterisk. A dummy argument may
be specified to have the OPTIONAL attribute. This attribute means that the dummy argu-
ment need not be associated with an actual argument for any particular reference to the pro-
cedure.

Version 99 1986 March Page 12-1

PROCEDURES X3J3/58

10

156

20

25

30

35

40

12.2.1.1 Characteristics of Dummy Data Objects. The characteristics of a dummy data
object consists of its type, type parameters (if any), shape, intent (5.1.2.3, 5.2.1), optionality
(5.1.2.7, 5.2.2), and whether it is allocatable (5.1.2.4.3). If a type parameter or a bound of an
array is an expression, the exact dependence on other entities is a characteristic. If shape,
size, Or type parameters are assumed, these are characteristics.

12.2.1.2 Characteristics of Dummy Procedures. The characteristics of a dummy proce-
dure consist of the explicitness of its interface (12.3.1), the characteristics of the procedure if
the interface is explicit, and its optionality (5.1.2.7, 5.2.2).

12.2.1.3 Characteristics of Dummy Conditions. The only characteristic of a dummy con-
dition is its optionality (5.1.2.7, 5.2.2).

12.2.1.4 Characteristics of Asterisk Dummy Arguments. An asterisk as a dummy argument has
no characteristics.

12.2.2 Characteristics of Function Results. The characteristics of a function result con-
sist of its type, type parameters (if any), shape, and whether it is allocatable. Where a type
parameter or bound of an array is an expression, the exact dependence on other entities is
a characteristic. If the length of a character data object is assumed, this is a characteristic.

12.3 Procedure Interface. The interface of a procedure determines the forms of refer-
ence through which it may be invoked. The interface consists of the characteristics of the
procedure, the name of the procedure, the name of each dummy argument, the operator (if
any) by which a reference to a function may appear, and whether or not a reference to a
subroutine may be implied in a defined assignment statement. The characteristics of a pro-
cedure are fixed, but the remainder of the interface may differ in different program units.

12.3.1 Implicit and Explicit Interfaces. If a procedure is accessible in a program unit, its
interface is either explicit or implicit in that program unit. The interface of an internal pro-
cedure or intrinsic procedure is always explicit. For example, the subroutine LLS of 11.3.2.5
has an explicit interface. The interface of an external procedure or dummy procedure is
explicit if an interface block (12.3.2.1) for the procedure is supplied and implicit otherwise.
For example, when the function OR of 11:3.2.6 is written as an external function in another
language, it has an explicit interface when the module BIT__PLUS is used to supply an inter-
face block for it, rather than the internal function definition. The interface of a statement function is
always implicit.

12.3.1.1 Explicit Interface. A procedure must have an explicit interface in a program unit
if any of the following is true:
(1) A reference to the procedure appears:
(a) With a keyword argument (12.4.1)
(b) As a defined assignment (subroutines only)
(c) In an expression as a defined operator (functions only)
(d) As an elemental reference
(2) The procedure has:
(a) An optional dummy argument

(b) An array-valued result (functions only)

Version 99 1986 March Page 12-2

PROCEDURES X3J3/S8

10

15

20

30

40

(c) An allocatable result (functions only)
(d) A dummy argument that is an assumed-shape or allocatable array

(e) A dummy argument with assumed type parameters other than character
length

() A result whose type parameter values are neither assumed length (character
type only) nor constant.

(3) Another procedure having the same name is accessible

12.3.1.2 Implicit Interface. An actual argument may be sequence associated (12.4.1.5) with its dummy argu-
ment if its interface is implicit.

12.3.2 Speciiication of the Procedure Interface. The interface for an internal, external,
or dummy procedure is specified by a FUNCTION, SUBROUTINE, or ENTRY statement and by
specification statements for the dummy arguments and the result of a function. These state-
ments may appear in the procedure definition, in an interface block, or both.

12.3.2.1 Procedure Interface Block.

R1201 interface-block is interface-stmt
interface-specification
end-interface-stmt

R1202 interface-stmt is INTERFACE
R1203 end-interface-stmt Is END INTERFACE
R1204 interface-specification Is interface-header

[use-stmt]...

[implicit-part |...

[declaration-part |...

R1205 interface-header is function-stmt
or subroutine-stmt.

An interface block in a program unit specifies the interface of the procedure named in the
FUNCTION or SUBROUTINE statement in the interface block. The statements are interpre-
ted as if they were the leading statements of an external procedure, except the interface
block may contain a USE statement accessing the host program unit. For example,

IMPLICIT NONE
INTERFACE
FUNCTION INVERSE (A)
END INTERFACE

is a valid fragment of code because the FUNCTION statement is interpreted as if it were the
leading statement of an external function, so the default implicit typing rules are assumed.

An interface block that names as a procedure a dummy argument of the host program unit
specifies that dummy argument to be a procedure with the specified interface. A dummy
argument must not be so named more than once. Such a dummy argument may be
specified in an OPTIONAL statement or with an OPTIONAL attribute in the host but must not
appear in any other specification statement in the host. For example,

SUBROUTINE INVERSE (A, FN)
REAL A
INTERFACE

VERSION 99 1986 MARCH PAGE 12-3

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

FUNCTION FN (B)
REAL FN, B

END INTERFACE

specifies a subroutine whose second argument is a real function with a single real argument.

An interface block that does not name as a procedure a dummy argument of the host pro-
gram unit specifies an interface to an external procedure. In a module, the name of the
external procedure may appear in a PUBLIC or PRIVATE statement or be given the equiva-
lent attribute, but must not appear in any other specification statement in the host.

The characteristics (12.2) of the procedure itself must be identical with those specified by
the interface block. The presence of the block does not require the availability of the proce-
dure until it is invoked.

12.3.2.2 EXTERNAL Statement. An external statement is used to specify a symbolic
name as representing an external procedure or dummy procedure, and to permit such a
name to be used as an actual argument.

R1206 external-stmt is EXTERNAL external-name-list

R1207 external-name is external-procedure-name
or dummy-arg-name
or block-data-name

The appearance of the name of a dummy argument in an EXTERNAL statement specifies
that the dummy argument is a dummy procedure.

The appearance in an EXTERNAL statement of a name that is not the name of a dummy
argument specifies that the name is the name of an external procedure or block data subprogram.

Only one appearance of a symbolic name in all of the EXTERNAL statements in any one
sequence of declaration part statements is permitted.

12.3.2.3 INTRINSIC Statement. An INTRINSIC statement is used to specify a symbolic
name as representing an intrinsic procedure (Section 13) or an intrinsic condition. It also
permits a name that represents a specific intrinsic function to be used as an actual argu-
ment.

R1208 intrinsic-stmt is INTRINSIC intrinsic-name-list

R1209 intrinsic-name is intrinsic-procedure-name
or intrinsic-condition-name

The appearance of a name in an INTRINSIC statement confirms that the name is the name
of an intrinsic procedure or an intrinsic condition. The appearance of a generic function
name (13.1) in an INTRINSIC statement does not cause that name to lose its generic prop-
erty.

Only one appearance of a symbolic name in all of the INTRINSIC statements in any one
sequence declaration part statements is permitted. Note that a symbolic name must not
appear in both an EXTERNAL and an INTRINSIC statement in the same sequence of
declaration-part statements.

Version 99 1986 March Page 12-4

PROCEDURES X3J3/s8

10

15

20

25

30

35

40

45

12.3.2.4 Implicit Interface Specification. In a program unit where the interface of a func-
tion is implicit, the type and type parameters of the function result are specified by implicit or
explicit type specification of the function name. The type, type parameters, and shape of
dummy arguments of a procedure referenced from a program unit where the interface of a
procedure is implicit are assumed to be such that the actual arguments are consistent with
the characteristics of the dummy arguments.

12.4 Procedure Reference. The form of a procedure reference is dependent on the
interface of the procedure, but is independent of the means by which the procedure is
defined. The form of procedure references are:

R1210 function-reference Is function-name (| actual-arg-spec-list |)

Constraint: The actual-arg-spec-list for a function reference must not contain an ait-return-
spec.

R1211 call-stmt is CALL subroutine-name |[([actual-arg-spec-list)]

12.4.1 Actual Argument List.

R1212 actual-arg-spec Is [keyword =] actual-arg
R1213 keyword Is dummy-arg-name
R1214 actual-arg is expr

or variable

or procedure-name
or condition-name
or alt-return-spec

R1215 aft-return-spec is * jabel

Constraint: The keyword may be omitted from an actual-arg-spec only if the keyword has
been omitted from each preceding actual-arg-spec in the argument list.

Constraint: Each keyword must be the name of a dummy argument in the interface of the
procedure.

In either a subroutine reference or a function reference, the actual argument list identifies
the correspondence between the actual arguments supplied and the dummy arguments of
the procedure. In the absence of a keyword, an actual argument is associated with the
dummy argument occupying the corresponding position in the dummy argument list; i.e., the
first actual argument is associated with the first dummy argument, the second actual argu-
ment is associated with the second dummy argument, etc. If a keyword is present, the
actual argument is associated with the dummy argument whose name is the same as the
keyword. Exactly one actual argument must be associated with each nonoptional dummy
argument. At most one actual argument may be associated with each optional argument.
Each actual argument must be associated with a dummy argument. For example, the proce-
dure

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)
INTERFACE
FUNCTION FUNCT (X)
REAL FUNCT, X
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT

VERSION 99 1986 MARCH PAGE 12-5

PROCEDURES X3J3/S8

10

15

20

25

30

35

40

45

may be invoked with
CALL SOLVE (FUN, SOL, PRINT = 6)

12.4.1.1 Arguments Associated with Dummy Data Objects. If a dummy argument is a
dummy data object, the associated actual argument must be an expression of the same type
or a data object of the same type. The type parameter values of the actual argument, if
any, must agree with or be assumed by the dummy argument. The shape of the actual
argument must agree with or be assumed by the dummy argument except when a proce-
dure reference is elemental (12.4.3, 12.4.5) or when the actual argument is sequence associated with the
dummy argument (12.4.1.5). Each element of an array-valued actual argument or of a sequence in a
sequence association (12.4.1.5) is associated with the element of the dummy array that has the
same position in subscript order value (6.2.4.2).

If the intent of a dummy argument is OUT or INOUT, the actual argument must be definable.
If the intent of a dummy argument is OUT and it or any part of it is not defined during the
execution of the procedure, the corresponding actual argument or part of it becomes
undefined.

12.4.1.2 Arguments Associated with Dummy Procedures. If a dummy argument is a
dummy procedure, the associated actual argument must be the name of an external, inter-
nal, dummy, or intrinsic procedure. The only intrinsic procedures permitted are those listed in 13.8.17 and not
marked with a bullet (s). The actual argument name must be one for which exactly one proce-
dure is accessible in the invoking program unit. (A specific intrinsic function and a generic intrinsic func=
tion of the same name are considered to be one procedure) The actual argument procedure must not
have dummy arguments with assumed type parameters other than character assumed
lengths.

If the interface of the dummy procedure is explicit, the characteristics of the associated pro-
cedure must be the same as the characteristics of the dummy procedure (12.2).

If the interface of the dummy procedure is implicit and either the name of the dummy proce-
dure is explicitly typed or the procedure is referenced as a function, the dummy procedure
must not be referenced as a subroutine and the actual argument must be a function or
dummy procedure.

If the interface of the dummy procedure is implicit and a reference to the procedure appears
as a subroutine reference, the actual argument must be a subroutine or dummy procedure.

12.4.1.3 Arguments Associated with Dummy Conditions. If a dummy argument is a
dummy condition, the associated actual argument must be a condition name.

12.4.1.4 Arguments Associated with Alternate Return Indicators. if a dummy argument is an
asterisk (12.5.2.3), the associated actual argument must be an alternate return specifier. The label in the alternate return
specifier must identify an executable construct in the program unit containing the procedure reference.

12.4.1.5 Sequence Association. An actual argument represents an element sequence if it is a whole array
name, array element name, or array element substring name and the array is neither a dummy argument that is not
sequence associated, a ranged array, nor an alias array. If the actual argument is a whole array name, the elerment
sequence consists of the elements in subscript order value. If the actual argument is an array element name, the ele-
ment sequence consists of that array element and each element that follows it in subscript order value. If the actual
argument is an array element substring name, the element sequence consists of the character storage units beginning
with the first storage unit in that array element substring and continuing to the end of the array. The character storage
units are viewed as elements consisting of consecutive groups of character storage units the length of the array element
substring. Thus, the first such element is the array element substring itself. Note that some of the elements in the ele-
ment sequence may consist of storage units from different elements of the original array.

Version 99 1986 March Page 12-6

PROCEDURES X3J3/S8

10

15

20

25

30

35

If the interface for a procedure reference is implicit, the actual argument represents an element sequence, and the corre=
sponding dummy argument is an array-valued data object that is neither allocatable nor assumed shape, the actual
argument is sequence associated with the dummy argument. The rank and shape of the actual argument need not
agree with the rank and shape of the dummy argument, but the number of elements in the dummy argument must not
exceed the number of elements in the element sequence of the actual argument. If the dummy argument is assumed
size, the number of elements in the dummy argument is exactly the number of elements in the slement sequence.

12.4.2 Functlion Reference. A function is invoked during expression evaluation by a func-
tion reference or by defined operations (7.1.3). When it is invoked, all actual argument
expressions are evaluated, then the arguments are associated, and then the function is exe-
cuted. When execution of the function is complete, the value of the function result is avail-
able for use in the expression that caused the function to be invoked.

12.4.3 Elemental Function Reference. A reference to a function is an elemental refer-
ence if the interface for the function is explicit, if its dummy arguments and result are all
scalar data objects, and if the type parameters of the result are independent of the values of
the actual arguments. Arguments to such a reference may be arrays, provided all array arg-
uments have the same shape. The result has the same shape as the array arguments and
the value of each element in the result is obtained by evaluating the function using the sca-
lar arguments and the corresponding elements of the array arguments. For example, if X
and Y are arrays of shape [m, n],

MAX (X, 0.0, Y)
is an array expression of shape [m, n] whose elements have values

MAX (X (i, /),0.0,Y(, /), i =1,2,...m, j =1,2,....n
The result must not depend on the order in which these references are made.
For example, the reference to the procedure

FUNCTION SCALE (A)
READ (*, %) FACTOR
SCALE = A * FACTOR

END

must not be an elemental reference.

A function reference is not interpreted as being such an elemental reference if it may be
interpreted as a nonelemental reference to a function with the same name whose interface
is explicit in the program unit containing the reference. For example, the expression SCALE
([1:10]) would not be interpreted as an elemental reference if a function SCALE with one
integer argument of rank one is accessible.

12.4.4 Subroutine Reference. A subroutine is invoked by execution of a CALL statement
or defined assignment statement (7.5.1.3). When a subroutine is invoked, all actual argu-
ment expressions are evaluated, then the arguments are associated, and then the subrou-
tine is executed. When the action specified by the subroutine is completed, execution of
the CALL statement or defined assignment statement is also completed. If a CALL statement
includes one or more alternate return specifiers among its arguments, control may be transferred to one of the state-
ments indicated, depending on the action specified by the subroutine.

12.4.5 Elemental Assignment. A reference to an assignment subroutine may be an ele-
mental reference in a defined assignment statement if its dummy arguments are scalar and
the type parameters of the first dummy argument are independent of the value of the sec-
ond dummy argument. In such a reference, the first actual argument is array valued and the
second is of the same shape or is scalar. The subroutine is invoked once for each element

Version 99 1986 March Page 12-7

PROCEDURES X3J3/58

of the first actual argument, using the corresponding element of the second actual argument

or its scalar value. The result must not depend on the order in which these invocations are

made. An assignment is not interpreted as an elemental assignment if it may be interpreted

as a nonelemental assignment. An example of a subroutine that may be invoked as an ele-
5 mental assignment is:

SUBROUTINE BITLOG (B, L) ASSIGNMENT
BIT B
LOGICAL L
B = BITL (L)
10 END

12.5 Procedure Definition.

12.5.1 Intrinsic Procedure Definition. Intrinsic procedures are defined as an inherent part

of the processor. A standard-conforming processor must include the intrinsic procedures

described in Section 13, but may include others. However, a standard-conforming program
15 must not make use of intrinsic procedures other than those described in Section 13.

12.5.2 Procedures Defined by Procedure Subprograms. When a procedure defined by a
procedure subprogram is invoked, an instance (12.5.2.4) of the procedure subprogram is cre-
ated and executed. Execution begins with the first executable construct following the FUNC-
TION, SUBROUTINE, or ENTRY statement Specifying the name of the procedure invoked.

20 12.5.2.1 Effects of Intent on Procedure Subprograms. The intent of dummy data objects
limits the way in which they may be used in a procedure subprogram. A dummy data object
having intent IN may not be defined or redefined by the procedure. A dummy data object
having intent OUT is initially undefined in the procedure. A dummy data object with intent
INOUT may be referenced or be defined. A dummy data object whose intent is neither

25 specified nor implied by the presence of the OPERATOR or ASSIGNMENT option is subject
to the limitations of the data entity that is the associated actual argument. That is, a refer-
ence to the dummy data object may appear if the actual argument is defined and may be
defined if the actual argument is definable.

12.5.2.2 Function Subprogram.

30 R207 function-subprogram is function-stmt
program-unit-body
end-function-stmt

R1216 function-stmt is [prefix]| FUNCTION function-name ([dummy-arg-name-list |) | suffix]
R1217 prefix is type-spec [RECURSIVE]
35 or RECURSIVE [type-spec |
R1218 suffix is RESULT (result-name) | OPERATOR (defined-operator) |
or OPERATOR (defined-operator) [RESULT (result-name)]
R1219 end-function-stmt is END [FUNCTION [function-name |]

Constraint: FUNCTION must be present on the end-function-stmt of an internal function.

40 Constraint: [If function-name is supplied on the end-function-stmt, it must agree with the
function-name on the function-stmt.

The type of a function subprogram may be specified by a type specification in the FUNC-
TION statement or by the function name appearing in a type statement in the declaration
part of the function subprogram. It.may not be specified both ways. If it is not specified

Version 99 1986 March Page 12-8

PROCEDURES X3J3/58

10

15

20

25

30

35

45

either way, it is determined by the implicit typing rules in force within the function subpro-
gram. If the function result is array valued or allocatable, this must be specified by
specifications of the function name within the function body.

The keyword RECURSIVE must be present if the function invokes itself, either directly or
indirectly.

The name of the function is function-name.

If RESULT is specified, the name of the result variable of the function is result-name. Other-
wise, it is function-name. The result-name must not appear in any specification statement.

If OPERATOR is specified, the interface for the procedure includes the ability to invoke it
using a defined operator. This operator must be unary if the function has one dummy argu-
ment and binary if it has two dummy arguments; no other number of dummy arguments is
permitted. The dummy arguments must be nonoptional dummy data objects with intent IN.
If the intent of a dummy argument is not specified, the specification of OPERATOR causes it
to have intent IN.

12.5.2.3 Subroutine Subprogram.

R1220 subroutine-subprogram Is subroutine-stmt
program-unit-body
end-subroutine-stmt
R1221 subroutine-stmt is [RECURSIVE] SUBROUTINE subroutine-name [1
0O [(dummy-arg-list)] [ASSIGNMENT]
R1222 dummy-arg is dummy-arg-name
or *
R1223 end-subroutine-stmt Is END [SUBROUTINE [subroutine-name | |

Constraint: SUBROUTINE must be present on the end of an internal subroutine.

Constraint: If subroutine-name is present on the end-subroutine-stmt, it must agree with the
subroutine-name on the subroutine-stmt.

The keyword RECURSIVE must be present if the subroutine subprogram invokes itself,
gither directly or indirectly.

If ASSIGNMENT is specified, the subroutine may be referenced as an assignment statement
and is called an assignment subroutine. The subroutine must have exactly two arguments
which must be nonoptional dummy data objects. The first dummy argument must have
intent OUT or INOUT. If its intent is not specified, it has intent OUT. The second dummy
argument must have intent IN. [f its intent is not specified, it has intent IN.

12.5.2.4 Instances of a Procedure Subprogram. When a function or subroutine defined

‘by a procedure subprogram is invoked, an Instance of that subprogram is created.

Each instance has an independent sequence of execution and an independent set of
dummy arguments and nonsaved data objects. If an internal procedure or statement function
contained in the subprogram is invoked directly from an instance of the subprogram or a pro-
cedure having access by explicit or implicit USE statements to the entities of that instance,
then the created instance of that internal procedure or statement function also has access by
explicit or implicit USE statements to the entities of that instance of the host subprogram.
Similarly, if the internal procedure is supplied as an actual argument from an instance of the
subprogram or a procedure having access by explicit or implicit USE statements to the enti-
ties of that instance, then the instance of that internal procedure created by invoking the
associated dummy procedure also has access by explicit or implicit USE statements to the
entities of that instance of the host subprogram.

Version 99 1986 March Page 12-9

PROCEDURES X3J3/58

10

15

20

25

30

35

40

All other entities, including saved data objects, are common to all instances of the subpro-
gram. For example, the value of a saved data object appearing in one instance may have
been defined in a previous instance or by an INITIAL attribute or DATA statement.

12.5.2.5 ENTRY Statement.
R1224 entry-stmt is ENTRY entry-name [([dummy-arg-list]) |

Constraint: A dummy-arg may be an alternate return indicator only if the ENTRY statement is contained in a sub-
routine subprogram.

If the ENTRY statement is contained in a function subprogram, an additional function is defined by that subprogram.
The name of the function and its result variable is entry-name. The characteristics of the function result are specified by
specifications of entry-name. The dummy arguments of the function are those specified on the ENTRY statement. If the
characteristics of the result of the function named on the ENTRY statement are the same as the characteristics of the
function named on the FUNCTION statement, their result variables are associated. Otherwise, they are storage associ-
ated with the restrictions that they are scalar, that they have type and type parameters permitting storage association,
and that they have the same lengths if they are of character type,

If the ENTRY statement is contained in a subroutine subprogram, an additional subroutine is defined by that subprogram.
The name of the subroutine is entry-name. The dummy arguments of the subroutine are those specified on the ENTRY
statement.

12.5.2.6 RETURN Statement.

R1225 return-stmt is RETURN [scalar-int-expr]

Constraint: The return-stmt must be contained in a function or subroutine subprogram.
Constraint: The scalar-int-expr is allowed only in a subroutine subprogram.

Constraint: The expression must produce a scalar result of type integer.

Execution of the RETURN statement completes execution of the instance of the subprogram
in which it appears. If the expression is present and has a value n between 1 and the number of asteriske in the
dummy argument list, the CALL statement that invoked the subroutine transfers control to the statement identified by the
nth alternate return specifier in the actual argument list. If the ekpreséion is omitted or has a value outside the required
range, there is no transfer of control to an alternate return.

Execution of an END statement, an END FUNCTION statement, or END SUBROUTINE
statement is equivalent to executing a RETURN statement with no expression.

12.5.2.7 CONTAINS Statement. The CONTAINS statement separates the body of a pro-
gram unit from any internal subprograms it may contain. Execution of the CONTAINS state-
ment in a main program or procedure subprogram causes transfer of control to the END
PROGRAM, END FUNCTION, or END SUBROUTINE statement of the program in which it
appears. A CONTAINS statement in a module subprogram is not executable.

12.5.2.8 Restrictions on Dummy Arguments Not Associated. A dummy argument in an
instance of a procedure subprogram must be associated with an actual argument unless it is
optional and no corresponding actual argument is supplied when the procedure is invoked or
unless the subprogram defines multiple procedures and the dummy argument is not part of the argument list of the pro~
cedure invoked to create this instance of the subprogram. A dummy argument not associated with an
actual argument is subject to the following restrictions:

(1) If it is a dummy data object, it must not be referenced or be defined.
(2) If it is a dummy procedure, it must not be invoked.

(3) Ifitis a dummy condition, it must not be signaled.

Version 99 1986 March Page 12-10

PROCEDURES

(4)

(®)

X3J3/S8

It must not be supplied as an actual argument corresponding to a nonoptional
dummy argument other than the argument of the PRESENT intrinsic function.

it may be supplied as an actual argument corresponding to an optional dummy
argument. The optional dummy argument is then aiso considered not to be asso-
ciated with an actual argument.

12.5.2.9 Restrictions on Entities Assoclated with Dummy Arguments. While an entity is
associated with a dummy argument, the following restrictions hold:

10

15

20

25

30

35

40

Version 99

()

@

@)

4

No action may be taken that affects the availability of that entity. Note that an
allocatable entity may not be deallocated. For example, the internal procedure

SUBROUTINE INNER (A)
USE ONLY (B)
REAL A ()
DEALLOCATE (B)

must not be invoked from its host by the statement
CALL INNER (B)

If the dummy argument does not have intent IN, no action may be taken that
defines any part of that entity unless it does so through the dummy argument. For
example, if a subroutine is headed by

SUBROUTINE SUB (A, B)
and is invoked by
CALL suB (c, O

If any part of the entity is defined through the dummy argument, it may be refer-
enced only through that dummy argument.

A must not be defined during execution of SUB, because in this case B would be
defined by a means other than through its own argument association.

If the dummy argument has intent IN, no reference to any part of it may be made
after the definition status of the corresponding part of the actual argument has
been changed. For example, the following reference

USE MODL, ONLY (D)
CALL suB (D)

to a subroutine SUB of the form:

SUBROUTINE SUB (A)
USE MODL, ONLY (C, D)
REAL, INTENT (IN) :: A
D=1.0
C=A*B

END

is not permitted because the value of the dummy argument A is used in a refer-
ence after the associated object D is defined through its own name.

1986 March Page 12-11

PROCEDURES X3J3/S8

10

15

20

25

12.5.3 Definition of Procedures by Means Other Than Fortran. The means other than
Fortran by which a procedure may be defined are processor dependent. A reference to
such a procedure is made as though it were defined by a procedure subprogram. The
definition of a non-Fortran procedure must not be contained in a Fortran program unit and a
Fortran program unit must not be contained in the definition of a non-Fortran procedure.

12.5.3.1 Statement Function.
R1226 stmt-function-stmt is function-name ([dummy-arg-name-list | } = expr

Constraint: The expr may be composed only of constants (literal and symbolic). references to scalar variables and
array elements, references to functions, and intrinsic operators. If a reference to another statement
function appears in expr, its definition must have been provided earlier in the program unit.

Constraint: The function-name and each dummy-arg-spec must be specified, explicitly or implicitly, to be scalar data
objects.

The statement function produces the same result value as an internal function of the form

FUNCTION function-name ([dummy-arg-name-list])
function-and-dummy-specifications
function-name = expr

END FUNCTION function-name

where function-and-dummy-specifications are the specifications necessary to cause function-name and each dummy-arg-
spec to be given explicitly the same type and type parameters that those names are given. explicitly or implicitly. in the
program unit containing the statement function. Note, however, that unlike the internal function, the statement function
always has an impiicit interface and may not be supplied as a procedure argument.

12.5.4 Overloading Names. Two or more functions may be accessible with the same
name in the same program scope. Similarly, two or more functions may be accessible with
the same operator symbol in the same program scope; two or more subroutines may be
accessible with the same name in the same program scope; and two or more subroutines
may be accessible as assignments in the same program scope (Section 14).

Version 99 1986 March Page 12-12

10

15

20

25

30

35

40

13 INTRINSIC PROCEDURES

13.1 Intrinsic Functions.

An Intrinsic function is either an inquiry function, an elemental function, or a transforma-
tional function. An inquiry function is one whose result depends on the explicit or implicit
declarations associated with its principal argument and not on the value of this argument; in
fact, the argument value may be undefined. An elemental function is one that is specified
for scalar arguments, but may be applied to array arguments as described in 13.2. All other
intrinsic functions are transformationel functions; they almost all have one or more array-
valued arguments or an array-valued result.

Generic names of intrinsic functions are listed in 13.8.1 through 13.8.14. In most cases,
generic functions accept arguments of more than one type and the type of the result is the
same as the type of the arguments. Specific names of intrinsic functions with correspond-
ing generic names are listed in 13.8.17.

If an intrinsic function is used as an actual argument to an external procedure, its specific name must be used and it
may be referenced in the external procedure only with scalar arguments. If an intrinsic function does not
have a specific name, it must not be used as an actual argument.

13.2 Elemental Intrinsic Function Arguments and Results.

If a generic name or a specific name is used to reference an elemental intrinsic function, the
shape of the result is the same as the shape of the argument with the greatest rank. If the
arguments are all scalar, the result is scalar. For those elemental intrinsic functions that
have more than one argument, all arguments must be conformable. In the array-valued
case, the values of the elements of the result are the same as would have been obtained if
the scalar-valued function had been applied separately to corresponding elements of each
argument.

13.3 Argument Presence and Condition Status Functions.

The inquiry function PRESENT permits an inquiry to be made about the presence of an
actual argument associated with a dummy argument. The inquiry functions ENABLED and
HANDLED permit inquiries to be made about whether a condition has been enabled or
would be handled.

13.4 Numeric, Mathematical, Bit, Character, and Derived-Type Functions.

13.4.1 Numeric Functions. The elemental functions INT, REAL, psLE, and CMPLX per-
form type conversions. The elemental functions AIMAG, CONJG, AINT, ANINT, NINT, ABS,
MOD, SIGN, DIM, DPROD, MAX, and MIN perform simple numeric operations.

13.4.2 Mathematical Functions. The elemental functions SQRT, EXP, LOG, LOG10, SIN,
COS, TAN, ASIN, ACOS, ATAN, ATAN2, SINH, COSH, and TANH evaluate elementary
mathematical functions.

13.4.3 Bit Functions. The elemental functions LBIT and BITL convert between bit and log-
ical type. The transformational functions IBITLR and BITLR convert between a bit array and
an integer, counting bits from left to right; IBITRL and BITRL are similar functions that count
bits from right to left.

Version 99 1986 March Page 13-1

INTRINSIC PROCEDURES X3J3/S8

10

16

20

25

30

35

40

13.4.4 Bit Inquiry Functions. The inquiry function MAXBITS returns the maximum size of
a bit array that can be converted to an integer.

13.4.5 Character Functions. The elemental functions ICHAR, CHAR, LGE, LGT, LLE,
LLT, IACHAR, ACHAR, INDEX, ADJUSTL, ADJUSTR, REPEAT, ISCAN, and LEN__TRIM per-
form character operations. The TRIM function returns the argument with trailing blanks
removed.

13.4.6 CHARACTER Inquiry Functions. The inquiry function LEN returns the length of a
character entity.

13.4.7 Derived Data Type Inquiry Functions. A derived data type definition that includes
a dummy type parameter list causes the implicit definition of a set of inquiry functions, one
for each type parameter. These inquiry functions have names which are the same as the
dummy parameter names. Each has a single argument whose type must be that defined by
the type definition and returns a single integer result. The result is the value of the indi-
cated parameter for the structure that is the argument.

The scope of these implicitly defined inquiry functions is the same as that of the derived
data type. These functions may be referenced in any program unit in which the derived
data type definition may be referenced. Note that the argument need not be defined at the
time the function is referenced. For example, if

TYPE (STRING (100)) :: LINE

declares an object of the type STRING as defined in 4.4.1.1, the function reference
MAX_SIZE (LINE) returns the integer result 100.

13.5 Numeric Manipulation and Inquiry Functions.

The floating point manipulation and inquiry functions are described in terms of a model for
the representation and behavior of real numbers on a processor. The model has parameters
which are determined so as to make the model best fit the machine on which the executable
program is executed.

13.5.1 Models for Integer and Real Data. The model set for integer i is defined by:
q
i=sxY wexrk!
k=1
where r is an integer exceeding one, q is a positive integer, each wy is a nonnegative inte-
ger less than r, and s is +1 or -1. The model set for real x is defined by:

0 or
X =

p
s x b® x ¥ frxb7k,

k=1
where b and p are integers exceeding one; each f, is a nonnegative integer less than b,
except f, which is also nonzero; s is +1 or —1; and e is an integer that lies between some
integer maximum e, and some integer minimum eq,, inclusively. The integer parameters
r and q determine the set of model integers and the integer parameters b, p, egin, and € nax
determine the set of model floating point numbers. The parameters of the integer and real
models are available for each integer and the real data type implemented by the processor.
The parameters characterize the set of available numbers in the definition of the model.
The floating point manipulation and inquiry functions provide values related to the para-
meters and other constants related to them. For examples of the use of these functions,
use the models:

Version 99 1986 March Page 13-2

INTRINSIC PROCEDURES X3J3/88

10

15

20

25

30

35

40

31
i=8x Lwexak?
k=1

and .
X =8 Xx 2 x [1/2 + Eka2“‘J, -126 < e <127
k=2

13.5.2 Numeric Inquiry Functions. The inquiry functions RADIX, DIGITS, MINEXP,
MAXEXP, HUGE, TINY, EPSILON, EFFECTIVE_PRECISION, and EFFECTIVE_-
EXPONENT__RANGE return scalar values related to the parameters of the model associated
with the type and type parameters of the arguments. The value of the arguments to these
functions need not be defined.

It is not necessary for a processor to evaluate the arguments of a numeric inquiry function if
the value of the function can be determined otherwise.

13.5.3 Floating Point Manipulation Functions. The elemental functions EXPONENT,
SCALE, NEAREST, FRACTION, SETEXPONENT, SPACING, and RRSPACING return values
related to the components of the model values (13.5.1) associated with the actual values of
the arguments.

13.6 Array Intrinsic Functions. The array intrinsic functions perform the following
operations on arrays: vector and matrix multiplication, numeric or logical computation that
reduces the rank, array structure inquiry, array construction, array manipulation, and geomet-
ric location.

13.6.1 The Shape of Array Arguments. The inquiry and transformational array intrinsic
functions operate on each array argument as a whole. The declared shape or effective
shape of the corresponding actual argument must therefore be defined; that is, the actual
argument must be an array section, an assumed-shape array, an explicit-shape array, an
allocatable array that has been allocated, an alias array that exists, or an array-valued
expression. It must not be an assumed-size array.

Some of the inquiry intrinsic functions accept array arguments for which the shape need not
be defined. Assumed-size arrays may be used as arguments to these functions; they
include the numeric inquiry functions, the functions RANK, ELBOUND, and DLBOUND, and
certain references to SIZE, EUBOUND, and DUBOUND.

13.6.2 Mask Arguments. Some array intrinsic functions have an optional MASK argument
that is used by the function to select the elements of one or more arguments to be operated
on by the function. Any element not selected by the mask need not be defined at tht eime
the function is invoked.

The MASK affects only the value of the function, and does not affect the evaluation, prior to
invoking the function, of arguments that are array expressions.

A MASK argument may be of type LOGICAL or BIT. When the argument is of type BIT, a
B’1’ value is interpreted as .TRUE. and a B'0’ is interpreted as .FALSE.

13.6.3 Vector and Matrix Multiplication Functions. The matrix multiplication function
MATMUL operates on two matrices, or on one matrix and one vector, and returns the corre-
sponding matrix-matrix, matrix-vector, or vector-matrix product. The arguments to MATMUL
are arrays of the same type, which may be numeric (integer, real, double precision, or complex)
or logical. On logical matrices and vectors, MATMUL performs Boolean multiplication.

Version 99 1986 March Page 13-3

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

45

The dot product function DOTPRODUCT operates on two vectors and returns their scalar
product. The vectors are of the same type (numeric or logical) as for MATMUL. For logical
vectors, DOTPRODUCT returns the Boolean scalar product.

13.6.4 Array Reduction Functions. The array reduction functions SUM, PRODUCT,
MAXVAL, MINVAL, COUNT, ANY, and ALL perform numerical, logical, and counting opera-
tions on arrays. They may be applied to the whole array to give a scalar result or they may
be applied over a given dimension to yield a result of rank reduced by one. By use of a log-
ical mask that is conformable with the given array, the computation may be confined to any
subset of the array (e.g., the positive elements).

13.6.5 Array Inquiry Functions. The array inquiry function RANK returns the number of
dimensions of its argument. The functions SIZE, SHAPE, ELBOUND, and EUBOUND return,
respectively, the effective number of elements, the effective sizes along each dimensions,
and the effective lower and upper bounds of the subscripts along each dimension. The
functions DSIZE, DSHAPE, DLBOUND, and DUBOUND- return, respectively, the declared
size of the array, the declared shape, and the declared lower and upper bounds of the sub-
scripts along each dimension.

The values of the array arguments to these functions need not be defined.

It is not necessary for a processor to evaluate the arguments of an array inquiry function if
the value of the function can be determined otherwise.

13.6.6 Array Construction Functions. The functions MERGE, SPREAD, REPLICATE,
RESHAPE, DIAGONAL, PACK, and UNPACK construct new arrays from the elements of
existing ones. MERGE combines two conformable arrays into one by an element-wise
choice based on a logical mask. SPREAD and REPLICATE construct an array from several
copies of an actual argument (SPREAD does this by adding an extra dimension, as in form-
ing a book from copies of one page; REPLICATE does it by increasing the size of one of the
dimensions as in laying the pages side by side). RESHAPE produces an array with the
same elements and a different shape. DIAGONAL constructs a diagonal matrix. PACK and
UNPACK respectively gather and scatter the elements of a one-dimensional array from and
to positions in another array where the positions are specified by a logical mask.

13.6.7 Array Manipulation Functions, The functions TRANSPOSE, EOSHIFT, and
CSHIFT manipulate arrays. TRANSPOSE performs the matrix transpose operation on a two-
dimensional array. The shift functions leave the shape of an array unaltered but shift the
positions of the elements parallel to a specified dimension of the array. These shifts are
either circular (CSHIFT), in which case elements shifted off one end reappear at the other
end, or end-off (EOSHIFT), in which case specified boundary elements are shifted into the
vacated positions.

13.6.8 Array Geometric Location Functions. The geometric location functions FIRSTLOC,
LASTLOC, and PROJECT provide access to the boundaries, or edges, of any subset of an
array defined by a logical mask. FIRSTLOC and LASTLOC operate on the mask to define
the edges of the subset and PROJECT extracts the elements that lie along an edge. For
example, to extract from the integer table TABLE (M,N) the vector containing the first posi-
tive number in each column, first locate the desired elements in a logical mask FST (M,N)
by:

FST = FIRSTLOC (TABLE .GT. O, DIM = 1)
and then assign the elements to FSTC by:
FSTC = PROJECT (TABLE, FST, DIM = 1, FIELD = O

VERSION 99 1986 MARCH PAGE 13-4

INTRINSIC PROCEDURES

X3J3/s8

The functions MAXLOC and MINLOC return the location (subscripts) of an element of an
array that has maximum and minimum values, respectively. By use of an optional logical
mask that is conformable with the given array, the reduction may be confined to any subset

of the array.

5 13.7 Intrinsic Subroutines. Intrinsic subroutines are supplied by the processor and
have the special definitions given in 13.9. An intrinsic subroutine is referenced by a CALL
statement that uses its name explicitly. The name of an intrinsic subroutine must not be
used as an actual argument. The effect of a subroutine reference is as specified in 13.9.
13.7.1 Date and Time Subroutines. The subroutines DATE_AND__TIME and CLOCK

10 return integer data from the date and real-time clock. The time returned is local, but there
are facilities for finding out the difference between local time and Greenwich Mean Time.
13.8 Tables of Generic Intrinsic Functions.
13.8.1 Argument Presence and Condition Status Functions.
ENABLED (CONDITION, LEVEL) Condition enabled
15 Optional LEVEL
HANDLED (CONDITION, LEVEL) Condition handled
Optional LEVEL
PRESENT (A) Argument presence
13.8.2 Numeric Functions.
20 ABS (A) Absolute value
AIMAG (2) Imaginary part of a complex number
AINT (A) Truncation to whole number
ANINT (A) Nearest whole number
CMPLX (X, Y, MOLD) Conversion to complex type
25 Optional Y, MOLD
CONJG (2) Conjugate of a complex number
DBLE (A) Conversion to double precision type
DIM (X, Y) Positive difference
DPROD (X, Y} Double precision product
30 INT (A) Conversion to integer type
MAX (A1, A2, A3,...) Maximum value
Optional A3,...
MIN (A1, A2, A3,..) Minimum value
Optional A3,...
35 MOD (A, P) Remainder modulo P
NINT (A) Nearest integer
REAL (A, MOLD) Conversion to real type
Optional MOLD
SIGN (A, B) Transfer of sign
40 13.8.3 Mathematical Functions.
ACOS (X) Arccosine
ASIN (X) Arcsine
ATAN (X) Arctangent
ATAN2 (Y, X) Arctangent
45 COS (X) Cosine
Version 99 1986 March Page 13-5

INTRINSIC PROCEDURES

COSH (X)
EXP (X)
LOG (X)
LOG10 (X)
SIN (X)
SINH (X)
SQRT (X)
TAN (X)
TANH (X)

10 13.8.4 Bit Functions.

15

20

BITL (L)

BITLR (1,SIZE)
Optional SIZE

BITRL (I,SIZE)
Optional SIZE

IBITLR (B)

IBITRL (B)

LBIT (B)

13.8.5 Bit Inquiry Functions.

MAXBITS (1)

13.8.6 Character Functions.

25

30

35

40

13.8.7 Character Inquiry Functions.

45

Version 99

ACHAR (1)

ADJUSTL (STRING)
ADJUSTR (STRING)
CHAR (l)

IACHAR (C)
ICHAR (C)

INDEX (STRING, SUBSTRING)
ISCAN (STRING, SET)
LEN_TRIM (STRING)

LGE (STRING_A, STRING_B)
LGT (STRING_A, STRING__B)
LLE (STRING_A, STRING__B)
LLT (STRING_A, STRING__B)
REPEAT (STRING, NCOPIES)
TRIM (STRING)

VERIFY (STRING, SET)

LEN (STRING)

1986 March

X3J3/s8

Hyperbolic cosine
Exponential

Natural logarithm

Common logarithm (base 10)
Sine

Hyperbaolic sine

Square root

Tangent

Hyperbolic tangent

Convert from logical to bit type

Convert an integer to a bit array,
counting left to right

Convert an integer to a bit array,
counting right to left

Convert a bit array to an integer,
counting left to right

Convert a bit array to an integer,
counting right to left

Convert from bit to logical type

Maximum bit array length for conversion

Character in given position

in ASCII collating sequence
Adjust left
Adjust right
Character in given position

in processor collating sequence
Position of a character

in ASCII collating sequence
Position of a character

in processor collating sequence
Starting position of a substring
Scan a string for a character in a set
Length without trailing blank characters
Lexically greater than or equal
Lexically greater than
Lexically less than or equal
Lexically less than
Repeated concatenation
Remove trailing blank characters
Verify the set of characters in a string

Length of a character entity

Page 13-6

INTRINSIC PROCEDURES

10

15

20

25

30

35

40

45

Version 99

13.8.8 Numeric Inquiry Functions.

DIGITS (X)

EFFECTIVE__EXPONENT__RANGE (X)

EFFECTIVE__PRECISION (X)
EPSILON (X)

HUGE (X)

MAXEXPONENT (X)
MINEXPONENT (X)

RADIX (X)

TINY (X)

13.8.9 Floating-point Manipulation Functions.

EXPONENT (X)
FRACTION (X)
NEAREST (X, S)

RRSPACING (X)
SCALE (X, I)

SETEXPONENT (X, 1)
SPACING (X)

13.8.10 Vector and Matrix Multiply Functions.

DOTPRODUCT (VECTOR__A,
VECTOR_B)
MATMUL (MATRIX_A,
MATRIX__B)

13.8.11 Array Reduction Functions.

ALL (MASK, DIM)
Optional DIM
ANY (MASK, DIM)
Optional DIM
CCUNT (MASK, DIM)
Optional DIM
MAXVAL (ARRAY, DIM, MASK)
Optional DIM, MASK
MINVAL (ARRAY, DIM, MASK)
Optional DIM, MASK
PRODUCT (ARRAY, DIM, MASK)
Optional DIM, MASK
SUM (ARRAY, DIM, MASK)
Optional DIM, MASK

13.8.12 Array Inquiry Functions.

ALLOCATED (ARRAY)

DLBOUND (ARRAY, DIM)
Optional DIM

DUBOUND (ARRAY, DIM)
Optional DIM

X3J3/S8

Number of significant digits in the model

Effective decimal exponent range

Effective decimal precision

Number that is almost negligible compared to one
Largest number in the model

Maximum exponent in the model

Minimum exponent in the model

Base of the model

Smallest number in the model

Exponent part of a model number
Fractional part of a number
Nearest different processor number in
given direction
Reciprocal of the relative spacing
of model numbers near given number
Multiply a real by its. base to an integer power
Set exponent part of a number
Absolute spacing of model numbers near given
number

Dot product of two arrays

Matrix multiplication

True if all values are true

True if any value is true

Number of true elements in an array
Maximum value in an array
Minimum value in an array

Product of array elements

Sum of array elements

Array allocation
Declared lower dimension bounds of an array

Declared upper dimension bounds of an array

1986 March Page 13-7

INTRINSIC PROCEDURES

10

13.8.13 Array Construction Functions.

15

20

25

13.8.14 Array Manipulation Functions.

30

13.8.15 Array Geometric Location Functions.

35

40

45

Version 99

DSHAPE (SOURCE)
DSIZE (ARRAY, DIM)
Optional DIM
EUBOUND (ARRAY, DIM)
Optional DIM
ELBOUND (ARRAY, DIM)
Optional DIM
ESHAPE (SOURCE)
ESIZE (ARRAY, DIM)
Optional DIM
RANK (SOURCE)

DIAGONAL (ARRAY, FILL)
Optional FILL
MERGE (TSOURCE,
FSOURCE, -MASK)
PACK (ARRAY, MASK, VECTOR)
Optional VECTOR
RESHAPE (MOLD, SOURCE,
PAD, ORDER)
Optional PAD, ORDER
REPLICATE (ARRAY, DIM,
NCOPIES)
SPREAD (SOURCE, DIM,
NCOPIES)
UNPACK (VECTOR, MASK,
FIELD)

CSHIFT (ARRAY, DiM, SHIFT)
EOSHIFT (ARRAY, DIM,
SHIFT, BOUNDARY)
Optional BOUNDARY
TRANSPOSE (MATRIX)

FIRSTLOC (MASK, DIM)
Optional DIM
LASTLOC (MASK, DIM)
Optional DIM
MAXLOC(ARRAY,MASK)
Optional MASK
MINLOC(ARRAY,MASK)
Optional MASK
PROJECT (ARRAY, MASK,
FIELD, DIM)
Optional DIM

1986 March

X3J3/S8
Declared shape of an array or scalar
Total number of elements in declared array
Effective upper dimension bounds of an array
Effective lower dimension bounds of an array

Effective shape of an array or scalar
Total number of elements in effective array

Rank of an array or scalar

Create a diagonal matrix

Merge under mask

Pack an array into an array of rank one
under a mask

Reshape an array

Replicates array by increasing a dimension

Replicates array by adding a dimension

Unpack an array of rank one into an array
under a mask

Circular shift
End-off shift

Transpose of an array of rank two

Locate first true element
Locate last true element
Location of a maximum value in an array
Location of a minimum value in an array

Select masked values

Page 13-8

INTRINSIC PROCEDURES X3J3/S8

13.8.16 Table of Intrinsic Subroutines.

CLOCK (COUNT, COUNT__RATE,
COUNT__MAX)
Optional COUNT, COUNT_RATE,
5 COUNT_MAX
DATE__AND__TIME (ALL, COUNT,
MSECOND, SECOND, MINUTE,
HOUR, DAY, MONTH,
YEAR, ZONE)
10 Optional ALL, COUNT, MSECOND,
SECOND, MINUTE, HOUR,
DAY, MONTH, YEAR, ZONE

Obtain data from the system clock

Obtain date and time

13.8.17 Table of Specific Intrinsic Functions.

Specific Name Generic Name Argument Type
15 ABS(A) ABS(A) real
ACOS(X) ACOS(X) real
AIMAG(Z) AIMAG(Z) complex
AINT(A) AINT(A) real
ALOG() LOG(X) real
20 ALOG10(X) LOG10(X) real
. AMAXO0(A1,A2,A3,...) REAL(MAX(A1, integer
Optional A3,... A2,A3....))
Optional A3, ...
. AMAX1(A1,A2,A3,..)) MAX(A1, real
25 Optional A3,... A2,A3,..)
Optional A3,...
. AMINO(A1,A2,A3,...) REAL(MIN(A1, integer
Optional A3,... A2,A3,..)
Optional A3,...
30 . AMIN1(A1,A2,A3,...) MIN(A1, real
Optional A3,... A2,A3,..)
Optional A3,...
AMOD(A,P) MQD(A,P) real
ANINT(A) ANINT(A) real
35 ASIN(X) ASIN(X) real
ATAN(X) ATAN(X) real
ATAN2(Y,X) ATAN2(Y,X) real
CABS(A) ABS(A) complex
CCOS{X) COS() complex
40 CEXP(X) EXP(X) complex
. CHAR() CHAR(l) integer
CLOG(X) LOG(X) complex
CONJG(2Z) CONJG(2) complex
COSs(X) COS(X) real
45 COSH(X) COSH(X) real
CSIN(X) SIN(X) complex
CSQRT(X) SQRT(X) complex
DABS(A) ABS(A) double precision
DACOS(X) ACOS(X) double precision
50 DASIN(X) ASIN(X) double precision
Version 99 1986 March Page 13-9

INTRINSIC PROCEDURES

10

16

20

25

30

35

40

45

50

Version 99

DATAN(X)
DATANZ(Y,X)
DCOS(X)
DCOSH(X)
DDIM(X,Y)
DEXP(X)
DIM(X.Y)
DINT(A)
DLOG(X)
DLOG10(X)
DMAX1(A1,A2,A3,...)
Optional A3,...
DMIN1(A1,A2,A3,...)
Optional A3,...
DMOD(A,P)
DNINT(A)
DPRQD(X,Y)
DSIN(A,B)
DSIGN(X)
DSINH(X)
DSQRT(X)
DTAN(X)
DTANH(X)
EXP(X)
FLOAT(A)
IABS(A)
ICHAR(C)
IDIM(X,Y)
IDINT(A)
IDNINT(A)
IFIX(A)
INDEX(S,T)
INT(A)
ISIGN(A,B)
LEN(S)
LGE(S.T)
LGT(S,T)
LLE(S,T)

LLT(S.T)
MAXO(A1,A2,A3,...)
Optional A3,...
MAX1(A1,A2,A3,..))
Optional A3,...
MINO(A1,A2,A3,...)
Optional A3,...
MIN1(A1,A2,A3....)
Optional A3,...
MOD(A,P)

NINT(A)
REAL(A)
SIGN(A,B)
SIN(X)
SINH(X)
SNGL(A)

ATAN(X)

ATAN2(Y X)

COS(X)

COSH(X)

DIM(X,Y)

EXP(X)

DIM(X.Y)

AINT(A)

LOG(X)

LOG10(X)

MAX(A1,A2,A3,...)
Optional A3,...

MIN(A1,A2, A3,...)
Optional A3,...

MOD(A,P)

ANINT(A)

DPROD(X,Y)

SIGN(A,B)

SIN(X)

SINH(X)

SQRT(X)

TAN(X)

TANH(X)

EXP(X)

REAL(A)

ABS(A)

ICHAR(C)

DIM(X,Y)

INT(A)

NINT(A)

INT(A)

INDEX(S,T)

INT(A)

SIGN(A,B)

LEN(S)

LGE[.T)

LGTS.T)

LLES.T)

LLT(S,T)

MAX(A1,A2,A3,...)
Optional A3,...

INT(MAX(A1,A2,A3,...))
Optional A3,...

MIN(A1,A2,A3,...)
Optional A3,...

INT(MIN(A1,A2,A3,...))
Optional A3,...

MOD(A,P)

NINT(A)

REAL(A)

SIGN(A,B)

SIN(X)

SINH(X)

REAL(A)

1986 March

double precision
double precision
double precision
double precision
double precision
double precision
real

double precision
double precision
double precision
double precision

double precision

double precision
double precision
real

double precision
double precision
double precision
double precision
double precision
double precision
real

integer

integer
character
integer

double precision
double precision
real

character

real

integer
character
character
character
character
character
integer

real
integer
real

integer

real

integer

real

real

real

double precision

X3J3/58

Page 13-10

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

35

SQRT(X) SQRT(X) real
TAN(X) TAN(X) real
TANH(X) TANH(X) real

¢ These specific intrinsic function names must not be used as an actual argument.

13.9 Specifications of the Intrinsic Procedures. This section contains detailed
specifications of all the intrinsic procedures.

13.9.1 ABS (A).
Description. Absoiute value.
Kind. Elemental function.
Argument. A must be of type integer, real, double precision, or complex.

Result Type and Type Parameters. The same as A except that if A is complex, the
result is real.

Result Value. If A is of type integer, real, or double precision, the value of the result is
|Al; if A is complex with value (xy), the result is equal to a processor-dependent
approximation to Vx2+y2,

Example. ABS ((3.0, 4.0)) has the value 5.0 (approximately).

13.9.2 ACHAR (I).

Description. Returns the character in a specified position of the ASCIl collating
sequence. It is the inverse of the IACHAR function.

Kind. Elemental function.
Argument. | must be of type integer.
Result Type and Type Parameters. Character of length one.

Result Value. If | has value in the range 0 <| < 127, the result is the character in
position | of the ASCII collating sequence; otherwise, the result is processor dependent.
If the processor is not capable of representing both upper and lower case letters and |
corresponds to an ASCII letter in a case that the processor is not capable of represent-
ing, the result is the letter in the case that the processor is capable of representing.
ACHAR (IACHAR (C)) must have the value C for any character C capable of represen-
tation in the processor.

Example. ACHAR (88) has the value 'X'.

13.9.3 ACOS (X).
Description. Arccosine (inverse cosine) function.
Kind. Elemental function.

Argument. X must be of type real or double precision with a value that satisfies the
inequality |X] < 1.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
arccos(X), expressed in radians. it lies in the range 0 < ACOS (X) < =.

Example. ACOS (0.54030231) has the value 1.0 (approximately).

Version 99 1986 March Page 13-11

INTRINSIC PROCEDURES X3J43/S8

13.9.4 ADJUSTL (STRING).

Description. Adjust to the left, removing leading blanks and inserting trailing blanks.
Kind. Elemental function.

Argument. STRING must be of type character.

Result Type and Type Parameters. Character of the same length as STRING.

Result Value. The value of the result is the same as STRING except that any leading
blanks have been deleted and the same number of trailing blanks have been inserted.

Example. ADJUSTL (WORD’) has value 'WORD .

13.9.5 ADJUSTR (STRING).

10

15

Description. Adjust to the right, removing trailing blanks and inserting leading blanks.
Kind. Elemental function.

Argument. STRING must be of type character.

Result Type and Type Parameters. Character of the same length as STRING.

Result Value. The value of the result is the same as STRING except that any trailing
blanks have been deleted and the same number of leading blanks have been inserted.

Example. ADJUSTR (WORD ’) has value ° WORD'.

13.9.6 AIMAG (2).

20

Description. Imaginary part of a complex number.

Kind. Elemental function.

Argument. Z must be of type complex.

Result Type and Type Parameters. Real with the same type parameters as Z.
Result Value. If Z has the value (x, y), the result has value y.

Example. AIMAG ((2.0, 3.0)) has the value 3.0.

13.9.7 AINT (A).

25

30

Description. Truncation to a whole number.

Kind. Elemental function.

Argument. A must be of type real or double precision.
Result Type and Type Parameters. Same as A.

Result Value. If |A] < 1, AINT (A) has the value 0; if |A] = 1, AINT (A) has value equal
to the largest integer that does not exceed the magnitude of A and whose sign is the
same as the sign of A.

Example. AINT (2.783) has the value 2.0.

13.9.8 ALL (MASK, DIM).

35

Version 99

Optional Argument. DIM

Description. Determine whether all values are true in ARRAY along dimension DIM.

'1986 March ‘ Page 13-12

INTRINSIC PROCEDURES X3J3/88

15

20

Kind. Transformational function.

Arguments.
ARRAY must be of type logical or bit. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type logical. It is scalar if DIM is absent or
ARRAY has rank one; otherwise, the result is an array of rank n —1 and of shape (d;,
dy, ..., dpm—-1, dpiM+1s .-, Op) Where (d4, d5, ..., d,) is the shape of ARRAY.

Result Value.

Case (i): The result of ALL (MASK) has value .TRUE. if all elements of ARRAY are
true or if ARRAY has size zero, and the result has value .FALSE. if any
element of ARRAY is false. ‘

Case (ii): If ARRAY has rank one, ALL (MASK, DIM) has value equal to that of ALL
(MASK). Otherwise, the value of element (Sy, Sz, -.., SpiM—1, SDIM+1s --s Sp)
of ALL (MASK, DIM) is equal to ALL (MASK (s, S2, ..., SDIM=1) ©» SDIM+1r =+os

Sn))-

Examples.
Case (i): The value of ALL ([.TRUE., .FALSE., .TRUE.}) is .FALSE.

Case (i): If B is the array B 0 g} and C is the array [‘7’ : g] , then ALL (B .NE.

C, DIM = 1) is [.TRUE., .FALSE., .FALSE.] and ALL (B .NE. C, DIM = 2)
is [.FALSE., .FALSE.].

13.9.9 ALLOCATED (ARRAY).

25

Description. Indicate whether or not an allocatable array is currently allocated space.
Kind. Inquiry function.

Argument. ARRAY must be an allocatable array.

Result Type and Shape. The result is a logical scalar.

Result Value. The result has the value .TRUE. if ARRAY is currently allocated and has
the value .FALSE. otherwise.

13.9.10 ANINT (A).

30

35

Version 99

Description. Nearest whole number.

Kind. Elemental function.

Argument. A must be of type real or double precision.
Result Type and Type Parameters. Same as A.

Result Value. If A > 0, ANINT (A) has the value AINT (A + 0.5); if A < 0, ANINT (A)
has the value AINT (A — 0.5).

Example. ANINT (2.783) has the value 3.0

1986 March Page 13-13

INTRINSIC PROCEDURES X3J3/S8

13.9.11 ANY (MASK, DIM).

10

15

20

Optional Argument. DIM
Description. Determine whether any value is true in MASK along dimension DIM.

Kind. Transformational function.

Arguments.
MASK must be of type logical or bit. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of MASK.

Result Type and Shape. The result is of type logical. It is scalar if DIM is absent or
MASK has rank one; otherwise, the result is an array of rank n—1 and of shape (d4,
ds, ..., dom—1; dom+1s - Op) Where (d4, d, ..., d,;) is the shape of MASK.

Result Value.

Case (i): The resuit of ANY (MASK) has value .TRUE. if any element of MASK is
true and has value .FALSE. if no elements are true or if MASK has size
zero.

Case (ii): 1f MASK has rank one, ANY (MASK, DIM) has value equal to that of ANY
(MASK). Otherwise, the value of element (s, S2, ..., SpiM—1, SDIM+1s -+» Sn)
of ANY (MASK, DIM) is equal to ANY (MASK (s, S2, ..., SpiM—1s * SDIM+1>
vees Sp).

Examples.
Case (i) The value of ANY ([.TRUE., .FALSE., .TRUE.]) is .TRUE.

Case (ii): If B is the array B 2 g] and C is the array [g 2 g} ANY (B .NE. C,

DIM = 1) is [TRUE., .FALSE., .TRUE.] and ANY (B .NE. C, DIM = 2) is
[.TRUE., .TRUE.].

25 13.9.12 ASIN (X).

30

Descriptlon. Arcsine (inverse sine) function.
Kind. Elemental function.

Argument. X must be of type real or double precision. Its value must satisfy the inequal-
ity [X| < 1.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
arcsin(X), expressed in radians. It lies in the range —7/2 < ASIN (X) < =/2.

Example. ASIN (0.84147098) has the value 1.0 (approximately).

1

13.9.13 ATAN (X).

35

Version 99

Description. Arctangent (inverse tangent) function.
Kind. Elemental function.
Argument. X must be of type real or double precision.

Result Type and Type Parameters. Same as X.

1986 March Page 13-14

INTRINSIC PROCEDURES X3J3/58

Result Value. The result has the value equal to a processor-dependent approximation
to arctan(X), expressed in radians, that lies in the range —#/2 < ATAN (X) < =/2.

Example. ATAN (1.5574077) has the value 1.0 (approximately).

13.9.14 ATAN2 (Y, X).

10

15

Description. Arctangent (inverse tangent) function. The result is the principal value of
the argument of the nonzero complex number (X, Y).

Kind. Elemental function.

Arguments.
Y must be of type real or double precision.
X must be of the same type as Y. If Y has value zero, X must not

have value zero.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
the argument of the complex number (X, Y), expressed in radians. It lies in the range
—7 < ATAN2 (Y, X) = » and is equal to a processor-dependent approximation to a
value of arctan(Y/X) if X = 0. If Y > 0, the result is positive. If Y =0, the result is zero
if X > 0 and the result is = if X < 0. If Y < 0, the result is negative. If X =0, the abso-
lute value of the result is x/2.

Example. ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately).

20 13.9.15 BITL (L).

25

Description. Convert logical to bit type.
Kind. Elemental function.

Argument. L must be of type logical.
Result Type. Bit.

Result Value. The result has the value B’1’ if L has the value .TRUE. and the value
B0’ if L has the value .FALSE.

Example. BITL (.TRUE.) has the value B'1’.

13.9.16 BITLR (I, SIZE).

30

35

Version 99

Optional Argument. SIZE

Description. Convert an integer to a bit array, counting left to right.

Kind. Transformational function.

Arguments.

| must be scalar and of type integer. lts value must not be negative.

SIZE (optional) must be scalar and of type integer with a positive value. If it is
omitted, it is as if it were present with the value MAXBITS (1).

Result Type and Shape. The result is a bit array of rank one with SIZE number of
elements.

Result Value. The result is a bit array containing the binary representation of the argu-
ment. The array element with the largest subscript value will contain the least

1986 March Page 13-15

INTRINSIC PROCEDURES X3J3/S8

significant bit of the binary representation. Zero extension or truncation will take place
at the low end of the array as necessary. IBITLR (BITLR (J)) must have the value J for
any value of the integer J. BITLR (IBITLR (B), SIZE (B)) must have the value B for any
value of a bit array B for which SIZE (B) = MAXBITS (1).

Example. BITLR (5, 6) has the value [B'0’, B'0’, B'0’, B'1’, B'0’, B'1’].

13.9.17 BITRL (I, SIZE).

10

15

20

Optional Argument. SIZE

Description. Convert an integer to a bit array, counting right to left.

Kind. Transformational function.

Arguments.

| must be scalar and of type integer. Its value must not be negative.

SIZE (optional) must be scalar and of type integer with a positive value. If it is
omitted, it is as if it were present with the value MAXBITS (1).

Result Type and Shape. The result is a bit array of rank one with SIZE number of
elements.

Result Value. The result is a bit array containing the binary representation of the argu-
ment. The array element with the largest subscript value will contain the most
significant bit of the binary representation. Zero extension or truncation will take place
at the high end of the array as necessary. IBITRL (BITRL (J)) must have the value J
for any value of the integer J. BITRL (IBITRL (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) = MAXBITS (1).

Example. BITRL(5,6) has the value [B'1’, B'0’, B’'1’, B'0’, B’0’, B'0’].

13.9.18 CHAR (I).

25

30

35

Description. Returns the character in a given position of the processor collating
sequence. It is the inverse of the function ICHAR.

Kind. Elemental function.

Argument. | must be of type integer with value in the range 0 < | < n -1, where n is
the number of characters in the collating sequence.

Result Type and Type Parameters. Character of length one.

Result Value. The result is the character in position | of the processor collating
sequence. ICHAR (CHAR (l)) must have the value | for 0 <1<n-1 and CHAR
(ICHAR (C)) must have the value C for any character C capable of representation in the
processor.

Example. CHAR (88) has the value 'X' on a processor using the ASCIl collating
sequence.

13.9.19 CLOCK (COUNT, COUNT_RATE, COUNT_MAX).

40

Version 99

Optional Arguments. COUNT, COUNT__RATE, COUNT_MAX
Description. Returns integer data from a real-time clock.

Kind. Subroutine.

Arguments.

1986 March Page 13-16

INTRINSIC PROCEDURES X3J3/58

10

COUNT (optional) must be scalar and of type integer. It is set to a processor-
dependent value based on the current value of the basic clock or
to —HUGE (0) if there is no clock. The processor-dependent value
is incremented by one for each clock count until the value
COUNT__MAX is reached and is reset to zero at the next count. It
lies in the range 0 to COUNT__MAX if there is a clock.

COUNT__RATE (optional) must be scalar and of type integer. It is set to the number of
basic clock counts per second, or to zero if there is no clock.

COUNT__MAX (optional) must be scalar and of type integer. It is set to the maximum
value that COUNT can have, or to zero if there is no clock.

Example. If the basic system clock is a 24-hour clock that registers time in 1-second
intervals, at 11:30 am. the reference

CALL CLOCK (COUNT = C, COUNT_RATE = R, COUNT_MAX = M)

15

13.9.

20

25

30

sets C = 11 x 3600 + 30 x 60 = 41,400 seconds, R = 1, and M = 24 x 2600 — 1
= 86,399 seconds.

20 CMPLX (X, Y, MOLD).

Optional Arguments. Y, MOLD

Description. Convert to complex type.

Kind. Elemental function.

Arguments.
X must be of type integer, real, double precision, or complex.
Y (optional) must be of type integer, real, or double precision. It must not be pre-

sent if X is of type complex.
MOLD (optional) must be of type real.

Result Type and Type Parameters. The result is of type complex. If MOLD is pre-
sent, the type parameters are those of MOLD; otherwise, the type parameters are
those of default real type.

Result Value. If Y is absent and X is not complex, it is as if Y were present with the
value zero; if MOLD is absent, it is as if MOLD were present with default real type;
CMPLX(X, Y, MOLD) has the complex value whose real part is REAL(X, MOLD) and
whose imaginary part is REAL(Y, MOLD).

Example. CMPLX (-3) has the value (—3.0, 0.0).

13.9.21 CONJG (2).

35

Version 99

Description. Conjugate of a complex number.

Kind. Elemental function.

Argument. Z must be of type complex.

Result Type and Type Parameters. Same as Z.

Result Value. If Z has the value (x, y), the result has value (x, —y).
Example. CONJG ((2.0, 3.0)) has the value (2.0, —3.0).

1986 March Page 13-17

INTRINSIC PROCEDURES X3J3/58

13.9.22 COS (X).

Description. Cosine function.

Kind. Elemental function.

Argument. X must be of type real, double precision, Or complex.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
cos(X). If X is of type real or double precision, it is regarded as a value in radians. If X is
of type complex, its real part is regarded as a value in radians.

Example. COS (1.0) has the value 0.54030231 (approximately).

10 13.9.23 COSH (X).

15

Description. Hyperbolic cosine function.

Kind. Elemental function.

Argument. X must be of type real or double precision.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
cosh(X).

Example. COSH (1.0) has the value 1.5430806 (approximately).

13.9.24 COUNT (MASK, DIM).

20

25

30

35

Version 99

Optional Argument. DIM
Description. Count the number of true elements of MASK along dimension DIM.

Kind. Transformational function.

Arguments.
MASK must be of type logical or bit. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of MASK.

Result Type and Shape. The result is of type integer. It is scalar if DIM is absent or
MASK has rank one; otherwise, the result is an array of rank n —1 and of shape (d,,
ds, ..., dpm—1, Ao+ 1, - dp) Where (d4, dy, ..., d;) is the shape of MASK.

Result Value.

Case (i) The result of COUNT (MASK) has value equal to the number of true
elements of MASK or has value zero if MASK has size zero.

Case (ii): If MASK has rank one, COUNT (MASK, DIM) has value equal to that of
COUNT (MASK). Otherwise, the value of element (s;, sz ..., Spm-1
SpM+1s ---» Sp) Of COUNT (MASK, DIM) is equal to COUNT (MASK (s, s,

cees SDIM=15 ' SDIM+1s -+ Sp))-
Examples.
Case (i): The value of COUNT ([.TRUE., .FALSE., .TRUE.]) is 2.

Case (iij): If B is the array B 2 g] and C is the array [9 i g} , COUNT (B .NE. C,

DIM = 1) is [2, 0, 1} and COUNT (B .NE. C, DIM = 2) is [1, 2].

1986 March Page 13-18

INTRINSIC PROCEDURES X3J3/58

13.9.25 CSHIFT (ARRAY, DIM, SHIFT).

10

15

20

25

30

35

Version 99

Description

. Perform a circular shift on an array expression of rank one or perform cir-

cular shifts on all the complete rank one sections along a given dimension of a many-
ranked array expression. Elements shifted out at one end of a section are shifted in at
the other end. Different sections may be shifted by different amounts and in different

directions.

Kind. Transformational function.

Arguments.
ARRAY
DIM

SHIFT

may be of any type. It must not be scalar.

must be a scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

must be of type integer and must be scalar if ARRAY has rank one;
otherwise, it must be scalar or of rank n—1 and of shape [E
(1:DIM-1), E (DIM + 1:n)] where E (1:n) is the shape of ARRAY.

Result Type, Type Parameters, and Shape. The result is of the type and type para-
meters of ARRAY, and has the shape of ARRAY.

Result Value.

Case (i):

Case (ii):

Examples.
Case (i):

Case (ii):

If ARRAY has rank one, the result is obtained by applying |SHIFT| circular
shifts to ARRAY in the direction indicated by the sign of SHIFT. If SHIFT
has value 1, element i of the result is ARRAY (i+1) fori = 1,2,...,m — 1
and element m of the result is ARRAY (1) where m is the size of ARRAY.
If SHIFT is positive, the result is equivalent to SHIFT applications of
CSHIFT with SHIFT=1. If SHIFT has value —1, element i of the result is
ARRAY (i—1) fori = 2,3,...,m and element 1 of the result is ARRAY (m).
if SHIFT is negative, the result is equivalent to —SHIFT applications of
CSHIFT with SHIFT = —1.

If ARRAY has rank greater than one, section (s, S2, ..., SpM=1, ‘s SDIM+1s
..--» 8p) of the result has value equal to CSHIFT (ARRAY (s, S5, ..., SpiM—1»
5 SpDIM41s «---» Sps 1, 8h), where sh is SHIFT or SHIFT (s4, S5, ..., Spm—1.
SDIM+1s +-+5 Sn)-

If Vis the array [1, 2, 3, 4, 5, 6], the effect of shifting V circularly to the left
by two positions is achieved by CSHIFT (V, DIM=1, SHIFT =2) which has
the value [3, 4, 5, 6, 1, 2]; CSHIFT (V, DIM=1, SHIFT= —2) achieves a cir-
cular shift to the right by two positions and has the value [5, 6, 1, 2, 3, 4].

The rows of an array of rank two may all be shifted by the same amount or

ABC
by different amounts. If M is the array [ﬁ E 8] the value of CSHIFT

C
(M, DIM=2, SHIFT=—1) is [8] and the value of CSHIFT (M,

c
DIM=2, SHIFT=[~1, 1, 0]) is [2

1986 March Page 13-19

INTRINSIC PROCEDURES

X3J3/58

13.9.26 DATE_AND__TIME (ALL, COUNT, MSECOND, SECOND, MINUTE, HOUR, DAY,
MONTH, YEAR, ZONE).

Optional Arguments. ALL, COUNT, MSECOND, SECOND, MINUTE, HOUR, DAY,
MONTH, YEAR, ZONE

Description. Returns integer data from the date available to the processor and a real-

must be of type integer and rank one. Its size must be at least 9.
The values returned in ALL are as for the remaining 9 arguments,
taken in order.

must be scalar and of type integer. It is set to a processor-
dependent value based on the current value of the basic clock or
to —HUGE (0) if there is no clock. The processor-dependent value
is incremented by one for each clock count until the value
COUNT__MAX (as returned by subroutine CLOCK) is reached and
is reset to zero at the next count. It lies in the range 0 to
COUNT__MAX if there is a clock.

MSECOND (optional) must be scalar and of type integer. It is set to the millisecond

part of the local time, or to —HUGE (0) if there is no clock. It lies
in the range 0 to 999 if there is a clock.

must be scalar and of type integer. It is set to the second part of
the local time, or to —HUGE (0) if there is no clock. It lies in the
range 0 to 59 if there is a clock.

must be scalar and of type integer. It is set to the minute part of
the local time, or to —HUGE (0) if there is no clock. It lies in the
range 0 to 59 if there is a clock.

must be scalar and of type integer. It is set to the hour part of the
local time, or to —HUGE (0) if there is no clock. It lies in the range
0 to 23 if there is a clock.

must be scalar and of type integer. It is set to the day of the
month, or to —HUGE (0) if there is no date available. It lies in the
range 1 to 31 if there is a date available.

must be scalar and of type integer. it is set to the month of the
year, or to —HUGE (0) if there is no date available. It lies in the
range 1 to 12 if there is a date available.

must be scalar and of type integer. It is set to the year according
to the Gregorian calendar (e.g. 1988), or to —HUGE (0) if there is
no date available.

must be scalar and of type integer. It is set to the number of min-
utes that local time is behind Greenwich Mean Time, or to —HUGE
(0) if there is no clock.

will assign the value 300 to the variable HERE if the local time is 5 hours behind GMT.

5
time clock.
Kind. Subroutine.
Arguments.
ALL (optional)
10
COUNT (optional)
15
20
SECOND (optional)
25 MINUTE (optional)
HOUR (optional)
30
DAY (optional)
MONTH (optional)
35
YEAR (optional)
40 ZONE (optional)
Example.
CALL DATE_AND TIME (ZONE = HERE)
45
Version 99

1986 March Page 13-20
!

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 99

13.9.27 DBLE (A).

Description. Convert to double precision type.
Kind. Elemental function,
Argument. A must be of type integer, real, double precision, or complex.

Result Type. Double precision.

Resuit Value.
Case fi): If Ais of type double precision, DBLE (A) = A.
Case (ii): If A'is of type integer or real, the result is as much precision of the significant part of A as a dou-

ble precision datum can contain.

Case (ifi): If A'is of type complex, the result is as much precision of the significant part of the real part of A
as a double precision datum can contain.

Example. DBLE (-3) has the value —3.0D0.

13.9.28 DIAGONAL (ARRAY, FILL).

Optional Argument. FILL

Description. Create a diagonal matrix from its diagonal.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must have rank one.

FILL (optional) must be of the same type and type parameters as ARRAY and
must be scalar. It may be omitted for the data types in the follow-
ing table; in this case it is as if it were present with the value
shown. '

Type of ARRAY Value of FILL

Integer 0

Real - 0.0
Double precision 0.0D0
Complex (0.0, 0.0)
Logical .FALSE.
Character (fen) len blanks

Result Type, Type Parameters, and Shape. The result is of the type and type para-
meters of VECTOR and it has rank two and shape [n, n] where n is the size of VEC-
TOR.

Resuit Value. Element (i, /) of the result has value VECTOR (/) for 1 <j <n. All
other elements have the value FILL.

Description. Returns the number of significant digits in the model representing num-
bers of the same type and type parameters as the argument.

1
Example. DIAGONAL ([1, 2, 3]) has the value {8

[=]\\ =]
WO o

13.9.29 DIGITS (X).

1986 March Page 13-21

INTRINSIC PROCEDURES X3J3/S8

Kind. Inquiry function.
Argument. X must be of type integer or real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The resuit has value g if X is of type integer and p if X is of type real,
where g and p are as defined in 13.5.1 for the model representing numbers of the
same type and type parameters as X.

Example. DIGITS (X) has the value 24 for real X whose model is as at the end of
13.5.1.

13.9.30 DIM (X, Y).

10

15

Description. The difference XY if it is positive; otherwise zero.

Kind. Elemental function.

Arguments.
X must be of type integer, real, or double precision.
Y must be of the same type as X.

Resuilt Type and Type Parameters. Same as X.
Result Value. The value of the result is XY if X > Y and zero otherwise.
Example. DIM (—3.0, 2.0) has the value 0.0.

13.9.31 DLBOUND (ARRAY, DIM).

20

25

30

35

40

Version 99

Optional Argument. DIM

Description. Returns all the declared lower bounds of an array or a specified declared
lower bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be an
allocatable array that is not allocated or an alias array that does not
exist.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): DLBOUND (ARRAY, DIM) has value equal to the declared lower bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value 1 if dimension DIM has size zero. For an array
section or an array expression, it has the value 1.

Case (i) DLBOUND (ARRAY) has value whose i-th component is equal to
DLBOUND (ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared by the statement
REAL A (2:3, 7:10)
then DLBOUND (A) is [2, 7] and DLBOUND (A, DIM=2) is 7.

1986 March Page 13-22

INTRINSIC PROCEDURES X3J43/S8

13.9.32 DUBOUND (ARRAY, DIM).

10

15

20

Optional Argument. DIM

Description. Returns all the declared upper bounds of an array or a specified declared
upper bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It may not be an
allocatable array that has not been allocated or an alias array that
does not exist. If DIM is omitted or is present with value equal to
the rank of ARRAY, ARRAY must not be an assumed-size array.

DIM (optional) must be scalar and of type integer with value in the range 1 < DIM

< n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): DUBOUND (ARRAY, DIM) has value equal to the declared upper bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero. For an array
section or an array expression, its value is the number of elements in the
corresponding dimension.

Case (i) DUBOUND (ARRAY) has value whose i-th component is equal to
DUBOUND (ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared by the statement

REAL A (2:3, 7:10)

25

then DUBOUND (A) is [3, 10] and DUBOUND (A, DIM=2) is 10.

13.9.33 DOTPRODUCT (VECTOR__A, VECTOR__B).

30

35

Version 99

Description. Performs dot-product multiplication of numeric or Boolean vectors.
Kind. Transformational function.

Arguments.

VECTOR_A must be of numeric type (integer, real, double precision, or complex) or
of logical type. It must be array valued and of rank one.

VECTOR__B must be of numeric type if VECTOR__A is of numeric type or of

type logical if VECTOR__A is of type logical. It must be array val-
ued and of rank one. It must be of the same size as VECTOR__A.

Result Type, Type Parameters, and Shape. If the arguments are of numeric type, the
type and type parameters of the result are those of the expression VECTOR_A *
VECTOR__B determined by the types of the arguments according to 7.1.4. If the argu-
ments are those of the expression VECTOR_A * VECTOR_B as of type logical, the
result is of type logical. The result is scalar.

Resuit Value.

Case (i): If VECTOR__A is of type integer, real, or double precision, the result has value
SUM (VECTOR__A*VECTOR__B). If the vectors have size zero, the result
has value zero.

1986 March Page 13-23

INTRINSIC PROCEDURES X3J3/S8

Case (ii): If VECTOR_A is of type complex, the result has value SUM (CONJG
(VECTOR_A)*VECTOR__B). If the vectors have size zero, the result has
value zero.

Case (i) If VECTOR__A is of type logical, the result has value ANY (VECTOR__A)
.AND. VECTOR__B). If the vectors have size zero, the result has value
.FALSE.

Example. DOTPRODUCT ([1, 2, 3], [2, 3, 4]) has the value 20.

13.9.34 DPROD (X, Y).

10

15

Description. Double precision product.

Kind. Elemental function.

Arguments.
X must be of type real.
Y must be of type real.

Result Type. Double precision.
Result Value. The value of the result is X * Y.

Example. DPROD (-3.0, 2.0) has the value —6.0D0.

13.9.35 DSHAPE (SOURCE).

20

25

Description. Returns the declared shape of an array or a scalar.
Kind. Inqguiry function.
Argument. SOURCE may be of any type. It may be array valued or scalar.

Result Type and Shape. The result is an integer array of rank one whose size is
equal to the rank of SOURCE.

Result Value. The value of the result is the declared shape of SOURCE.

Examples. The value of DSHAPE (A (2:5, —1:1)) is [4, 3]. The value of DSHAPE (3)
is the null rank 1 array.

13.9.36 DSIZE (ARRAY, DIM).

30

35

Version 99

Optional Argument. DIM

Description. Returns the declared extent of an array along a specified dimension or
the total declared number of elements in the array.

Kind. Inquiry function.
Arguments.

ARRAY may be of any type. It must not be scalar. |f ARRAY is an
assumed-size array, DIM must be present with value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM =< n, where n is the rank of ARRAY.

Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the declared extent of dimension DIM of
ARRAY or, if DIM is absent, the total declared number of elements of ARRAY.

1986 March Page 13-24

INTRINSIC PROCEDURES X3J3/58

Examples. The value of DSIZE (A (2:5, —1:1), DIM=2) is 3. The value of DSIZE (A
(2:5, —1:1))is 12.

13.9.37 EFFECTIVE_EXPONENT_RANGE (X).

10

15

Description. Returns the decimal exponent range in the mode! representing numbers
of the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real or complex. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value INT (MIN (LOG10 (huge), —LOG10 (tiny))), where
huge and tiny are the largest and smallest numbers in the model representing numbers
of the same type and type parameters as X (see 13.5.1); huge has value HUGE (X) and
tiny has value TINY (X).

Example. EFFECTIVE_EXPONENT_RANGE (X) has the value 38 for real X whose
model is as at the end of 13.5.1, since in in this case huge = (1-2"2%) x 2'% and
ting = 27177,

13.9.38 EFFECTIVE__PRECISION (X).

20

25

Description. Returns the decimal precision in the model representing numbers of the
same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real or complex. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value p if b is 10 and has value INT ((p —1) * LOG10
(b)) otherwise, where b and p are as defined in 13.5.1 for the model representing num-
bers of the same type and type parameters as X.

Example. EFFECTIVE__PRECISION (X) has the value INT (23 * LOG10 (2.)) = INT
(6.92...) = 6 for real X whose model is as at the end of 13.5.1.

13.9.39 ELBOUND (ARRAY, DIM).

30

40

Version 99

Optional Argument. DIM

Description. Returns all the effective lower bounds of an array or a specified effective
lower bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be an
allocatable array that is not allocated or an alias array that does not
exist.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

1986 March Page 13-25

INTRINSIC PROCEDURES X3J3/S8

10

Case (i): ELBOUND (ARRAY, DIM) has value equal to the effective lower bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value 1 if dimension DIM has size zero. For an array
section or an array expression, it has the value 1.

Case (i) ELBOUND (ARRAY) has value whose i-th component is equal to ELBOUND
(ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared and its range is set as follows:

REAL, RANGE :: A €2:10, 5:10)
SET RANGE (4:6, 7:9) A

then ELBOUND (A) is [4, 7] and ELBOUND (A, DIM=2) is 7.

13.9.40 EUBOUND (ARRAY, DIM).

15

20

25

30

Optional Argument. DIM

Description. Returns all the effective upper bounds of an array or a specified effective
upper bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It may not be an
allocatable array that has not been allocated or an alias array that
does not exist. If DIM is omitted or is present with value equal to
the rank of ARRAY, ARRAY must not be an assumed-size array.

DIM (optional) must be scalar and of type integer with value in the range 1 < DIM

< n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): EUBOUND (ARRAY, DIM) has value equal to the effective upper bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero. For an array
section or an array expression, its value is the number of elements in the
corresponding dimension.

Case (i): EUBOUND (ARRAY) has value whose i-th component is equal to
EUBOUND (ARRAY, i), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared by the statement

REAL A (2:3, 7:10)

35

then EUBOUND (A) is [3, 10] and EUBOUND (A, DIM=2) is 10.

13.9.41 ENABLED (CONDITION, LEVEL).

40

Version 99

Optional Argument. LEVEL

Description. Determine whether a condition is enabled.
Kind. Inquiry function.

Arguments.

1986 March Page 13-26

INTRINSIC PROCEDURES X3J3/S8

10

CONDITION must be a condition name.

LEVEL (optional) must be scalar and of type integer. Its value must not be negative.
If omitted, the result is determined as though LEVEL were present
with value 1.

Result Type and Shape. Logical scalar.
Result Value. The result is defined recursively, as follows:
Case (i): If the condition specified by CONDITION is enabled, the result is .TRUE.

Case (ii): If case (i) does not apply and either LEVEL is zero or the current program
unit is a main program, the result is .FALSE.

Case (iii): If neither of the first two cases hold, the result is that of ENABLED (CONDI-
TION, LEVEL—1) evaluated at the point of reference to the current pro-
gram unit.

13.9.42 EOSHIFT (ARRAY, DIM, SHIFT, BOUNDARY).

15

20

25

30

35

40

Version 99

Optional Argument. BOUNDARY

Description. Perform an end-off shift on an array expression of rank one or perform
end-off shifts on all the complete rank-one sections along a given dimension of a
many-ranked array expression. Elements are shifted off at one end of a section and
copies of a boundary value are shifted in at the other end. Different sections may have
different boundary values and may be shifted by different amounts and in different
directions.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM must be scalar and of type integer with value in the range
1 < DIM =< n, where n is the rank of ARRAY.

SHIFT must be of type integer and must be scalar if ARRAY has rank one;

otherwise, it must be scalar or of rank n—1 and of shape [E
(1:DIM—1), E (DIM + 1:n)], where E (1:n) is the shape of ARRAY.

BOUNDARY (optional) must be of the same type and type parameters as ARRAY and
must be scalar if ARRAY has rank one; otherwise, it must be either
scalar or of rank n—1 and of shape [E (1:DIM-1), E (DIM+1:n)].
BOUNDARY may be omitted for the data types in the following
table and, in this case, it is as if it were present with the scalar
value shown.

Type of ARRAY Value of BOUNDARY

Integer 0

Real 0.0
Double precision 0.0D0
Complex (0.0, 0.0)
Logical .FALSE.
Character (len) len blanks

Result Type, Type Parameters, and Shape. The result has the type, type para-
meters, and shape of ARRAY.

1986 March Page 13-27

INTRINSIC PROCEDURES X3J3/s8

10

15

Result Value. Element (s4, S5, ..., ;) of the result has value that of ARRAY (s4, s, ...,
Spm-1» Som+Sh, Spms1s - Sp) where sh is SHIFT or SHIFT (s, S3, ..., Spim-1,
SDIM+1s ---» Sn) Provided the inequality 1 < spy + sh = E (DIM) holds and is otherwise
BOUNDARY or BOUNDARY (31, 89, .oy SDIM=1> SDIM+1? s Sn).

Examples.

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V end-off to the left
by 3 positions is achieved by EOSHIFT (V, DIM=1, SHIFT =3) which has
the value [4, 5, 6, 0, 0, 0]; EOSHIFT (V, DIM=1, SHIFT= -2, BOUND-
ARY =99) achieves an end-off shift to the right by 2 positions with the
boundary value of 99 and has the value [99, 99, 1, 2, 3, 4].

Case (ij): The rows of an array of rank two may all be shifted by the same amount or
by different amounts and the boundary elements can be the same or

ABC
different. If M is the array k g 8], then the value of EOSHIFT (M,

* A B
DIM=2, SHIFT= —1, BOUNDARY ="’} is [* ﬁ g} and the value of
*

CSHIFT (M, DIM=2, SHIFT=[—1, 1, 0], BOUNDARY=[%", ’/*, '?’]) is

* A B
B C /
ABC

13.9.43 EPSILON (X).

20

25

Description. Returns a positive model number that is almost negligible compared to
one in the model representing numbers of the same type and type parameters as the
argument.

Kind. Inquiry function.

Argument. X must be of type real. It may be scalar or array valued.

Result Type, Type Parameters, and Shape. Scalar of the same type and type para-
meters as X. L

Result Value. The result has value b'~? where b and p are as defined in 13.5.1 for
the model representing numbers of the same type and type parameters as X.

Example. EPSILON (X) has tﬁe value 2~2 for real X whose model is as at the end of
13.5.1.

13.9.44 ESHAPE (SOURCE).

30

35

Version 99

Description. Returns the effective shape of an array or a scalar.
Kind. inquiry function.
Argument. SOURCE may be of any type. It may be array valued or scalar.

Result Type and Shape. The result is an integer array of rank one whose size is
equal to the rank of SOURCE.

Result Value. The value of the result is the effective shape of SOURCE.

Example. The value of ESHAPE (A (2:5, —1:1)) is [4, 3]. The value of ESHAPE (3) is
the null rank 1 array.

1986 March Page 13-28

INTRINSIC PROCEDURES X3J3/s8

10

15

20

25

30

35

Version 99

13.9.45 ESIZE (ARRAY, DIM).

Optional Argument. DIM

Description. Returns the effective extent of an array along a specified dimension or
the total effective number of elements in the array.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. If ARRAY is an
assumed-size array, DIM must be present with value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of ARRAY.
Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the effective extent of dimension DIM of
ARRAY or, if DIM is absent, the total effective number of elements of ARRAY.

Example. The value of ESIZE (A (2:5, —1:1), DIM=2) is 3. The value of ESIZE (A
(2:5, —1:1)) is 12.

13.9.46 EXP (X).

Description. Exponential.

Kind. Elemental function.

Argument. X must be of type real, double precision, or complex.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
eX. If X is of type complex, its imaginary part is regarded as a value in radians.

Example. EXP (1.0) has the value 2.7182818 (approximately).

13.9.47 EXPONENT (X).

Description. Returns the exponent part of the argument when represented as a mode!
number.

Kind. Elemental function.
Argument. X must be of type real.
Result Type. Integer.

Result Value. The result has value equal to the exponent e of the model representa-
tion (see 13.5.1) for the value of X, provided X is nonzero and e is within range for inte-
gers.

Example. EXPONENT (1.0) has the value 1 for reals whose model is as at the end of
13.5.1.

13.9.48 FIRSTLOC (MASK, DIM).

Optional Argument. DIM

Descriptlon. Locate the leading edges of the set of true elements of a logical or bit
mask.

1986 March Page 13-29

INTRINSIC PROCEDURES X3J3/S8

10

156

20

Kind. Transformational function.

Arguments.

MASK must be of type logical or bit. It must not be scalar. its shape
must be defined.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of MASK.

Result Type and Shape. The result is an array of the same shape as MASK and of
type logical.

Result Value.

Case (i): The result of FIRSTLOC (MASK) has at most one true element. If MASK is
all false, the result is all false. If MASK contains one or more true
elements, the result has a single true element and it is in the position cor-
responding to the first true element (in subscript order value) in MASK.

Case (ii): The result of FIRSTLOC (MASK, DIM) is defined by applying FIRSTLOC to
each of the one-dimensional array sections of MASK that lie paraliel to
dimension DIM. Thus, section (s, S2, ..., SpiM—1 :» SDIM+1: -2 Sp) Of the
result has value equal to FIRSTLOC (MASK (54, S2, ..., SpiM—1s :» SDIM+1>
s Sp))-

R
Examples. If MASK is | - $ T T where “T” represents .TRUE. and “.” repre-
sents .FALSE., then

Case (): FIRSTLOC (MASK) is | - T © | and

Case (ii): FIRSTLOC (MASK, DIM=1) is the “top-edge” | ° T

13.9.49 FRACTION (X).

25

30

Version 99

Description. Returns the fractional part of the model representation of the argument
value.

. 4
Kind. Elemental function.
Argument. X must be of type real.

Result Type and Type Parameters. Same as X.

Result Value. The result has value X x b~%, where b and e are as defined in 13.5.1
for the model representatioh of X. If X has value zero, the result has value zero.

Example. FRACTION (3.0) has the value 0.75 for reals whose model is as at the end
of 13.5.1.

1986 March Page 13-30

INTRINSIC PROCEDURES X3J43/S8

13.9.50 HANDLED (CONDITION, LEVEL).

10

15

Optional Argument. LEVEL

Description. Determine whether a condition would be handled.
Kind. [nquiry function.

Arguments.

CONDITION must be a condition name.

LEVEL (optional) must be scalar and of type integer. Its value must not be negative.
If omitted, the result is determined as though LEVEL were present
with value HUGE (0).

Result Type and Shape. Logical scalar.
Result Value. The result is defined recursively as follow:

Case (i): If a handler is supplied for an occurrence of the condition specified by
CONDITION, the result is .TRUE.

Case (ij): If no such handler is supplied and either LEVEL is zero or the current pro-
gram unit is a main program, the result is .FALSE.

Case (iii): If neither of the first two cases hold, the result is that of HANDLED (CON-
DITION, LEVEL-1) evaluated at the point of reference to the current pro-
gram unit.

13.9.51 HUGE (X).

20

25

30

Description. Returns the largest number in the model representing numbers of the
same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type integer or real. It may be scalar or array valued.

Result Type, Type Parameters, and Shape. Scalar of the same type and type para-
meters as X.

Result Value. The result has value r?—1 if X is of type integer and (1 —b ~P)b°™= if X
is of type real, where r, q, b, p, and e are as defined in 13.5.1 for the model repre-
senting numbers of the same type and type parameters as X.

Example. HUGE (X) has the value (1—272%)x2'" for real X whose model is as at the
end of 13.5.1.

13.9.52 IACHAR (C).

35

40

Version 99

Description. Returns the position of a character in the ASCII collating sequence.
Kind. Elemental function.

Argument. C must be of type character and of iength one.

Result Type. Integer.

Result Value. The result is the position of C in the collating sequence described in
ANSI X3.4-1977 (ASCIl). It satisfies the inequality (0 <lACHAR (C)= 127). A
processor-dependent value is returned if C is not in the ASCII collating sequence. The
results must be consistent with the LGE, LGT, LLE, and LLT lexical comparison func-
tions. For example, if LLE (C, D) is true, IACHAR (C) .LE. IACHAR (D) is true where C
and D are any two characters representable by the processor.

1986 March Page 13-31

INTRINSIC PROCEDURES X3J3/s8

Example. |IACHAR ('X’) has the value 88.

13.9.53 IBITLR (B).

10

Description. Convert a bit array to an integer, counting left to right.
Kind. Transformational function.

Argument. B must be of type bit and rank one. Its size must satisfy the inequality
SIZE (B) = MAXBITS (1).

Result Type and Shape. Scalar integer.

Result Value. The result has value equal to the integer represented by the bits in the
array B, regarded as a bit string with the element having the largest subscript value
being the least significant bit of the result. IBITLR (BITLR (J)) must have the value J
for any value of the integer J. BITLR (IBITLR (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) < MAXBITS (1).

Example. IBITLR ([B’0’, B'1’, B’0’, B'1’]) has the value 5.

13.9.54 IBITRL (B).

15

20

25

Description. Convert a bit array to an integer, counting right to left.
Kind. Transformational function.

Argument. B must be of type bit and rank one. Its size must satisty the inequality
SIZE (B) = MAXBITS (1).

Result Type and Shape. Scalar integer.

Result Vatue. The result has value equal to the integer represented by the bits in the
array B, regarded as a bit string with the element having the largest subscript value
being the most significant bit of the result. IBITRL (BITRL (J)) must have the value J
for any value of the integer J. BITRL (IBITRL (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) = MAXBITS (1).

Example. IBITRL ([B'1’, B'0’, B'1’, B'0’]) has the value 5.

13.9.55 ICHAR (C).

30

35

Version 99

Description. Returns the position of a character in the processor collating sequence.
Kind. Elemental function.

Argument. C must be of type character and of length one. Its value must be that of a
character capable of representation in the processor.

Result Type. Integer.

Result Value. The result is the position of C in the processor collating sequence and
is in the range 0 < ICHAR (C) < n —1, where n is the number of characters in the col-
lating sequence. For any characters C and D capable of representation in the proc-
essor, C .LE. D is true if and only if ICHAR (C) .LE. ICHAR (D) is true and C .EQ. D is
true if and only if ICHAR (C). EQ. ICHAR (D) is true.

Example. ICHAR ('X’) has the value 88 on a processor using the ASCIl collating
sequence.

1986 March Page 13-32

INTRINSIC PROCEDURES X3J3/s8

13.9.56 INDEX (STRING, SUBSTRING).

10

Description. Returns the starting position of a substring within a string.
Kind. Elemental function.

Arguments.
STRING must be of type character.
SUBSTRING must be of type character.

Result Type. Integer.

Result Value. If SUBSTRING occurs within STRING, the value returned is the mini-
mum value of | such that STRING (I : | + LEN (SUBSTRING) — 1) = = SUBSTRING:;
otherwise, zero is returned. Zero is returned if LEN (STRING) < LEN (SUBSTRING)
and one is returned if LEN (SUBSTRING) = 0.

Example. INDEX (FORTRAN’, 'R’) has value 3.

13.9.57 INT (A).

15

20

25

Description. Convert to integer type.

Kind. Elemental function.

Argument. A must be of type integer, real, double precision, or complex.
Result Type. Integer.

Result Value.

Case (i): If A is of type integer, INT (A) = A.

Case (i) If A is of type real or double precision, there are two cases: if |A| < 1, INT (A)
has the value 0; if [A| = 1, INT (A) is the integer whose magnitude is the
largest integer that does not exceed the magnitude of A and whose sign is
the same as the sign of A.

Case (iii): If A is of type complex, INT (A) is the value obtained by applying the case
(i) rule to the real part of A,

Example. INT(-3.7) has the value —3.

13.9.58 ISCAN (STRING, SET).

30

35

Version 99

Description. Scan a string for a character in a set of characters.
Kind. Elemental function.

Arguments.
STRING must be of type character.
SET must be of type character.

Result Type. integer.

Result Value. If any of the characters of SET appears in STRING, the value of the
result is the integer index of the leftmost character of STRING that is in SET. The
result is zero if STRING does not contain any of the characters that are in SET or if the
length of STRING or SET is zero.

Example. ISCAN ('FORTRAN’, ‘'TR’) has value 3.

1986 March Page 13-33

INTRINSIC PROCEDURES X3J3/58

13.9.59 LASTLOC (MASK, DIM).

10

156

20

25

Optional Argument. DIM

Description. Locate the trailing edges of the set of true elements of a logical or bit
mask.

Kind. Transformational function.

Arguments.
MASK must be of type logical or bit. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of MASK.

Result Type and Shape. The result is an array of the same shape as MASK and of
type logical???.

Result Value.

Case (i): The result of LASTLOC (MASK) has at most one true element. If MASK is
all false, the result is all false. If MASK contains one or more true
elements, the result has a single true element and it is in the position cor-
responding to the last true element (in subscript order value) in MASK.

Case (i) The result of LASTLOC (MASK, DIM) is defined by applying LASTLOC to
each of the one-dimensional array sections of MASK that lie parallel to
dimension DIM. Thus, section (s, S2, ---, SpiM=1: % SDIM+1: ---» Sp) Of the
result has value equal to LASTLOC (MASK (sS4, S2, .--, SpiM—1, *» SDIM+1
Sn))-

P
Examples. If MASK is | - TT. , where “T” represents .TRUE. and “.” repre-
T LT

sents .FALSE., then

Case (i): LASTLOC (MASK)is | = " ' and

Case (ii): LASTLOC (MASK, DIM=2) is

.

13.9.60 LBIT (B).

30

Version 99

Description. Convert bit to logical type.
Kind. Elemental function.

Argument. B must be of type bit.
Result Type. Logical.

Result Value. The result has the value .TRUE. if B has the value B’1’ and the value
JFALSE. if B has the value B'0’.

Example. LBIT (B'1’) has the value .TRUE.

1986 March Page 13-34

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 99

13.9.61 LEN (STRING).

Description. Returns the length of a character entity.

Kind. Inquiry function.

Argument. STRING must be of type character. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the number of characters in STRING if it
is scalar or in a component of STRING if it is array valued. '

Example. If C is declared by the statement
CHARACTER (11) € (100)
LEN (C) has value 11.

13.9.62 LEN__TRIM (STRING).

Description. Returns the length of the character argument without trailing blank char-
acters.

Kind. Elemental function.
Argument. STRING must be of type character.
Result Type. Integer.

Result Value. The result has a value equal to the number of characters before any
trailing blanks in STRING are removed. If the argument contains no nonblank charac-
ters, the result is zero.

Example. LEN_TRIM (" A B ') has value 4 and LEN_TRIM (" ') has value 0.

13.9.63 LGE (STRING_A, STRING__B).

Description. Test whether a string is lexically greater than or equal to another string,
based on the ASCI! collating sequence.

Kind. Elemental function.

Arguments.
STRING_A must be of type character.
STRING_B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCIl character set, the result is proc-
essor dependent. The result is true if the strings are equal or if STRING_A follows
STRING_B in the collating sequence described in ANSI X3.4-1977 (ASCII); otherwise,
the result is false.

Example. LGE ('ONE’, 'TWO’) has the value .FALSE.

13.9.64 LGT (STRING_A, STRING__B).

Description. Test whether a string is lexically greater than another string, based on
the ASCII collating sequence.

1986 March Page 13-35

INTRINSIC PROCEDURES : X3J3/S8

10

Kind. Elemental function.

Arguments.
STRING__A must be of type character.
STRING__B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCIl character set, the result is proc-
essor dependent. The result is true if STRING__A follows STRING__B in the collating
sequence described in ANS! X3.4-1977 (ASCII); otherwise, the result is false.

Example. LGT ('ONE’, 'TWO’) has the value .FALSE.

13.9.65 LLE (STRING__A, STRING__B).

15

20

25

Description. Test whether a string is lexically less than or equal to another string,
based on the ASCII collating sequence.

Kind. Elemental function.

Arguments.
STRING_A must be of type character.
STRING_B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCII character set, the result is proc-
essor dependent. The result is true if the strings are equal or if STRING__A precedes
STRING__B in the collating sequence described in ANSI X3.4-1977 (ASCIl); otherwise,
the result is false.

Example. LLE (ONE’, 'TWOQO’) has the value .TRUE.

13.9.66 LLT (STRING__A, STRING__B).

30

35

40

Version 99

Description. Test whether a string is lexically less than another string, based on the
ASCH collating sequence.

Kind. Elemental function.

Arguments.
STRING_A must be of type character.
STRING__B must be of type character.

Result Type. Logical.

Result Value. [f the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains- a character not in the ASCIl character set, the result is proc-
essor dependent. The result is true if STRING__A precedes STRING__B in the collat-
ing sequence described in ANSI X3.4-1977 (ASCII); otherwise, the result is false.

Example. LLT (ONE’, 'TWO’) has the value .TRUE.

1986 March Page 13-36

INTRINSIC PROCEDURES X3J3/S8

13.9.67 LOG (X).

10

Description. Natural logarithm.
Kind. Elemental function.

Argument. X must be of type real, double precision, or complex. Unless X is complex, its
value must be greater than zero. If X is complex, its value must not be zero.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
logsX. A result of type complex is the principal value with imaginary part w in the
range —7 < w < 7. The imaginary part of the result is = only when the real part of the
argument is less than zero and the imaginary part of the argument is zero.

Example. LOG (10.0) has the value 2.3025851 (approximately).

13.9.68 LOG10 (X).

15

20

Description. Common logarithm.
Kind. Elemental function.

Argument. X must be of type real or double precision. The value of X must be greater
than zero.

Result Type and Type Parameters. Same as X.
Result Value. The result has value equal to a processor-dependent approximation to

l0g40X.
Example. LOG10 (10.0) has the value 1.0 (approximately).

13.9.69 MATMUL (MATRIX_A, MATRIX__B).

30

35

40

Version 99

Description. Performs matrix multiplication of numeric or Boolean matrices.
Kind. Transformational function.
Arguments.

MATRIDC_A must be of numeric type (integer, real, double precision, or complex) or
of logical type. It must be array valued and of rank one or two. lIts
shape must be defined.

MATRIX__B must be of numeric type if MATRIX__A is of numeric type and of
logical type if MATRIX__A is of logical type. It must be array val-
ued and of rank one or two. If MATRIX_A has rank one,
MATRIX_B must have rank two. Its shape must be defined. The
size of the first (or only) dimension of MATRIX_B must equal the
size of the last (or only) dimension of MATRIX__A.

Result Type, Type Parameters, and Shape. If the arguments are of numeric type, the
type and type parameters of the result are determined by the types of the arguments
according to 7.1.4. If the arguments are of type logical, the result is of type logical.
The shape of the result depends on the shapes of the arguments as follows:

Case (i): If MATRIX_A has shape [n, m] and MATRIX_B has shape [m, k], the
result has shape [n, k].

Case (ii): if MATRIX__A has shape [m] and MATRIX__B has shape [m, k], the result
has shape [k].

1986 March Page 13-37

INTRINSIC PROCEDURES X3J3/S8

10

15

20

Case (iii): If MATRIX__A has shape [n, m] and MATRIX__B has shape [m], the resuit
has shape [n].

Result Value.

Case (i): Element (i, j) of the result has value SUM (MATRIX_A (/,) * MATRIX_B
(., j)) if the arguments are of numeric type and has value ANY (MATRIX_A
(i, ;) .AND. MATRIX__B (:, j)) if the arguments are of logical type.

Case (i) Element (j) of the result has value SUM (MATRIX__A (:) * MATRIX_B (;,
j)) if the arguments are of numeric type and has value ANY (MATRIX__A (%)
.AND. MATRIX_B (;, /)) if the arguments are of logical type.

Case (iii): Element (i) of the result has value SUM (MATRIX_A (i,) * MATRIX_B
() if the arguments are of numeric type and has value ANY (MATRIX_A
(i,) .AND. MATRIX_B (:)) if the arguments are of logical type.

12
Examples. Let A and B be the matrices D g 2] and [2 3}; let X and Y be the

3 4
vectors [1, 2] and [1, 2, 3].

Case (i): The result of MATMUL (A, B) is the matrix-matrix product AB with value
[14 20]
20 29 |-
Case (ii): The result of MATMUL (X, A) is the vector-matrix product XA with value [5,
8, 11].

Case (iii): The result of MATMUL (A, Y) is the matrix-vector product AY with value
[14, 20].

13.9.70 MAX (A1, A2, A3, ...).

25

Optional Arguments. A3, ...
Description. Maximum value.
Kind. Elemental function.

Arguments. The arguments must all have the same type which must be integer, real,
or double precision and they must all have the same type parameters.

Result Type and Type Parameters. Same as the arguments.
Result Value. The value of the result is that of the largest argument.
Example. MAX (—9.0, 7.0, 2.0) has the value 7.0.

30 13.9.71 MAXBITS ().

35

Version 99

Description. Returns the maximum size of a bit array that can be converted to a value
of type integer.

Kind. Inquiry function.
Argument. | must be of type integer.
Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the maximum size of a bit array B that
can be converted to integer using IBITLR (B) or IBITRL (B).

1986 March Page 13-38

INTRINSIC PROCEDURES X3J3/S8

13.9.72 MAXEXPONENT (X).

10

Description. Returns the maximum exponent in the model representing numbers of
the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value ey, as defined in 13.5.1 for the model represent-
ing numbers of the same type and type parameters as X.

Example. MAXEXPONENT (X) has the value 127 for real X whose model is as at the
end of 13.5.1.

13.9.73 MAXLOC (ARRAY, MASK).

15

20

25

30

40

Version 99

Optional Argument. MASK

Description. Determine the location of an element of ARRAY having the maximum
value of the elements identified by MASK.

Kind. Transformational function.
Arguments.

ARRAY must be of type integer, real, or double precision. It must not be sca-
ar.

MASK (optional) must be of type logical or bit and must be conformable with
ARRAY.

Result Type and Shape. The result is of type integer; it is an array of rank one and of
size equal to the rank of ARRAY.

Result Value.

Case (i): If MASK is absent, the result is a rank-one array whose element values are
the values of the subscripts (in subscript order value) of an element of
ARRAY whose value equals the maximum value of all of the elements of
ARRAY. The ith subscript returned lies in the range 1 to e;, where ¢; is
the extent of the ith dimension of ARRAY. If more than one element has
maximum value, the element whose subscripts are returned is processor
dependent. 1f ARRAY has size zero, the value of the result is processor
dependent.

Case (ii): |f MASK is present, the result is a rank-one array whose element values
are the values of the subscripts (in subscript order value) of an element of
ARRAY, corresponding to a true element of MASK, whose value equals the
maximum value of all such elements of ARRAY. The ith subscript returned
lies in the range 1 to e, where e is the extent of the ith dimension of
ARRAY. [f more than one such element has maximum value, the element
whose subscripts are returned is processor dependent. If there are no
such elements (that is, if ARRAY has size zero or every component of
MASK has the value .FALSE.), the value of the result is processor depen-
dent.

Examples.
Case () The value of MAXLOC ([2, 4, 6)) is [3].

1986 March Page 13-39

INTRINSIC PROCEDURES X3J3/S8

0 -5 8 -3
Case (i) I A has the value |3 4 —7 2|, MAXLOC (A, MASK=A.LT.6) has
1 5 6 -4

the value [3, 2].

13.9.74 MAXVAL (ARRAY, DIM, MASK).

10

15

20

25

30

35

Optional Arguments. DIM, MASK

Description. Maximum value of the elements of ARRAY along dimension DIM corre-
sponding to the true elements of MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, or double precision. It must not be sca-
lar. Its shape must be defined.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical or bit and must be conformable
with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,
the result is an array of rank n —1 and of shape (d, d2, ..., dom—1, dpoim+1s s Tn)
where (d,, d», ..., d,) is the shape of ARRAY.

Result Value.

Case (i): The result of MAXVAL (ARRAY) has value equal to the maximum value of
all the elements of ARRAY or has value —HUGE (ARRAY) if ARRAY has
size zero.

Case (ii): The result of MAXVAL (ARRAY, MASK) has value equal to the maximum
value of the elements of ARRAY corresponding to true elements of MASK
or has value —HUGE (ARRAY) if there are no true elements.

Case (iii): |f ARRAY has rank one, MAXVAL (ARRAY, DIM [[MASK]) has value equal
to that of MAXVAL (ARRAY [,MASK]). Otherwise, the value of element (s;,
S2, ..., SDIM—1» SDIM+1: - Sp) Of MAXVAL (ARRAY, DIM [,MASK]) is equal
to MAXVAL (ARRAY (51, 82, «--s SDIM=11 *» SDIM+41s -+o» s,), [, MASK (s, S5,
vees SDIM=1s 5 SDIM+1s -+ Sn) 1)

Examples.
Case (i): The value of MAXVAL ([1, 2, 3]) is 3.

Case (i) MAXVAL (C, MASK = C .GT. 0.0) finds the maximum of the positive
elements of C.

Case (ii): If B is the array |32 |, MAXVAL (B, DIM=1) is [2, 4, 6] and MAXVAL
246

(B, DIM=2) is [5, 6].

13.9.75 MERGE (TSOURCE, FSOURCE, MASK).

Version 99

Description. Choose alternative value according to value of a mask.

Kind. Elemental function.

1986 March Page 13-40

INTRINSIC PROCEDURES X3J3/58

Arguments.

TSOURCE may be of any type.

FSOURCE must be of the same type and type parameters as TSOURCE.
MASK must be of type logical or bit.

Result Type and Type Parameters. Same as TSOURCE.

Result Value. The result is TSOURCE if MASK is true and FSOURCE otherwise.
Example. If TSOURCE is the array [; 2 g} FSOURCE is the array [(7) 2 g} and
MASK is the array [T -F } , where “T” represents .TRUE. and “."” represents .FALSE.,

then MERGE (TSOURCE, FSOURCE, MASK) is [J, 2 g] .

10 13.9.76 MIN (A1, A2, A3, ...).

15

Optional Arguments. A3, ...
Description. Minimum value.
Kind. Elemental function.

Arguments. The arguments must all be of the same type which must be integer, real,
or double precision and they must all have the same type parameters.

Result Type and Type Parameters. Same as the arguments.
Result Value. The value of the result is that of the smallest argument.
Example. MIN (—9.0, 7.0, 2.0) has the value —9.0.

13.9.77 MINEXPONENT (X).

20

25

Description. Returns the minimum (most negative) exponent in the model representing
numbers of the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value e, as defined in 13.5.1 for the model represent-
ing numbers of the same type and type parameters as X.

Example. MINEXPONENT (X) has the value —126 for real X whose model is as at the
end of 13.5.1.

13.9.78 MINLOC (ARRAY, MASK).

30

35

Version 99

Optional Argument. MASK

Description. Determine the location of an element of ARRAY having the minimum
value of the elements identified by MASK.

Kind. Transformational function.
Arguments.

ARRAY must be of type integer, real, or double precision. It must not be sca-
lar.

1986 March Page 13-41

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

MASK (optional) must be of type logical or bit and must be conformabie with
ARRAY.

Result Type and Shape. The result is of type integer; it is an array of rank one and of
size equal to the rank of ARRAY.

Result Value.

Case (i) If MASK is absent, the result is a rank-one array whose element values are
the values of the subscripts (in subscript order value) of an element of
ARRAY whose value equals the minimum value of all the elements of
ARRAY. The ith subscript returned lies in the range 1 to g;, where g; is
the extent of the ith dimension of ARRAY. If more than one element has
minimum value, the element whose subscripts are returned is processor
dependent. If ARRAY has size zero, the value of the result is processor
dependent.

Case (ij): If MASK is present, the result is a rank-one array whose element values
are the values of the subscripts (in subscript order value) of an element of
ARRAY, corresponding to a true element of MASK, whose value equals the
minimum value of all such elements of ARRAY. The ith subscript returned
lies in the range 1 to e;, where e; is the extent of the ith dimension of
ARRAY. If more than one such element has minimum value, the element
whose subscripts are returned is processor dependent. |f ARRAY has size
zero or every element of MASK has the value .FALSE., the value of the
result is processor dependent.

Examples.

Case (i): The value of MINLOC ([2, 4, 6)) is [1].
0 -5 8 -3

Case (i) If A has the value |3 4 —61 2 |, MINLOC (A, MASK=A.GT.-4) has
1 5 —4

the value [1,4].

13.9.79 MINVAL (ARRAY, DIM, MASK).

30

35

40

Version 99

Optional Arguments. DIM, MASK

Description. Minimum value of all the elements of ARRAY along dimension DIM corre-
sponding to true elements of MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, or double precision. It must not be sca-
lar.

DIM (optional) must be scalar and of type integer with value in the range
1 = DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical or bit and must be conformable

with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,
the result is an array of rank n —1 and of shape (d4, d2, ..., dpm-1, dom+1s ---v Tn)
where (d4, d3, ..., d;) is the shape of ARRAY.

1986 March Page 13-42

INTRINSIC PROCEDURES X3J3/58

10

15

Result Value.

Case (i): The result of MINVAL (ARRAY) has value equal to the minimum value of all
the elements of ARRAY or has value HUGE (ARRAY) if ARRAY has size
zero.

Case (i) The result of MINVAL (ARRAY, MASK) has value equal to the minimum
value of the elements of ARRAY corresponding to true elements of MASK
or has value HUGE (ARRAY) if there are no true elements.

Case (iii): If ARRAY has rank one, MINVAL (ARRAY, DIM [,MASK]) has value equal to
that of MINVAL (ARRAY [,MASK]). Otherwise, the value of element (s, s,
<3 SDIM=1> SDIM+1s =+=3 Sn) of MINVAL (ARRAY, DIM [,MASK]) is equal to
MINVAL (ARRAY (s, S3, -, SDiM=1 5» SpDIM+1s -+ Sn) [, MASK (s4, 835, ...,
SDIM=15 %5 SDIM+1s =+s Sp)])

Examples.
Case (i): The value of MINVAL ([1, 2, 3]) is 1.

Case (i) MINVAL (C, MASK
elements of C.

C .GT. 0.0) forms the minimum of the positive

Case (ii): If B is the array [; 2 g] , MINVAL (B, DIM=1) is [1, 3, 5] and MINVAL (B,
DIM=2) is [1, 2].

13.9.80 MOD (A, P).

20

25

Description. Remainder modulo P.
Kind. Elemental function.

Arguments.
A must be of type integer, real, or double precision.
P must be of the same type as A.

Result Type and Type Parameters. Same as A.

Result Value. If P # 0, the value of the result is A—INT (A/P) * P. If P = 0, the
result is undefined.

Example. MOD (3.0, 2.0) has the value 1.0.

13.9.81 NEAREST (X, S).

30

35

40

Version 99

Description. Returns the nearest different machine representable number in a given
direction.

Kind. Elemental function.

Arguments.
X must be of type real.
S must be of type real and not equal to zero.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to the machine representable number dis-
tinct from X and nearest to it in the direction of the infinity with the same sign as S.

Example. NEAREST (3.0, 2.0) has the value 3+2722 on a machine whose representa-
tion is that of the model at the end of 13.5.1.

1986 March Page 13-43

INTRINSIC PROCEDURES X3J3/58

13.9.82 NINT (A).

Description. Nearest integer.

Kind. Elemental function.

Argument. A must be of type real or double precision.
Result Type. Integer.

Result Value. If A > 0, NINT (A) has the value INT (A+0.5); if A <0, NINT (A) has
the value INT (A—0.5).

Example. NINT (2.783) has the value 3.

13.9.83 PACK (ARRAY, MASK, VECTOR).

10

15

20

25

30

Optional Argument. VECTOR
Description. Pack an array into an array of rank one under the control of a mask.

Kind. Transformational function.

Arguments.
ARRAY may be of any type. It must not be scalar.
MASK must be of type logical or bit and must be conformable with

ARRAY.

VECTOR (optional) must be of the same type and type parameters as ARRAY and
must have rank one. It must have at least as many elements as
there are true elements in MASK and if MASK is scalar with value
true, it must have at least as many elements as there are in
ARRAY.

Result Type, Type Parameters, and Shape. The result is an array of rank one with
the same type and type parameters as ARRAY. If VECTOR is present, the result size
is that of VECTOR; otherwise, the result size is the number t of true elements in MASK
unless MASK is scalar with value true, in which case the result size is the size of
ARRAY.

Result Value. Element i of the result is the i-th element of ARRAY that corresponds to
a true element of MASK, taking elements in subscript order value, fori = 1,2,...,t. If
VECTOR is present and has size n > t, element i of the result has value VECTOR (i),
fori =t+1,..,n.

000
Example. The nonzero elements of an array M with value {9 0 0} may be *“gath-
007
ered” by the function PACK. The result of PACK (M, MASK=M.NE.Q) is [9, 7] and the
result of PACK (M, M.NE.O, VECTOR=[6[0]}) is [9, 7, 0, 0, 0, O].

13.9.84 PRESENT (A).

35

Version 99

Description. Determine whether an optional argument is present.
Kind. inquiry function

Argument. A must be an optional argument of the procedure in which the PRESENT
function reference appears.

Result Type and Shape. Logical scalar.

1986 March Page 13-44

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

Version 99

Result Value. The result has the value .TRUE. if A is present and is otherwise
.FALSE.

13.9.85 PRODUCT (ARRAY, DIM, MASK).

Optional Arguments. DIM, MASK

Description. Product of all the elements of ARRAY along dimension DIM correspond-
ing to the true elements of MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, double precision, or complex. It must not
be scalar. Its shape must be defined.

DIM (optional) must be scalar and of type integer with value in the range
1 = DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical or bit and must be conformable
with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,

the result is an array of rank n—1 and of shape (d,, da, ..., dpm-1, dpms1s s Gp)
where (dy, d, ..., d;) is the shape of ARRAY.
Result Value.

Case (i The result of PRODUCT (ARRAY) has value equal to a processor-
dependent approximation to the product of all the elements of ARRAY or
has value one if ARRAY has size zero.

Case (i) The result of PRODUCT (ARRAY, MASK) has value equal to a processor-
dependent approximation to the product of the elements of ARRAY corre-
sponding to true elements of MASK or has value one if there are no true
elements.

Case (iii): If ARRAY has rank one, PRODUCT (ARRAY, DIM [,MASK]) has value equal
to that of PRODUCT (ARRAY [,MASK]). Otherwise, the value of element
(S1, S2, -, SDIM—1> SDIM+1> -=»» Sn) of PRODUCT (ARRAY, DIM [[MASK])) is
equal to PRODUCT (ARRAY (51, S2, --:s SDIM=1s s SDIM+1s -+ S") [, MASK
(S1, S2, -« SDIM=1 5 SDIM+15 -+ Sn)])-

Examples.
Case (i): The value of PRODUCT ({1, 2, 3)) is 6.

Case (ii): PRODUCT (C, MASK = C .GT. 0.0) forms the product of the positive
elements of C.

Case (i) If B is the array [; : g] , PRODUCT (B, DIM=1) is [2, 12, 30] and PROD-

UCT (B, DIM=2) is [15, 48].

13.9.86 PROJECT (ARRAY, MASK, FIELD, DIM).

Optional Argument. DIM
Description. Select masked values from an array.

Kind. Transformational function.

1986 March Page 13-45

INTRINSIC PROCEDURES ‘ X3J3/S8

10

15

20

25

30

35

40

Version 99

Arguments.

ARRAY may be of any type. It must not be scalar. lts shape must be
defined.

MASK must be of type logical or bit and of the same shape as ARRAY. If
DIM is absent, MASK must have at most one true element; other-
wise, each section MASK (s, ..., SpiM—1s » SpM+1s ---» Sp) Must
have at most one true element.

FIELD must be of the same type and type parameters as ARRAY. It must
be scalar if DIM is absent. |f DIM is present, FIELD must have
rank n —1 and shape [E (1:DIM—1), E (DIM + 1:n)], where E (1:n) is
the shape of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of ARRAY.

Result Type, Type Parameters, and Shape. The result is of the type and type para-
meters of ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise, the
result has rank n—1 and shape [E (1:DIM-1), E (DIM+1:n)] where E (1:n) is the
shape of ARRAY.

Result Value.

Case (i):

Case (ii):

Examples.
Case (i):

Case (ii):

The result of PROJECT (ARRAY, MASK, FIELD) is the element of ARRAY
corresponding to the true element of MASK if there is one and is FIELD
otherwise. Note that if MASK has zero size, the result has value FIELD.

If ARRAY has rank one, PROJECT (ARRAY, MASK, FIELD, DIM) has value
equal to that of PROJECT (ARRAY, MASK, FIELD). Otherwise, the value
of element (sy, ..., Spm-1 SDIM+1s - s,) of PROJECT (ARRAY, MASK,
FIELD, DIM) is equal to PROJECT (ARRAY (S1, vevs SDIM=11 =5 SDIM+11 =+os
Sn), MASK (s, ..., SpiM—1> s SpiM+1s -+ Sn), FIELD (84, ..., Spim—1, Spim+1,
..., Sp)). Note that if ARRAY (and MASK) have size zero because E (DIM)
has value zero, the result may have nonzero size with all its values coming
from FIELD.

If V is the array [1, 2, 3, 4] and P is the mask [., ., T, .}, where “T"” repre-
sents .TRUE. and “.” represents .FALSE., the value of PROJECT (V,
MASK=P, FIELD=0) is the scalar 3, and the value of PROJECT (V,
MASK=V.GT.5, FIELD=99) is the scalar 99. If A is the array
{1 4 7 10

258 11} and L is the array [I T :},the value of PROJECT (A,
369 12 L

MASK =L, FIELD =0) is the scalar 8.

Using the arrays of case (i), the value of PROJECT (A, L, [0, 0, 0], DIM=2)
is the array [0, 8, 0], and the value of PROJECT (A, L, [0, O, O, 0], DIM=1)
is the array [0, O, 8, 0]. .

first nzero number in each column of the _table TABLE =

is located by the mask M = : T T 1 A vector which

1460 T . ..
contains those nonzero numbers can be extracted from TABLE by the
PROJECT function. Thus, the value of PROJECT (TABLE, M, [—1, —1,

-1, —1], DIM=1) is that vector, namely [1, 2, 5, —1]. Note that M itseif is

1986 March Page 13-46

INTRINSIC PROCEDURES X3J43/58

the value of FIRSTLOC (TABLE.NE.O, DIM=1).

13.9.87 RADIX (X).

[$)]

10

Description. Returns the base of the mode! representing numbers of the same type
and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type integer or real. 1t may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value r if X is of type integer and b if X is of type real,
where r and b are as defined in 13.5.1 for the model representing numbers of the
same type and type parameters as X.

Example. RADIX (X) has the value 2 for real X whose model is as at the end of
13.5.1.

13.9.88 RANK (SOURCE).

15

20

Description. Returns the rank of an array or a scalar.
Kind. Inquiry function.

Argument. SOURCE may be of any type.

Result Type and Shape. Integer scalar.

Result Value. The result has value zero if SOURCE is scalar and otherwise has value
equal to the rank of SOURCE.

Example. RANK ([1:N]) has the value one.

13.9.89 REAL (A, MOLD).

25

30

35

Version 99

Optional Argument. MOLD

Description. Convert to real type.

Kind. Elemental function.

Arguments.

A must be of type integer, real, double precision, or complex.
MOLD (optional) must be of type real.

Result Type and Type Parameters. Real. If MOLD is present, the type parameters
are those of MOLD; otherwise, they are the processor-dependent default type para-
meters for real type.

Result Value.

Case (i): If A is of type integer, real, or double precision, the result is equal to a
processor-dependent approximation real part of A.

Case (i) I A is of type complex, the result is equal to a processor-dependent
approximation real part of A.

Example. REAL (—3) has the value —3.0.

1986 March Page 13-47

INTRINSIC PROCEDURES X3J3/S8

13.9.90 REPEAT (STRING, NCOPIES).

10

Description. Concatenate several copies of a string.

Kind. Elemental function.

Arguments.
STRING must be of type character.
NCOPIES must be of type -integer. lts value must not be negative.

Result Type and Type Parameters. Character of length NCOPIES times that of
STRING.

Result Value. The value of the result is the concatenation of NCOPIES copies of
STRING.

Example. REPEAT ('H’, 2) has value 'HH’.

13.9.91 REPLICATE (ARRAY, DIM, NCOPIES).

15

20

25

Description. Replicates an array by increasing a dimension.
Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

NCOPIES must be scalar and of type integer.

Result Type, Type Parameters, and Shape. The result is an array of the same type,
type parameters, and rank as ARRAY and has shape [E (1:DIM-1), MAX (NCOPIES, 0)
* E (DIM), E (DIM + 1:n)], where the shape of ARRAY is E (1:n).

Result Value. Each element of the result has value equal to that of the corresponding
element of ARRAY obtained by subtracting from subscript DIM sufficient integral multi-
ples of E (DIM) to bring it into the range [1:E (DIM)].

Example. If A is the array [gi] REPLICATE (A, DIM=2, NCOPIES=3) is
[232323]
343434

13.9.92 RESHAPE (MOLD, SOURCE, PAD, ORDER).

30

35

Version 99

Optional Arguments. PAD, ORDER
Description. Change the shape of an array.

Kind. Transformational function.

Arguments.

MOLD must be of type integer and rank one. Its size must be positive
and less than 8.

SOURCE may be of any type. It must be array valued. lts shape must be

defined. If PAD is absent, the size of SOURCE must be at least as
great as that of the result.

1986 March Page 13-48

INTRINSIC PROCEDURES X3J3/S8

[¢;]

10

20

25

3¢

35

Version 99

PAD (optional) must be of the same type and type parameters as SOURCE. PAD
must be array valued.

ORDER (optional) must be of type integer, must have the same shape as MOLD, and
its value must be a permutation of [1:n], where n is the size of
MOLD. If absent, it is as if it were present with value [1:n].

Result Type, Type Parameters, and Shape. The result is an array of shape MOLD
(i.e., SHAPE (RESHAPE (MOLD, SOURCE)) = MOLD) with type and type parameters
those of SOURCE.

Result Value. The elements of the result, taken in permuted subscript order ORDER
(1), ..., ORDER (n), are those of SOURCE in normal subscript order value followed if
necessary by those of PAD in subscript order value, followed if necessary by additional
copies of PAD in subscript order value.

Example. RESHAPE (12, 3], [1:6]) has value [; 33

13.9.93 RRSPACING (X).

Description. Returns the reciprocal of the relative spacing of model numbers near the
argument value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value | X x b~% x bP, where b, e, and p are as defined
in 13.5.1 for the model representation of X, provided this result is within range.

Example. RRSPACING (—3.0) has the value 0.75 x 22* for reals whose model is as at
the end of 13.5.1.

13.9.94 SCALE (X, I).

Description. Returns X x b' where b is the base in the model representation of X.
Kind. Elemental function.

Arguments.

X must be of type real.

| must be of type integer.

Result Type and Type Parameters. Same as X.

Result Value. The result has the value X x b', where b is defined in 13.5.1 for model
numbers representing values of X, provided this result is within range.

Example. SCALE (3.0, 2) has the value 12.0 for reals whose model is as at the end of
13.5.1.

13.9.95 SETEXPONENT (X, I).

Description. Returns the model number whose fractional part is the fractional part of
the model representation of X and whose exponent part is I.

Kind. Elemental function.

1986 March Page 13-49

INTRINSIC PROCEDURES

Arguments.
X must be of type real.
| must be of type integer.

Result Type and Type Parameters. Same as X.

X3J3/S8

Result Value. The result has value X x b'~¢, where b and e are as defined in 13.5.1
for the model representation of X, provided this result is within range. If X has value

zero, the result has value zero.

Example. SETEXPONENT (3.0, 1) has the value 1.5 for reals whose model is as at the

end of 13.5.1.

10 13.9.96 SIGN (A, B).

15

Description. Absolute value of A times the sign of B.

Kind. Elemental function.

Arguments.
A must be of type integer, real, or double precision.
B must be of the same type as A.

Result Type and Type Parameters. Same as A.

Result Value. The value of the result is |A| if B = 0 and —|A] if B < 0.

Example. SIGN (—3.0, 2.0) has the value 3.0.

13.9.97 SIN (X).

20

25

Description. Sine function.

Kind. Elemental function.

Argument. X must be of type real, double precision, or complex.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
sin(X). If X is of type real or double precision, it is regarded as a value in radians. If X is

of type complex, its real part is regarded as a value in radians.
Example. SIN (1.0) has the value 0.84147098 (approximately).

13.9.98 SINH (X).

30

35

Version 99

Description. Hyperbolic sine function.
Kind. Elemental function.
Argument. X must be of type real or double precision.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to

sinh(X). .
Example. SINH (1.0) has the value 1.1752012 (approximately).

1986 March

Page 13-50

INTRINSIC PROCEDURES X3J3/S8

13.9.99 SPACING (X).

10

Description. Returns the absolute spacing of model numbers near the argument
value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value b® P, where b, e, and p are as defined in 13.5.1
for the model representation of X, provided this result is within range; otherwise, the
result is the same as that of TINY (X).

Example. SPACING (3.0) has the value 2-22 for reals whose model is as at the end of
13.5.1.

13.9.100 SPREAD (SOURCE, DIM, NCOPIES).

15

20

25

30

35

Description. Replicates an array by adding a dimension. Broadcasts several copies of
SOURCE along a specified dimension (as in forming a book from copies of a single
page) and thus forms an array of rank one greater.

Kind. Transformational function.

Arguments.

SOURCE may be of any type. It may be scalar or array valued. The rank of
SOURCE must be less than 7.

DIM must be scalar and of type integer with value in the range
1 < DIM < n +1, where n is the rank of SOURCE.

NCOPIES must be scalar and of type integer.

Result Type, Type Parameters, and Shape. The result is an array of the same type
and type parameters as SOURCE and of rank n +1, where n is the rank of SOURCE.

Case (i): If SOURCE is scalar, the shape of the result is [MAX (NCOPIES, 0)].

Case (ii): If SOURCE is array valued with shape E (1:n), the shape of the result is [E
(1:DIM-1), MAX (NCOPIES, 0), E (DIM:n))].

Result Value.

Case (i) If SOURCE is scalar, each element of the result has value equal to
SOURCE.

Case (i) If SOURCE is array _{ralued, the element of the result with subscript (r4, r,
...y Tn+1) has the value SOURCE (s, Sy, ..., Sp) where (s, s3, ..., Sp) is (14,
I3, ..., In41) With subscript rpy omitted.

Example. If A is the array [2, 3, 4], SPREAD (A, DIM=1, NCOPIES=3) is the array

234
234 |.
234

13.9.101 SQRT (X).

Version 99

Description. Square root.
Kind. Elemental function.

1986 March Page 13-51

INTRINSIC PROCEDURES X3J3/s8

Argument. X must be of type real, double precision, or complex. Unless X is complex, its
value must be greater than or equal to zero.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
the square root of X. A result of type complex is the principal value with the real part
greater than or equal to zero. When the real part of the result is zero, the imaginary
part is greater than or equal to zero.

Example. SQRT (4.0) has the value 2.0 (approximately).

13.9.102 SUM (ARRAY, DIM, MASK).

10

15

20

25

30

35

40

Version 99

Optional Arguments. DIM, MASK
Description. Sum all the elements of ARRAY along dimension DIM with mask MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, double precision, Or complex. It must not
be scalar.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical or bit and must be conformable

with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,
the result is an array of rank n—1 and of shape (d1, da, ..., dom—1, dom+1s -5 Op)
where (d4, ds, ..., d,) is the shape of ARRAY.

Result Value.

Case (i): The result of SUM (ARRAY) has value equal to a processor-dependent
approximation to the sum of all the elements of ARRAY or has value zero if
ARRAY has size zero.

Case (ii): The result of SUM (ARRAY, MASK) has value equal to a processor-
dependent approximation to the sum of the elements of ARRAY corre-
sponding to the true elements of MASK or has value zero if there are no
true elements.

Case (ii): |f ARRAY has rank one, SUM (ARRAY, DIM [[MASK]) has value equal to
that of SUM (ARRAY [,MASK]). Otherwise, the value of element (s;, s, ...,

SOIM—1» SbiMats - Sn) Of SUM (ARRAY, DIM [MASK]) is equal to SUM
(ARRAY (s, S2, ..., SpiM—1: 5 SpiM+1» - Sp) [MASK (84, 83, ..., Spm-1, &
SDIM+15 =on sn)])'

Examples.

Case (i): The value of SUM ([1, 2, 3]) is 6.

Case (i) SUM (C, MASK= C .GT. 0.0) forms the arithmetic sum of the positive
elements of C.

Case (ii): If B is the array [; 3 g} SUM (B, DIM=1) is [3, 7, 11] and SUM (8,
DIM=2) is [9, 12].

1986 March Page 13-52

INTRINSIC PROCEDURES X3J3/58

13.9.103 TAN (X).

Description. Tangent function.

Kind. Elemental function.

Argument. X must be of type real or double precision.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
tan(X), with X regarded as a value in radians.

Example. TAN (1.0) has the value 1.5574077 (approximately).

13.9.104 TANH (X).

10

15

Description. Hyperbolic tangent function.

Kind. Elemental function.

Argument. X must be of type real or double precision.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
tanh(X).

Example. TANH (1.0) has the value 0.76159416 (approximately).

13.9.105 TINY (X).

20

25

Description. Returns the smallest positive nhumber in the model representing numbers
of the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.

Result Type, Type Parameters, and Shape. Scalar with the same type and type para-
meters as X.

&min—1

Result Value. The result has value b where b and en,, are as defined in 13.5.1
for the model representing numbers of the same type and type parameters as X.

Example. TINY (X) has the value 2~'? for real X whose model is as at the end of
13.56.1.

13.9.106 TRANSPOSE (MATRIX).

30

35

Version 99

Description. Transpose an array of rank two.
Kind. Transformational function.

Argument. MATRIX may be of any type and must have rank two. Its shape must be
defined. .

Result Type, Type Parameters, and Shape. The result is an array of the same type
and type parameters as MATRIX and with rank two and shape [n, m] where [m, n] is
the shape of MATRIX.

Result Value. Element (/, j) of the result has value MATRIX (j, i), i = 1,2,..,n;] =
1,2,....m.

123
Example. If A is the array |i4 g g:l, then TRANSPOSE (A) has the value
7

1986 March Page 13-53

INTRINSIC PROCEDURES X3J3/S8

147
25 8.
369

13.9.107 TRIM (STRING).

10

Description. Returns the argument with trailing blank characters removed.
Kind. Transformational function.

Argument. STRING must be of type character and must be a simple variable or array
element (not an array or array section).

Result Type and Type Parameters. Character with a length that is the length of
STRING less the number of trailing blanks in STRING.

Result Value. The value of the result is the same as STRING except any trailing
blanks are removed. If STRING contains no nonblank characters, the result has zero
length.

Example. TRIM’ A B ’) has value ’ A B’.

13.9.108 UNPACK (VECTOR, MASK, FIELD).

15

20

25

30

Version 99

Description. Unpack an array of rank one into an array under the control of a mask.
Kind. Transformational function.

Arguments.

VECTOR may be of any type. It must have rank one. Its size must be at
least t where t is the number of true elements in MASK.

MASK must be array valued and of type logical or bit. Its shape must be
defined.

FIELD must be of the same type and type parameters as VECTOR and

must be conformable with MASK.

Result Type, Type Parameters, and Shape. The result is an array of the same type
and type parameters as VECTOR and the same shape as MASK.

Result Value. The element of the result that corresponds to the i-th true element of
MASK, counting in subscript order value, has value VECTOR (i) for i = 1,2,..,t,
where t is the number of true values in MASK. Other elements have value equal to
FIELD if FIELD is scalar or to the corresponding element of FIELD if it is an array.

Example. Specific values may be “scattered” to specific positions in an array by using

000
UNPACK. If M is the array {8 0 Oj|, V is the array [1, 2, 3], and Q is the logical
0o '

. T
mask [T . 1._], where “T” represents .TRUE. and “.” represents .FALSE., then the

020
result of UNPACK (V, MASK=Q, FIELD =M) has the value l:a 0 0] and the result of
03

020
UNPACK (V, MASK=Q, FIELD =0) has the value h 0 O} .
03

1986 March Page 13-54

INTRINSIC PROCEDURES X3J3/S8

13.9.109 VERIFY (STRING, SET).

10

Version 99

Description. Verify that a set of characters contains all the characters in a string.
Kind. Elemental function.

Arguments.
STRING must be of type character.
SET must be of type character.

Result Type. Integer.

Result Value. The value of the result is zero if each character in STRING appears in
SET or if STRING has zero length; otherwise, the value of the result is the position of
the leftmost character of STRING that is not in SET.

Example. VERIFY ('AB’, 'A’) has value 2.

1986 March Page 13-55

14 ENTITY SCOPE, ASSOCIATION, AND DEFINITION

An entity is one of the following:

A program unit

An internal procedure

An interface block

A common block

An external input/output unit
A statement function

A type

A simple variable

A component

(10) A symbolic constant
(11) A statement label
(12) A construct

(13) A condition

14.1 Name and Scoping Rules.

14.1.1 Name of an Entity. All entities except statement labels and external input/output
units have a name that is a symbolic name. A statement label is a string of one to five dig-
its. An external input/output unit is referenced by an integer value.

14.1.1.1 Allowable Name Conflicts. In a program unit, two entities must not have the
same name except as noted in the following paragraphs of this section. Two entities in
different program units may have the same name except as noted in the following para-
graphs of this section.

(1)
(4]
5 (3)
@)
®)
(6)
@
10 (8)
)
15
20
(1)
25
30 (2
35 6]
4
6)
40
Version 99

A common block may have a name that is the same as the name of any local entity other than a symbolic
constant, function, or a local variable that is the name of an external function in a function subprogram. If a
name is used for both a common block and a local entity, the appearance of that name in any context
other than as a common block name in a COMMON or SAVE -statement identifies only the local entity.
Note that an intrinsic function name may be a common block name in a program unit that does not refer-
ence the intrinsic function.

In a function subprogram, the name of a function that appears immediately after
the word FUNCTION in a FUNCTION statement or immediately after the word ENTRY in an
ENTRY statement may also be the name of a variable in that subprogram (12.5.2.2).
At least one such function name must be the name of a variable in a function sub-
program.

A common block name may be the same as an array name, a structure name, a type name, a statement
function name, or a component name.

A component name in a program unit may also be the name of any local or global
entity except another component name of the same type.

A statement function dummy argument name may also be the name of a scalar variable or common block
in the program unit. The appearance of the name in any context other than as a dummy argument of the

1986 March Page 14-1

ENTITY SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

10

15

20

25

35

statement function identifies the variable or common block. The statement function dummy argument name
and variable name must have the same type and, if of type character, must have the same constant length.

(6) The name of an implied-DO-variable in a DATA statement may also be the name of a variable or common
block in the program unit. The appearance of the name in any context other than as an implied-DO-
variable in the DATA statement identifies the variable or common block. The implied-DO-variable and the
local variable have the same type.

(7) USE conflict (11.3.1)

14.1.2 Scope. The scope of an entity is that portion of an executable program in which a
particular set of attributes is associated with the entity.

A local entity is one whose scope is less than an executable program.
14.1.2.1 Executable Program Scope. The following entities have a scope of an execut-
able program.

(1) An external program unit

(2) A common block

(3) An external input/output unit
14.1.2.2 Program Unit Plus Keyword Scope. The following entities have a scope that is a
program unit plus the lefthand portion of keyword arguments.

(1) A variable that is a dummy argument, except a statement function dummy argu-
ment.

(2) A procedure that is a dummy argument.
In the following example, X has this scope.

CALLA (X =P + Q

SUBROUTINE A (X)

14.1.2.3 Program Unit Scope. The following entities have a scope that is a program unit.
(1) A variable that is not a dummy argument
(2) A procedure that is not a dummy argument
(3) A symbolic constant
(4) A statement function
(5) An intrinsic procedure
(6) An internal procedure
(7) A label
(8) A construct

14.1.2.4 Part of a Program Unit Scope. The following entities have a scope that is a pro-
gram unit except for all contained internal procedures in which the entity is redeclared.

(1) 72

Version 99 1986 March Page 14-2

ENTITY SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

15

20

25

30

35

14.1.2.5 Statement Scope. The following entities have a scope that is a single statement.
(1) A variable that is the dummy argument of a statement function
(2) A DO variable in an implied-DO list of a DATA statement
(3) A forall-var in a FORALL statement (7.5.3)

14.2 Association.
Two entities may become associated by name assoclation or by storage association.

14.2.1 Name Agssociation. There are two forms of name association: argument associa-
tion and allas assoclation. Argument association provides a mechanism by -which entities
known in a procedure or main program unit (calling program) may be accessed in another
procedure (called program). Alias association provides alternative avenues (e.g., different
names) of access to an entity within a single program unit.

14.2.1.1 Argument Assoclation. The rules governing argument association are given in
Section 12. As explained in Section 12, execution of a procedure reference establishes an
association between an actual argument and its corresponding dummy argument. Argument
association may be either name based or storage sequence based. Storage sequence
based argument association (14.2.2) occurs only when the actual argument is not conform-
able with an array dummy argument (e.g., when an array element is passed to an array
dummy argument). All other instances of argument association are name based, in which
argument attributes, rather than storage sequence, determine the nature of the association.

For name-based argument association of data objects, the actual and dummy arguments
conform in type and shape. For procedures, the actual and dummy arguments must be the
same kind (function or subroutine) of procedure, and for functions, the type and shape of the
actual and dummy arguments must be conformable.

The name of the dummy argument may be different from the name, if any, of its associated
actual argument. (Note that an actual argument may be a nameless data entity, such as an
expression that is not simply a variable or constant.) The dummy argument name is the
name by which the associated actual argument is known, and may be accessed by, in the
called procedure.

Upon termination of execution of a procedure reference, all argument associations estab-
lished by that reference are terminated. A dummy argument of that procedure may be asso-
ciated with an entirely different actual argument in a subsequent execution of the procedure.
That is, the scope of an argument association is the called procedure for the duration of the
execution of the procedure reference that established the association.

14.2.1.2 Alias Association. An alias provides an alternative access to an entity within a
single scope. The process of establishing an alias name for a given host or target entity,
and the resulting relationship, is known as alias association. An alias association may be
established by;

(1) Execution of an IDENTIFY statement or
(2) Renaming an entity imported with a USE statement.

14.2.1.2.1 Alias Association By IDENTIFY. The rules for the IDENTIFY form of name
association are given in Section 6. Such an association may be applied only to variables.
The alias name, if explicitly declared, must have the ALIAS attribute specified. Within the
IDENTIFY statement the type and shape of the alias variable must conform to that of the
host variable.

Verslon 99 1986 March Page 14-3

ENTITY SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

10

15

20

25

30

35

40

45

The scope of an identified association is the program unit in which the IDENTIFY statement
occurs, and any procedures internal to that program unit.- An alias association is established
upon execution of an IDENTIFY statement and continues thereafter until the first occurrence
of:

(1) Execution of another IDENTIFY statement in that program unit involving the same
alias variable

(2) Termination of execution of the program unit
(3) Deallocation of the associated data object

Any variable (with conforming type and shape) may be the host for an alias, including allo-
cated variables and other established aliases. An alias variable may not be defined prior to
its association with a host variable. For an allocatable host, an alias association must not be
established by execution of an IDENTIFY statement when the host is not allocated. Note
that deallocation of a host variable terminates any alias associations with that variable.

Any number of alias variables may be concurrently associated with a given host. Each such
alias provides access to the associated data object, and the host continues to be directly
accessible by its original name (i.e., any associated alias may, but need not, be used to
specify definition of or reference to the host variable). Any alias variable may be
reassociated, by execution of IDENTIFY statements, any number of times to any set of (con-
formable) host variables during execution of the program unit.

14.2.1.2.2 Rename of Entitles in a USE Statement. The rules for this form of alias asso-
ciation are given in 11.3.1. Such an association may be used to provide an alias name for a
data object name (constant or variable) or a procedure name being made accessible by a
USE statement (from either a module or host program unit).

A rename association has a scope of the program unit (including any internal procedures)
containing the USE statement, and remains in effect throughout the execution of the execut-
able program. If the program unit is a module subprogram, the scope of the alias name
extends to program units containing a USE statement that references the module. Unlike
identified alias name association, rename association cannot be changed or terminated dur-
ing program execution. Rename aliases for allocatable variables may not be defined, nor
made reference to, when the data object is not allocated, but, unlike identified aliases,
rename alias associations are established prior to allocation and remain in effect after deallo-
cation. Rename alias associations are permanent and static, whereas identified alias associ-
ations are temporary and dynamic.

A rename alias name must not appear in a type declaration, or otherwise have any attributes
specified. It automatically assumes all attributes, and only those attributes, of its associated
entity. In the scope of the association, the entity may be accessed only through its rename
alias; the original name is not associated with the entity in this scope, and is available to be
used for other purposes. A rename alias may be used in exactly the same way that the
original name could have been used.

A rename alias must not appear in an IDENTIFY statement as an alias variable; it may
appear in such a statement in a host variable context.
14.2.1.2.3 Summary Comparison of Identified and Rename Alias Associations.

Characteristic Identified Associations Rename Associations

Scope Single program unit Single program unit,
plus using program units
if in a module

Version 99 1986 March Page 14-4

ENTITY SCOPE, ASSOCIATION, AND DEFINITION

Duration Temporary Entire program execution
May change? Yes No
5
How established? Execution of Appearance in USE statement
IDENTIFY statement
How terminated? Execution of Termination of execution
10 IDENTIFY statement of the executable program
Deallocation of the entity
Termination of execution
of the executable program
15 Appearance in USE statement Not allowed Normal (only) way
to establish
Appearance in IDENTIFY statement As alias variable as host variable
As host variable
20
Aliowed with unallocated host No Yes
May be allocated? No Yes
(appear in ALLOCATE statement)
25
May be deallocated? Yes Yes
(appear in DEALLOCATE statement)
Host name also accessible? Yes No
30
ALIAS attribute Explicit or implicit Implicit for all entities
for scalars, required
for arrays, not allowed
for procedures
35 14.2.2 Storage Association. Storage sequences are used to describe relationships that exist among varia-
bles, array elements, substrings, common blocks, and arguments.
14.2.2.1 Storage Sequence. A storage sequence.is a sequence of storage units. The size of a storage
sequence is the number of storage units in the storage sequence. A storage unit is a character storage unit or a num-
eric storage unit.
40 A variable or array element of type integer, real, or logical has a storage sequence of one numeric storage unit.
A structure, structure component, bit data object, or structure element has no storage seguence.
A variable, array, or array element with explicitly specified precision and range attributes of type real or complex has no
storage sequence.
A variable of type double precision or complex without explicitly specified precision and range has a storage sequence
45 of two numeric storage units. In a complex storage sequence, the real part has the first storage unit and the imaginary
part has the second storage unit.
A variable of type character has a storage sequence of character storage units. The number of character storage units
in the storage sequence is the length of the character entity. The order of the sequence corresponds to the ordering of
character positions (4.3.2.1 and 5.1.1.3).
Version 99 1986 March Page 14-5

X3J3/S8

ENTITY SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

Each common block has a storage seguence (5.4.2.1).

Each data object appearing in a storage association context has a storage sequence (2.4.5).

14.2.2.2 Association of Storage Sequences. Two storage sequences s and s, are associated if the
jth storage unit of s is the same as the jth storage unit of $,. This causes the (i + kjth storage-unit of s, to be the same
5 asthe (j + k)th storage unit of s, for each integer k such that 1 < i +k < size of s;and 1 < j + k < size of s;.

14.2.2.3 Association of Data Objects. Two data objects are storage associated if their storage
sequences are associaied. Two entities are totally associated if they have the same storage sequence. Two entities are
partially associated if they are associated but not totally associated.

The definition status and value of a data object affects the definition status and value of any associated entity. An
10 EQUIVALENCE statement, a COMMON statement, an ENTRY statement, or a procedure reference may cause associa=-
tion of storage sequences.

An EQUIVALENCE statement causes association of data objects only within one program unit, unless one of the
equivalenced entities is also in a common block (5.4.1.1 and 5.4.2.1).

COMMON statements cause data objects in one program unit to become associated with data object in another program
15 unit.

In a function subprogram, an ENTRY statement causes the entry name to become associated with the name of the func=
tion subprogram which appears in the FUNCTION statement.

Partial association may exist only between two character entities or between a double precision or complex entity and an
entity of type integer, real, logical, double precision, or complex.

20 Except for character entities, partial association may occur only through the use of COMMON, EQUIVALENCE, or
ENTRY statements. Partial association must not occur through argument association, except for arguments of type char-
acter.

In the example:

REAL A (4), B
25 COMPLEX C (2)
DOUBLE PRECISION D
EQUIVALENCE (C(2), A(2), B), (A, D)

the third storage unit of C, the second storage unit of A, the storage unit of B, and the second storage unit of D are
specified as the same. The storage sequences may be illustrated as:

30 STORAGE UNIT 1 2 3 4 5
C(—|—C()

ACD) AR AG) A4
--B__
_._____D.._____

35 A(2) and B are totally associated. The following are partially associated: A(1) and C(1), A(2) and C(2), A@3) and C(2), B
and C(2), A(1) and D, A(2) and D, B and D, C(1) and D, and C(2) and D. Noje that although C(1) and C(2)} are each
associated with D, C(1) and C(2) are not associated with each other.

Pantial association of character entities occurs when some, but not all, of the storage units of the entities are the same.
In the example:

40 CHARACTER A*4, Bié4, C+3
EQUIVALENCE (A(2:3), B, ©)

A, B, and C are partially associated.

Version 99 1986 March Page 14-6

ENTITY SCOPE, ASSOCIATION, AND DEFINITION X3J3/s8

14.3 Definition and Undefinition. Certain events cause entities to become defined or
become undefined.

14.3.1 Events That Cause Variables to Become Defined. Variables become defined as

follows:
5 (1)
4]
3
10
@
)
15 (6)
7
20 (8)
9
25
(10)
30
(11)
(12)
35
(13)
(14)
40
(15)
(16)
Version 99

Execution of an arithmetic, logical, structure, or character assignment statement
causes the data object that precedes the equals to become defined.

Execution of a masked array assignment causes some of the array elements in
the array assignment block to become defined (7.5.2.2).

Execution of an element array assignment (FORALL) statement causes some
elements to become defined (7.5.3.2).

As execution of an input statement proceeds, each entity that is assigned a value
of its corresponding type from the input file becomes defined at the time of such
assignment.

Execution of a DO statement causes the DO-variable to become defined.

Beginning of execution of the action specified by an implied-DO list in an
input/output statement causes the implied-DO-variable to become defined.

A DATA statement or & type declaration with an INITIAL attribute causes data objects
to become initially defined at the beginning of execution of an executable pro-
gram.

Execution of an ASSIGN statement causes the variable in the statement to become defined with a statement
label value.

When a variable of a given type becomes defined, all totally associated data
objects of the same type become defined except that entities totally associated with the vari-
able in an ASSIGN statement become undefined when the ASSIGN statement is executed. When a
variable of a given type becomes defined, all totally name associated variables of
the same type become defined except that variables totally name associated with
the variable in an ASSIGN statement become undefined when the ASSIGN statement is executed.

A reference to a subprogram causes a dummy argument to become defined if the
corresponding actual argument is defined with a value that is not a statement label
value.

Execution of an input/output statement containing an input/output status specifier
causes the specified integer variable or array element to become defined.

Execution of an INQUIRE statement causes any variable that is assigned a value
during the execution of the statement to become defined if no error condition
existe.

When a complex variable becomes defined, all partially associated real variables
become defined.

When both parts of a compiex variable become defined as a result of partially
associated real or complex variables becoming defined, the complex variable
becomes defined.

When all characters of a character variable become defined, the character vari-
able becomes defined.

When all components of a structure become defined, the structure becomes
defined.

1986 March Page 14-7

ENTITY SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

(17) When all elements of an array become defined, the array becomes defined.

(18) When all elements of an array section become defined, the array section becomes

defined.

(19) Zero-sized arrays, zero-sized array sections, and zero-length substrings are always

defined.

14.3.2 Events That Cause Variables to Become Undefined. Variables become undefined

as follows:

10

15

20

25

30

35

40

45

Version 99

M

@
@)
4)

)

6

@

®)

All variables are undefined at the beginning of execution of an executable pro-
gram except zero-sized arrays, zero-length character variables, and those varia-
bles initially defined by DATA statements or a type declaration with an INITIAL attri-
bute.

When a variable of a given type becomes defined, all totally storage associated
variables of different type become undefined.

When a variable of a given type becomes defined, all totally name associated vari-
ables of different type become undefined.

Execution of an ASSIGN statement causes the variable in the statement to become undefined as an integer.
Variables that are associated with the variable become undefined.

When a variable of type other than character becomes defined, all partially associ-
ated variables become undefined. However, when a variable of type real is par-
tially associated with a variable of type complex, the complex variable does not
become undefined when the real variable becomes defined and the real variable
does not become undefined when the complex variable becomes defined. When
an variable of type complex is partially associated with another variable of type
complex, definition of one variable does not cause the other to become undefined.

When the evaluation of a function causes an argument of the function or a variable in
common to become defined and if a reference to the function appears in an expres-
sion in which the value of the function is not needed to determine the value of the
expression, then the argument or the variable in common becomes undefined when the
expression is evaluated .

The execution of a RETURN statement or an END statement within a subprogram
causes all variables within the subprogram to become undefined except for the fol-
lowing:

(a) Entities specified by SAVE statements
(b) Entities in blank common

(c) Entities in a named common block that appears in the subprogram and appears in at least one other
program unit that is making either a direct or indirect treference to the subprogram

(d) Entities whose scope has been extended from the containing program unit, if
there is one

(e) Entities whose scope has been extended from a module subprogram that is
also the source for a USE statement in a program unit that makes a direct or
indirect reference to a subprogram containing the RETURN statement or
END statement.

When an error condition or end-of-file condition occurs during execution of an
input statement, all of the variables specified by the input list of the statement
become undefined.

1986 March Page 14-8

ENTITY SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

10

15

20

Version 99

©)

(10)

(1)

(12)

(13)

(14)

(15)

(16)

Execution of a direct access input statement that specifies a record that has not
been previously written causes all of the variables specified by the input list of the
statement to become undefined.

Execution of an INQUIRE statement may cause variables to become undefined
(9.6).

When any character of a character variable becomes undefined, the character
variable becomes undefined.

When a variable becomes undefined as a result of conditions described in (6)
through (11), all totally associated variables become undefined and all partially
associated variables of type other than character become undefined.

When a variable becomes undefined as a result of conditions described in (5)
through (10), all totally name associated variables become undefined and all par-
tially associated variables of type other than character become undefined.

When any component of a structure and any other component containing that
component becomes undefined, the structure becomes undefined. This does not
imply that the undefinition of one component of a structure causes all other com-
ponents to become undefined. Redefinition or undefinition of the tag name com-
ponent also causes undefinition of components selected by all cases.

When an array element becomes undefined, the array and any array sections con-
taining that array element become undefined. This does not imply that the
undefinition of one array element causes any other array element to become
undefined.

The signalling of conditions causes entities to become undefined.

1986 March Page 14-9

15 DEPRECATED FEATURES

In this standard, the deprecated features are identified by a distinguishing type font (1.5.1)
and are intended to be removed from the next version of the Fortran standard. These dep-
recated features are a part of the current language described in this standard. In this sec-
5 tion, the deprecated features are listed. Possible replacements are indicated in Appendix B.

The deprecated features are:

(1
2
3
10 @)
(5)
(6)
@
G)]
15 ©)
(10)
(11)
(12)
(13)
20 (14)
(15)
(16)
(17)
(18)

Version 99

Assumed-size dummy arrays

An array element associated with a dummy argument array
BLOCK DATA subprogram

COMMON statement

EQUIVALENCE statement

ENTRY statement

Fixed source form

Specific names for intrinsic functions
Statement function

Arithmetic IF statement

Computed GO TO statement

DATA statement

DIMENSION statement

Double precision data type

Alternate return

ASSIGN and assigned GO TO statement
PAUSE statement

Real and double precision DO variables

1986 March Page 15-1

APPENDIX A FORTRAN FAMILY OF STANDARDS

A host language standard, such as Fortran, should take responsibility for coordinating other
standards built on its base to prevent the development of conflicting collateral standards. A
Fortran Reference Model has been suggested for the Fortran Family of Standards.

5 The Fortran Family of Standards consists of:
(1) The Fortran Language Standard
(2) Supplementary Standards based on Procedure Libraries
(3) Supplementary Standards based on Module Libraries
(4) Secondary Standards

10 X3.9-1978 (the previous Fortran standard) is referred to as Fortran 77 in this appendix.
X3.9-198x is referred to as Fortran 8x. the next standard is referred to as Fortran 9x.

A.1 The Fortran Language Standard. The Fortran Language consists of primary fea-

tures from Fortran 77, decremental features that are deprecated in this standard and

marked for possible deletion in the next Fortran standard, and Incremental features that add
15 new constructs to the Fortran standard. (See Figure 1.)

FORTRAN Family of SBStandards

(Refar-ance Modeal)

et

Deprecated Fortran Neow
Features Intersection Features
(Decremental) (Primary) (Incremsental)

Fortran %x

r For-tran Bx |
L Fortran 77 |

CORE FORTRAN IS
PRIMARY -+ INCREMENTAL FEATURES

Figure 1. The Fortran Language Standard.

A.1.1 Primary Features. These features are those from the Fortran 77 standard that con-
tinue to be useful and characteristic of the language. Primary features are expected to con-
tinue throughout the life of Fortran or at least for the next several revisions of the language.

Version 99 1986 March Page A-1

FORTRAN FAMILY OF STANDARDS X3J3/S8

10

15

A.3 Supplementary Standards Based on Module Libraries. A supplementary stan-
dard based on module subprograms is called a module suppiementary standard. Supple-
mentary standards may specify module subprograms that provide a high level of application-
oriented functionality. These may include the defining of new data types and their accompa-
nying operators. Module subprograms are nonexecutable program units containing
definitions made available to any other program unit by the USE statement. Many problem-
oriented applications would make excellent candidates for module supplementary standards.
Modules may be included in the Fortran Standard document or they may be standardized in
separate documents.

A.3.1 Interface Mechanisms. The interface mechanisms provided in Fortran 8x contain a
set of facilities for binding a variety of additional features, such as graphics, to Fortran.
These facilities include module subprograms which make definitions, data declarations, and
procedure libraries available to an executable program. The USE statement provides the
means for referencing specific module subprograms. Supplementary standards may use
these mechanisms in defining a specific process within the Fortran Family of Standards.

SUPFPLEMENTARY STANDARDS

FORTRAON Family of Standsrdas

~ T

\
(= DRTRAN X NT&.RFAC‘LS

Mechsniams
Modules
Hm:hlni Blocks
F::han.f gm! ru:ndurn Calls Extendad Call
Derived Type

Fortramn %9

L Faortran B8x J
r Fortran 77]
) IRTF Application Application
[}} *n
Supplementary Standards Module Supplementary Standards

Figure 2. Supplementary Standards.

Version 99 1986 March Page A-3

FORTRAN FAMILY OF STANDARDS X3J3/58

10

15

20

25

30

35

40

A.3.2 Rules. Some rules governing the preparation of supplementary standards that are
based on procedure and module libraries are:

(1) A module may be appended to the Fortran Standard or it may be a separate stan-
dard.

(2) If a module is appended to the Fortran Standard, it is forwarded for review at the
same time as the standard. If it is a separate supplementary standard, there is an
independent standardization process.

(3) A module is not part of the Standard. It is a member of the Fortran Family of
Standards.

(4) Standard modules must not use deprecated features (i.e., must conform to the
Fortran Core.) When the Fortran Standard is revised, a formerly standard-
conforming module may become not standard conforming because of the use of
(new) decremental features.

(5) When the Fortran Standard is revised, a review may determine that modifications
are needed to take advantage of any new functionality (incremental features) in
the standard.

(6) A name registration for supplementary standards is available from the Fortran
Standards Technical Subcommittee.

(7) Separate standards projects should be defined (SD-3) for each supplementary and
secondary standard. Task groups may be formed within the Fortran Standards
Technical Subcommittee for development of supplementary and secondary stan-
dards.

(8) Standard Modules prepared outside the committee and its task groups must use
the interface mechanisms in the language. Requests for new facilities in the For-
tran Standard must be processed by the Fortran Standards Technical Subcommit-
tee.

(9) The Fortran Standards Technical Subcommittee should review all candidates for
supplementary and secondary standards to determine if they are standard con-
forming. This must be done in a timely manner.

A.4 Secondary Standards. Secondary standards do not impact or change the syntax of
the language nor do they change the semantics of the Fortran Standard. Instead, these
standards may make requirements on the conformance of programs using the Fortran Stan-
dard. For example, certain constructs that control the execution sequence of a program may
be required to flag specific conditions that occur during execution. Validation of programs
during compilation or execution is another example. Conlormance requirements could be
expanded in a separate secondary standard. The syntax rules used to help describe the
form that Fortran statements take are included in the Fortran Standard (1.5). These rules
are described in a variation of BNF. A formal grammar might also be produced as a sepa-
rate document. Currently, there are no secondary standards in the Fortran Family of Stan-
dards; however, work is proceeding in these areas for Fortran and for programming lan-

Version 99 1986 March Page A-4

FORTRAN FAMILY OF STANDARDS X3J3/S8

guages in general. See Figure 3.

SECONDARY STANDARDS

FORTRAN Family of Standarcs

,'—
/
4
Deprecated Fae—-tr an New
Faatures Intersection Features
(Decrumental) (Frisary) (Incremental)
Fortranmn 9x
| Fortranmn 8 1
l For-cramn 77]
cz=E=_~ pe=d===
| validation | i} Completeness !
| N — | N U |

Secondary Standards

Figure 3. Secondary Standards.

A.5 Standard Conformance. Any program unit containing syntax not defined in the
Fortran language is not standard conforming with respect to the Fortran Standard. The inclu-

5 sion of a USE statement does not make the nonstandard conforming syntax standard con-
forming. A program unit that uses only syntax and semantics defined in the Fortran lan-
guage standard and one or more standard modules is standard conforming with respect to
the Fortran Family of Standards.

In moving to a revised standard, a number of features rather than the complete standard are

10 often selected by implementors. It is recommended that partial implementations of major
features not be done. For example, if the array facilities are to be included, as many of the
array features as possible should be implemented.

Version 99 1986 March Page A-5

FORTRAN FAMILY OF STANDARDS | X3J3/58

A.5.1 Name Registration. A list of names registered with the Fortran Standards Technical
Subcommittee will be kept for reference by those who are preparing a module intended for
the Fortran Family of Standards.

A.6 Fortran Family of Standards. Figure 4 is the complete diagram of the Fortran

5 Family of Standards. It includes the Fortran language with incremental, decremental, and
primary features. The interface mechanisms shown refer to the procedure and module sup-
plementary standards in the reference model.

FORTRAN Family of Stanmndards

(Reference Model)

Decremental Primary Incremental
Interf{ace (n.erface
Mechaniams Mechanisms
Procedure Ca)ls Modi.: es

/

e

L S —

e ——

I"ortr-amn 9

- e 5 —— -

r Fortiran 8 _]
r Fortran 77 J
PP "y e et e m—— v 4
Supnlemantary Btandar~n Mhrule Supplementary Standards

Secondery Starndards

Figure 4. The Fortran Family of Standards

Version 99 1986 March Page A-6

16

15

20

25

30

35

40

APPENDIX B DEPRECATED FEATURES NOTES

This appendix more fully describes the rationale for the specific deprecated features. Possi-
ble alternatives to the deprecated features are described.

B.1 Storage Association. Storage association is the association of data objects through
storage sequence patterns rather than by object identification. Storage association allows
the user to configure regions of storage and to conserve the use of storage by dynamically
designating the objects contained within these storage regions. Though the disadvantages
of the use of storage association have been known for some time, features added in this
standard have pravided Fortran with adequate replacement facilities for important functional-
ity formerly only provided by storage association. The six items below are deprecated due
to their use of storage association.

B.1.1 Assumed-Size Dummy Arrays. These are dummy arrays declared using an asterisk
to specify its last dimension. In this standard, dummy arrays may be declared as assumed-
shape arrays by using the colon with no upper bound in one or more dimension positions of
the dummy array declaration. Assumed-shape arrays include all of the functionality of
assumed-size arrays. Assumed-size arrays assume that a contiguous set of array elements
is being passed. With assumed-shape arrays, an array section that does not consist of a
contiguous set of array elements (such as a row of a matrix) may also be passed.

B.1.2 Passing an Array Element or Substring to a Dummy Array. This functionality is
now achieved more safely by passing the desired array section. For example, if a one-
dimensional array XX is to be passed starting with the sixth element, then instead of passing
XX (6) to the dummy array, one would pass the array section XX (6:); if the eleventh through
forty-fifth elements are to be passed, the actual argument is the array section XX (11:45).

B.1.3 BLOCK DATA Subprogram. The principal use of BLOCK DATA subprograms is to
initialize common blocks. Modules provide a complete replacement for BLOCK DATA sub-
programs. The global data functionality of common blocks is also provided by modules.
Global data in modules may be initialized when specified.

B.1.4 COMMON Statement. The important functionality of the COMMON statement has

been in its use in specifying global data pools. In this standard, global data pools may be

provided more safely and conveniently with MODULE program units and USE statements.
Using the COMMON statement, a global data pool could be specified by:

INTEGER X (1000)
REAL Y (100, 100)
COMMON / POOLT1 / X, Y

Each program unit using this global data would need to contain these specifications. Alter-
natively, one can define the global data pool in a MODULE program unit:

MODULE POOL1
INTEGER X (1000)
REAL Y (100, 100)

END MODULE

Each program unit using this global data would contain the statement
USE POOL1

Version 99 1986 March Page B-1

DEPRECATED FEATURES NOTES X3J3/S8

10

15

20

25

30

35

40

45

When used in this manner, the MODULE/USE functionality is similar to the INCLUDE exten-
sion in many Fortran implementations. This is safer than using common blocks because the
specification of the global data pool appears only once. In addition, the USE statement is
very short and easy to use. Facilities are provided in the USE statement (not shown here)
to rename module objects if different names are desired in the program unit using the mod-
ule objects.

Another advantage is that modules do not involve storage association. Therefore, they may
contain any desired mix of character, noncharacter, and structured objects. Because a com-
mon block involves storage association, a common block cannot contain both character and
noncharacter data objects.

B.1.5 ENTRY Statement. The ENTRY statement is typically used in situations where there
are several operations involving the same set of data objects:

procedure-heading
data-specifications
entry 4
RETURN

entrys

RETURN

entry,,

RETURN
END

The MODULE program unit provides the equivalent functionality in the form:

MODULE module-name
data-specifications
procedure

END
procedure »

END

procedure,

END
END MODULE

A program unit using this module may call each procedure in it, exactly as if they were entry
points. One advantage is that some of the procedures in a module may be functions and
some may be subroutines, whereas all entry points in a function procedure must be invoked
as functions and all entry points in a subroutine procedure must be invoked as subroutines.

B.1.6 EQUIVALENCE Statement. A major use of the EQUIVALENCE statement is to have
two or more data objects, possibly of different types, share the same storage region. This
was important in earlier periods when address space was limited making conservation nec-
essary. The EQUIVALENCE statement also provides the means of simulating certain data
types, structures, and transfer functions. This functionality is now available in the language.

Version 99 1986 March Page B-2

DEPRECATED FEATURES NOTES X3J3/s8

10

20

30

40

Reuse of storage can now be achieved by using automatic arrays (5.1.2.4.1) and allocatable
arrays. Following the return from the subprogram, the space for the dynamic local array is
available for reusse.

The derived type capability provides a replacement for the more awkward means of achiev-
ing data structures through the use of EQUIVALENCE statements.

The ability of the EQUIVALENCE statement to alias two or more data objects or remap two
or more arrays is now provided by the IDENTIFY statement.

B.2 Redundant Functionality. The eight features identified below are deprecated sim-
ply because they are now completely redundant, having been superseded.

(1) Fixed source form — replaced by the new source form (3.3)

(2) Specific names for intrinsic function — use generic names (13.1)

(3) Statement functions — replaced by internal functions (12.1.2.2)

(4) Arithmetic-IF statement — replaced by logical-IF and block-IF (8.1.2)

(5) Computed GOTO statement — replaced by SELECT construct (see B.2.2 below)

(6) DATA statement — replaced by INITIAL specifier (5.1.2.1.2), and by assignment of
array constants (Section 7)

(7) DIMENSION statement — use type declaration instead (5.1)

(8) DOUBLE PRECISION statement — use precision control attributes (4.3.1.2,
5.1.1.3)

(9) Shared DO termination and termination on a statement other than END DO — use
an END DO statement for each DO statement

B.2.1 Use of Internal Functions for Statement Functions. The functionality of the inter-
nal function provides a better replacement for the limited statement function capability. For
example:

function-name (dummy-arguments) = expr
may be replaced by the internal function definition:

FUNCTION function-name (dummy-arguments)
function-name = expr
END

The use of an internal function in a program unit is the same as the use of a statement func-
tion.

B.2.2 Example Replacement of the Computed GO TO Statement. The execution
sequence controlled by the computed GO TO:

GO TO (label, label,, ..., label,), integer-variable

GO TO label,
label, CONTINUE

GO TO label,
label, CONTINUE

GO TO label,

Version 99 1986 March Page B-3

DEPRECATED FEATURES NOTES X3J3/58

10

15

20

25

30

35

40

label, CONTINUE

GO TO label,
labsl, CONTINUE
may be replaced by the SELECT CASE construct:
SELECT CASE (integer-variable)
CASE DEFAULT
CASE (1)
CASE (2)
CASE (n)
END SELEC¥
Also see Section 8.1.3.

B.2.3 Alternate RETURN. Alternate returns introduce labels into an argument list to allow
the called program to direct the execution sequence of the called subprogram upon return.
Readability and maintainability suffer when alternate returns are used. A better practice is
to provide a return code argument that is set by the called subprogram and used in a
SELECT CASE construct of the calling program unit to direct its subsequent execution.
Maintainability is enhanced because an additional SELECT CASE construct may be added
without modifying the actual and dummy argument lists.

CALL subr —name (X, Y, Z, *100, *200, *300, ...)
100 bONTINUE

GO TO 999
200 CONTINUE

GO TO 999

999 CONTINUE

where labels 100, 200, 300, etc., are alternate return points. In many cases, the effect can
be more safely achieved with a return code and a SELECT CASE structure:

CALL subr-name (X, Y, Z, RETURN__CODE)
SELECT CASE (RETURN__CODE)
CASE (returny)

CA;S;E {return)

END SELECT

Version 99 1986 March Page B-4

DEPRECATED FEATURES NOTES X3J3/58

10

15

20

25

30

35

B.2.4 ASSIGN and Assigned GO TO. The ASSIGN statement allows a label to be dynami-
cally assigned to an integer variable, and the assigned GO TO statement allows “indirect
branching” through this variable. This hinders the readability of the program flow, especially
if the integer variable also is used in arithmetic operations. The two totally different usages
of the integer variable can be an obscure source of error.

Previously, internal subroutines were simulated by the presence of remote code blocks in a
procedure. The ASSIGN GOTO provided the simulated return ftom the remote code block
“internal subroutine”. The addition of internal subroutines to the language replaced this
error prone usage.

Example:
ASSIGN 120 TO RETURN ! SET UP RETURN POINT
GOTO 740 ! BRANCH TO ''SUBROUTINE"

120 CONTINUE

740 CONTINUE
I ""SUBROUTINE" BODY
GOTO RETURN I "SUBROUTINE'" RETURN

This functionality also is provided in this standard through the use of internal subroutines:
CALL SUBR_740

SUBROUTINE SUBR_740
! SUBROUTINE BODY
END

This illustrates the use of internal subroutines to conveniently provide “remote code block”
functionality.

B.2.5 PAUSE Statement. Execution of a PAUSE statement requires operator or system-
specific intervention to resume execution. In most cases, the same functionality can be
achieved as effectively and in a more portable way with the use of an appropriate READ
statement that awaits some input data.

B.3 Redundant Functionality. A number of features are deprecated because they are
now completely redundant. Redundant features and their possible replacements, using fea-
tures in the core, are given in Table B.2.

Table B.2.
Deprecated Feature Core Alternative
Fixed source form Free source form

Specific names for intrinsic functions Generic names

Statement functions Internal functions
Arithmetic IF statement IF construct or IF statement
Computed GO TO SELECT construct

Version 99 1986 March Page B-5

DEPRECATED FEATURES NOTES

Version 99

DATA statement

DIMENSION statement
DOUBLE PRECISION statement
Non-END-DO DO termination

Shared DO termination

X3J3/58

INITIAL attribute or INITIALIZE statement
Type declaration

Specified REAL precision

END DO statement

END DO statement for each DO loop

1986 March ; Page B-6

10

15

20

25

30

35

APPENDIXC SECTION NOTES

C.1 Section 1 Notes. Use of deprecated features is discouraged. Each deprecated
feature may be considered for removal in the next revision of the Fortran standard.

C.2 Section 2 Notes. Keywords can make procedure references more readable and
allow actual arguments to be in any order. This latter property permits optional arguments.

C.3 Section 3 Notes. A partial collating sequence is specified. If possible, a processor
should use the American National Standard Code for Information Interchange, ANSI X3.4-
1977 (ASCI1), sequence for the complete Fortran character set.

The standard does not restrict the number of consecutive comment lines. The limit of 19
continuation lines or 1320 characters permitted for a statement should not be construed as
being a limitation on the number of consecutive comment lines.

There are 99999 unique statement labels and a processor must accept 99999 as a state-
ment label. However, a processor may have an implementation limit on the total number of
unique statement labels in one program unit.

Blanks are not permitted within statement labels in free source form.

C.4 Section 4 Notes. A processor must not consider a negative zero to be different
from a positive zero.

C.5 Section 5 Notes.
C.6 Section 6 Notes.

C.7 Section 7 Notes. The Fortran 77 restriction that none of the character positions
being defined in the character assignment statement may be referenced in the expression
has been removed (7.5.1.5).

C.8 Section 8 Notes.

C.9 Section © Notes. What is called a “record” in Fortran is commonly called a “logical
record”. There is no concept in Fortran of a “physical record”.

An endfile record does not necessarily have any physical embodiment. The processor may
use a record count or other means to register the position of the file at the time an ENDFILE
statement is executed, so that it can take appropriate action when that position is reached
again during a read operation. The endfile record, however it is implemented, is considered
to exist for the BACKSPACE statement.

This standard accommodates, but does not require, file cataloging. To do this, several con-
cepts are introduced.

Before any input/output can be performed on a file, it must be connected to a unit. The unit
then serves as a designator for that file as long as it is connected. To be connected does
not imply that “buffers” have or have not been allocated, that “file-control tables” have or
have not been filled out, or that any other method of implementation has been used.

Version 99 1986 March Page C-1

SECTION NOTES X3J3/S8

10

16

20

25

30

35

40

45

Connection means that (barring some other fault) a READ or WRITE statement can be exe-
cuted on the unit, hence on the file. Without a connection, a READ or WRITE statement
cannot be executed.

Totally independent of the connection state is the property of existence, this being a file
property. The processor “knows” of a set of files that exist at a given time for a given exe-
cutable program. This set would include tapes ready to read, files in a catalog, a keyboard,
a printer, etc. The set may exclude files inaccessible to the executable program because of
security, because they are already in use by another executable program, etc. This stan-
dard does not specify which files exist, hence wide latitude is available to a processor to
implement security, locks, privilege techniques, etc. Existence is a convenient concept to
designate all of the files that an executable program can potentially process.

All four combinations of connection and existence may occur:

Connect Exist Examples

Yes Yes A card reader loaded
and ready to be read
Yes No A printer before the
first line is written
No Yes A file named 'JOAN’
in the catalog
No No A reel of tape destroyed

in the fire last week
Means are provided to create, delete, connect, and disconnect files.

A file may have a name. The form of a file name is not specified. |f a system does not
have some form of cataloging or tape labeling for a least some of its files, all file names will
disappear at the termination of execution. This is a valid implementation. Nowhere does
this standard require names to survive for any period of time longer than the execution time
span of an executable program. Therefore, this standard does not impose cataloging as a
prerequisite. The naming feature is intended to allow use of a cataloging system where one
exists.

A file may become connected to a unit in either or two ways: preconnection or execution of
an OPEN statement. Preconnection is performed prior to the beginning of execution of an
executable program by means external to Fortran. For example, it may be done by job con-
trol action or by processor established defaults. Execution of an OPEN statement is not
required to access preconnected files.

The OPEN statement provides a means to access existing files that are not preconnected.
An OPEN statement may be used in either of two ways: with a file name (open by name)
and without a file name (open by unit). A unit is given in either case. Open by name con-
nects the specified file to the specified unit. Open by unit connects a processor-determined
default file to the specified unit. (The default file may or may not have a name.)

Therefore, there are three ways a file may become connected and hence processed:
preconnection, open by name, and open by unit. Once a file is connected, there is no
means in standard Fortran to determine how it became connected.

An OPEN statement may also be used to create a new file. In fact, any of the foregoing
three connection methods may be performed on a file that does not exist. When a unit is
preconnected, writing the first record created the file. With the other two methods, execu-
tion of the OPEN statement creates the file.

Version 99 1986 March Page C-2

SECTION NOTES X3J3/58

4]

10

15

20

25

30

35

When a unit becomes connected to a file, either by execution of an OPEN statement or by
preconnection, the following connection properties may be established:

(1) An access method, which is sequential or direct, is established for the connection.

(2) A form, which is formatted or unformatted, is established for a connection to a file
that exists or is created by the connection. for a connection that results from exe-
cution of an OPEN statement, a default form (which depends on the access
method, as described in 9.2.1.2) is established if no form is specified. For a
preconnected file that exists, a form is established by preconnection. For a
preconnected file that does not exist, a form may be established, or the establish-
ment of a form may be delayed until the file is created (for example, by execution
of a formatted or unformatted WRITE statement).

(3) A record length may be established. If the access method is direct, the connec-
tion established a record Iength, which specifies the length of each record of the
file. A connection for sequential access does not have this property.

(4) A blank significance property, which is ZERO or NULL, is established for a con-
nection for which the form is formatted. This property has no effect on output.
For a connection that results from execution of an OPEN statement, the blank
significance property is NULL by default if no blank significance property is
specified. For a preconnected file, the property is established by preconnection.

The blank significance property of the connection is effective at the beginning of
each formatted input statement. During execution of the statement, any BN or BZ
edit descriptors encountered may temporarily change the effect of embedded and
trailing blanks.

A processor has wide latitude in adapting these concepts and actions to its own cataloging
and job control conventions. Some processors may require job control action to specify the
set of files that exist or that will be created by an executable program. Some processors
may require no job control action prior to execution. This standard enables processors to
perform a dynamic open, close, and file creation, but it does not require such capabilities of
the processor.

The meaning of “open” in contexts other that Fortran may include such things as mounting a
tape, console messages, spooling, label checking, security checking, etc. These actions
may occur upon job control action external to Fortran, upon execution of an OPEN state-
ment, or upon execution of the first read or write of the file. The OPEN statement describes
properties of the connection to the file and may or may not cause physical activities to take
place. It is a place for an implementation to define properties of a file beyond those
required in standard Fortran.

Similarly, the actions of dismounting a tape, protection, etc. of a “close” may be implicit at
the end of a run. The CLOSE statement may or may not cause such actions to occur. This
is another place to extend file properties beyond those of standard Fortran. Note, however,
that the execution of a CLOSE statement on unit 10 followed by an OPEN statement on the
same unit to the same file or to a different file is a permissible sequence of events. The
processor must not deny this sequence solely because the implementation chooses to do
the physical act of closing the file at the termination of execution of the program.

This standard does not address problems of security, protection, locking, and many other
concepts that may be part of the concept of “right of access”. Such concepts are consid-
ered to be in the province of an operating system.

The OPEN and INQUIRE statements can be extended naturally to consider these things.

Possible access methods for a file are: sequential and direct. The processor may implement
two different types of files, each with its own access method. It may also implement one

Version 99 1986 March Page C-3

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

type of file with two different access methods.

Direct access to files is of a simple and commonly available type, that is, fixed-length
records. The key is a positive integer.

Keyword forms of specifiers are used because there are many specifiers and a positional
notation is difflcult to remember. The keyword form sets a style for processor extensions.
The UNIT= and FMT= keywords are offered for completeness, but their use is optional.
Thus, compatibility with ANSI X3.9-1966 and ANSI X3.9-1978 is achieved.

If no list items are specified in a list-directed input/output statement, one input record is
skipped or one empty output record is written.

An example of a restriction on input/output statements (9.8) is that an input statement must
not specify that data are to be read from a printer.

If a character constant is used as a format specifier in an input/output statement, care must
be taken that the value of the character constant is a valid format specification. In particular,
if the format specification contains an apostrophe edit descriptor, two apostrophes must be
written to delimit the apostrophe edit descriptor and four apostrophes must be written for
each apostrophe that occurs within the apostrophe edit descriptor. For example, the text:

2 ISN'T 3

may be written by various combinations of output statements and format specifications:

WRITE (6, 100) 2, 3
100 FORMAT (1X, I1, "ISN''T', 1X, I1)

WRITE (6, '(1X, I1, 1X, ""ISN''"'T'', 1X, I1") 2, 3

WRITE (6, "(A)') ' 2 ISN''T 3'

The T edit descriptor includes the carriage control character in lines that are to be printed.
T1 specifies the carriage control character and T2 specifies the first character that is printed.

The length of a record is not always specified exactly and may be processor dependent.

The number of records read by a formatted input statement can be determined from the fol-
lowing rule: A record is read at the beginning of the format scan (even if the input list is
empty), at each slash edit descriptor encountered in the format, and when a format rescan
occurs at the end of the format.

The number of records written by a formatted output statement can be determined from the
following rule: A record is wrjtten when a slash edit descriptor is encountered in the format,
when a format rescan occurs at tHe end of the format, and at completion of execution of the
output statement (even if the output list is empty). Thus, the occurrence of n successive
slashes between two other edit descriptors causes n — 1 blank lines if the records are
printed. The occurrence of n slashes at the beginning or end of a complete format
specification causes n blank lines if the records are printed. However, a complete format
specification containing n slashes (n > 0) and no other edit descriptors causes n + 1 blank
lines if the records are printed. For example, the statements

PRINT 3
3 FORMAT (/)

will write two records that cause two blank lines if the records are printed.
The following examples illustrate list-directed input. A blank character is represented by b.
Example 1:

Version 99 1986 March Page C-4

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

Program:
J=3

"READ %, I

READ *, J
Sequential input file;

b1b, 4bbbbb
,2bbbbbbbb

Result: | = 1,J = 3.

Explanation: The second READ statement reads the second record. The initial comma in
the record designates a null value; therefore, J is not redefined.

Example 2:
Program:

CHARACTER A *8, B *1
READ *, A, B

RegHRME It lBbon, B = "o

Explanation: The end of a record cannot occur between two apostrophes representing an
embedded apostrophe in a character constant; therefore, A is set to the character constant
'bbbbbbbb’. The end of a record acts as a blank, which in this case is a value separator
because it occurs between two constants.

C.10 Seciion 10 Notes.

C.11 Section 11 Notes. Program units that do not reference modules are independent
of any other program unit. That is, their definitions are completely self-contained and they
may be processed without having access to any other program unit. Program units that ref-
erence modules, however, are dependent upon the referenced modules, and processing
such program units requires access to the definitions contained in the referenced modules.
The manner in which this access is provided is implementation dependent, though it is
sufficient to have the referenced module source text available during processing of the refer-
encing program unit. The manner in which objects in a module are made accessible to the
executable program is implementation dependent.

The following example of a module defines a rather complete data abstraction for a SET
data type where the elements of each set are of type integer. The standard set operations
of UNION (+), INTERSECTION (*), and DIFFERENCE (—) are provided. The CARD func-
tion returns the cardinality of (number of elements in) its set argument. Two functions
returning logical values are included, ELEMENT and SUBSET, both of which have the opera-
tor form .IN.; ELEMENT determines if a given scalar integer value is an element of a given
set, and SUBSET determines if a given set is a subset of another given set. (Two sets may
be checked for equality by comparing cardinality and checking that one is a subset of the
other, or checking to see if each is a subset of the other.)

The transfer function SET converts a vector of integer values to the corresponding set, with
duplicate values removed. Thus, a vector of constant values can be used as set constants.
An inverse transfer function VECTOR returns the elements of a set as a vector of values in
ascending order. An assignment coercion allows assignment between sets of different sizes,
and checks to see if the receiving set data object has an adequate maximum size (returning
the null set if not). In this SET implementation, set data objects have a maximum size (num-
ber of elements in set) of 200.

Version 99 1986 March Page C-5

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

Examples (A, B, and C are sets; X is an integer variable):

IF (CARD(A) .G6T. 10) ... ! CHECK TO SEE IF A HAS MORE THAN 10 ELEMENTS
IF (X .IN. A .AND. .NOT. X .IN. BY ... ! CHECK FOR X AN ELEMENT OF A BUT NOT OF B
C=A+ (B* SET (1:100)) ! C IS THE UNION OF A AND THE

| RESULT OF B INTERSECTED WITH THE INTEGERS 1 TO 100

IF (CARD (A * SET (2:100:2)) .GT. 0) ... ! DOES A HAVE ANY EVEN
! NUMBERS IN THE RANGE 1:1007?

PRINT *, VECTOR (B) I PRINT OUT THE ELEMENTS OF SET B, IN ASCENDING ORDER
MODULE INTEGER_SETS

IMPLICIT TYPE SET (A-I, U), INTEGER (X)

TYPE SET | DEFINE SET DATA TYPE
INTEGER CARDINAL_NUMBER
INTEGER ELEMENT_VALUE (2000 ! COULD BE ANY DATA TYPE

END TYPE SET

INTEGER FUNCTION CARD (A) I RETURNS CARDINALITY OF SET A
CARD = A % CARDINAL_NUMBER
END FUNCTION CARD

LOGICAL FUNCTION ELEMENT (X,A)> OPERATOR (.IN.) ! DETERMINES IF
ELEMENT = .FALSE. ! ELEMENT X IS IN SET A
IF (CARD(A) .EQ. 0) RETURN
IF (ANY (A % ELEMENT_VALUE (1:CARD(A)) .EQ. X)) ELEMENT = ,TRUE.
END FUNCTION ELEMENT

FUNCTION UNION (A,B) OPERATOR (+) I UNION BETWEEN SETS A AND B
N = CARD (A)
UNION = SET (A % ELEMENT_VALUE(1:N))
DO J=1, CARD (B)
IF (.NOT. B %X ELEMENT_VALUE(J) .IN. A) THEN
N = N+1
UNION % ELEMENT_VALUE(N) = B % ELEMENT_VALUE (J)
END IF
END DO
UNION % CARDINAL_NUMBER:= N’
END FUNCTION UNION '

FUNCTION DIFFERENCE (A,B) OPERATOR (-) ! DIFFERENCE OF SETS A AND B
DIFFERENCE = SET ([1:01)
DO J=1, CARD(A)
X = A % ELEMENT_VALUE(J)
IF (.NOT. (X .IN. B)) DIFFERENCE = DIFFERENCE + SET(X)
END DO
END FUNCTION DIFFERENCE

FUNCTION INTERSECTION (A,B) OPERATOR (%) I INTERSECTION OF SETS A AND B
INTERSECTION = A - (A-B)

Version 99 1986 March Page C-6

SECTION NOTES X3J3/S8

END FUNCTION INTERSECTION

LOGICAL FUNCTION SUBSET (A,B) OPERATOR (.IN.) ! DETERMINES IF SET A IS A

LOGICAL L (SIZE(A % ELEMENT_VALUE)) ! SUBSET OF SET B -
SUBSET = CARD (A) .LE. CARD (B)! OVERLOADS .IN. OPERATION
5 IF (.NOT. SUBSET) RETURN

FOR ‘ALL ¢ J=1:CARD(A)) L(J) = A % ELEMENT_VALUE(J) .IN. B
IF (.NOT. ALL(CL)) SUBSET = .FALSE.
END FUNCTION SUBSET

FUNCTION SET(V) ! TRANSFER FUNCTION BETWEEN A
10 INTEGER V(:) I CORRESPONDING SET OF ELEMENTS
SET X CARDINAL_NUMBER = 0 | REMOVING DUPLICATE VALUES

DO J=1,SIZE(V)
IF (.NOT. V(J).IN.SET) THEN
SET % CARDINAL_NUMBER = SET % CARDINAL_NUMBER + 1

15 SET % ELEMENT_VALUE (SET % CARDINAL NUMBER) = V(J)
END IF
END DO
END FUNCTION SET
FUNCTION VECTOR (A) | TRANSFER THE VALUES OF SET A
20 INTEGER VECTOR(:) | INTO A VECTOR OF ASCENDING ORDER
INTEGER I

ALLOCATE (VECTOR(CCARD(A)))
VECTOR = A % ELEMENT_VALUE (1:CARD(A))
DO I=1,CARD(A)-1
25 DC J=1,CARD(AX-I
IF (VECTOR(J+1) .LT. VECTOR(J) THEN
K = VECTOR(J); VECTOR(J) = VECTOR(J+1); VECTOR(J+1) = K
END IF
END DO
30 END DO
END FUNCTION VECTOR

SUBROUTINE SET_ASSIGNMENT_COERCION (A,B) ASSIGNMENT
A = SET(); N = CARD(B)
IF (SIZE (A % ELEMENT_VALUE) .GE. N) A = SET (B % ELEMENT_VALUE(1:N))
35 END SUBROUTINE SET_ASSIGNMENT_COERCION

END MODULE INTEGER_SETS

C.12 Section 12 Notes. In 12.5.2.8, the intention of rules (2), (3), and (4) is to permit a
variety of implementations, including the association of actual and dummy arguments by
location or by copy-in/copy-out.

40 C.13 Section 13 Notes.

C.13.1 Summary of Features. This section is a summary of the principal array features.

Version 99 1986 March Page C-7

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

C.13.1.1 Whole Array Expressions and Assignments. An important extension is that
whole array expressions and assignments will be permitted. For example, the statement

A=8B+C * SIN (D)

where A, B, C, and D are arrays of the same shape, is permitted. It is interpreted element-
by-element; that is, the sine function is taken on each element of D, each result is muitiplied
by the corresponding element of C, added to the corresponding element of B, and assigned
to the corresponding element of A. Functions, including user-written functions, may be array
valued and may overload scalar versions having the same name. All arrays in an expression
or across an assignment must “conform”; that is, have exactly the same “rank” (number of
dimensions) and “shape” (set of lengths in each dimension), but scalars may be included
freely and these are interpreted as being broadcast to a conforming array. Expressions are
evaluated before any assignment takes place.

C.13.1.2 Array Sections. Whenever whole arrays may be used, it is also possible to use
rectangular slices called “sections”. For example:

AC:, 1:N, 2, 3:1:-1)

consists of a subarray containing the whole of the first dimension, positions 1 to N of the
second dimension, position 2 of the third dimension and positions 1 to 3 in reverse order for
the fourth dimension. This is an artificial example chosen to illustrate the different forms. Of
course, the most common use is to select a row or column of an array, for example:

A C, J)

C.13.1.3 WHERE and FORALL Statements. There are two mechanisms for restricting an
array assignment. The WHERE statement applies a conforming logical array as a mask on
the individual operations in the expression and in the assignment. For example:

WHERE (A .GT. 0 B = LOG (A)

takes the logarithm only for positive components of A and makes assignments only in these
positions.

The FORALL statement is used whenever it is convenient or necessary to have access to
the actual subscript values in an array expression and assignment. For example:

FORALL (I = 1:N, J = 1:N, I .GE. &) L(I, J) = A(I, J)
performs an array assignment over the lower triangular part of the leading N x N submatrix.
The WHERE statement also has a block form (WHERE construct).

C.13.1.4 Automatic and Allocatable Arrays. A major advance for writing modular soft-
ware will be the presence of AUTOMATIC arrays, created on entry to a subprogram and
destroyed on return, and ALLOCATABLE arrays whose rank is fixed but whose actual size
and lifetime is fully under the programmer’s control through explicit ALLOCATE and DEAL-
LOCATE statements. The declarations

SUBROUTINE X (N, A, B)
REAL WORK (N, N), HEAP (:, 2

are associated with an automatic array WORK and an allocatable array HEAP. Note that a
stack is an adequate storage mechanism for the implementation of automatic arrays, but a
heap will be needed for allocatable arrays.

Version 99 1986 March Page C-8

SECTION NOTES X3J3/58

1C

15

20

25

30

C.13.1.5 Array Constructors. Arrays, and in particular array constants, may be con-
structed with array constructors exemplified by:

(1.0, 3.0, 7.2]

which is an array of size 3,

[1011.3,2.71, 7.11

which has size 21 and contains [1.3,2.7] repeated 10 times followed by 7.1, and
[1:N]

which contains the integers 1, 2, ..., N. Only rank-one arrays may be constructed in this
way, but higher dimensional arrays may be made from them by means of the intrinsic func-
tion RESHAPE.

C.13.1.6 The IDENTIFY Statement. At its simplest, the IDENTIFY statement permits the
construction of subarrays that do not lie along the axes. As a simple example:

IDENTIFY (DIAG () =A (I, D), I =1:N)

constructs a vector that overlays the main diagonal of A. After execution of such an IDEN-
TIFY statement, the alias array DIAG so constructed can be used whenever an array of the
same shape might be used.

C.13.1.7 Intrinsic Functions. All of the Fortran 77 intrinsic functions and all of the scalar
intrinsic functions that have been added to the language have been extended to be
applicable to arrays. The function is applied element-by-element to produce an array of the
same shape. In addition, the following array intrinsics have been added, many of which
return array-valued results.

C.13.1.7.1 Vector and Matrix Multiply Functions.

DOTPRODUCT(VECTOR A,VECTOR B) Dot product of two arrays
MATMUL (MATRIX_A,MATRIX-B) Matrix multiplication

C.13.1.7.2 Array Reduction Functions.

ALLCARRAY,DIM) True if all values are true
ANY (ARRAY ,DIM) True if any value is true
COUNT (ARRAY,DIM) Number of true elements in an array. .

MAXVAL(ARRAY,DIM,MASK) Maximum value in an array
MINVALCARRAY,DIM,MASK) Minimum value in an array
PRODUCT (ARRAY,DIM,MASK) Product of array elements

SUM(ARRAY ,DIM,MASK) Sum of array elements

C.13.1.7.3 Array Inquiry Functions.

ALLOCATED (ARRAY) Space allocation

LBOUND (ARRAY,DIM) Lower dimension bounds of an array
RANK (SOURCE) Rank of an array or scalar

SHAPE (ARRAY) Shape of an array

SIZE(ARRAY,DIM) Total number of array elements
UBOUND(ARRAY,DIM) Upper dimension bounds of an array

Version 99 1986 March Page C-9

SECTION NOTES ’ X3J3/S8

10

15

20

25

30

35

C.13.1.7.4 Array Construction Functions.

DIAGONALCVECTOR, FILL) Create a diagonal matrix
MERGE (TSOURCE, FSOURCE ,MASK) Merge under mask
PACK(ARRAY,MASK,VECTOR) Pack array into a vector under a mask

REPLICATE(ARRAY,DIM,NCOPIES) Replicates an array by increasing a dimension
RESHAPE (MOLD, SOURCE,PAD,ORDER) Reshape an array

SPREAD (SOURCE,DIM,NCOPIES) Replicates an array by adding a dimension
UNPACK(VECTOR ,MASK, FIELD) Unpack a vector into an array under a mask

C.13.1.7.5 Array Manipulation Functions.

CSHIFTC(ARRAY,DIM,SHIFT) Circular shift
EOSHIFT(ARRAY,DIM,SHIFT,BOUNDARY) End-off shift
TRANSPOSE (MATRIX) Transpose of matrix

C.13.1.7.6 Array Geometric Functions.

FIRSTLOC (MASK,DIM) Locate first true element
LASTLOC(MASK,DIM) Locate last true element
PROJECT (ARRAY ,MASK,BACKGROUND,DIM) Select masked values

C.13.2 Examples. The array features have the potential to simplify the way that almost any
array-using program is conceived and written. Many algorithms involving arrays can now be
written conveniently as a series of computations with whole arrays.

C.13.2.1 Unconditional Array Computations. At the simplest level statements such as
A=B+C or S=SUM(A) can take the place of entire DO loops. The loops were required to
do array addition or to sum all the elements of an array.

Further examples of unconditional operations on arrays that are simple to write are:

matrix multiply P = MATMUL(Q,R)
largest array element L = MAXVAL(P)
factorial N F = PRODUCT([2:ND)
N

The Fourier sum F = Y a; x cosx; may also be computed without writing a DO loop if one

i=1
makes use of the element-by-element definition of array expressions as described in Section
7. Thus, we can write

F = SUM (A * COS (X)).

The successive stages of calculation of F would then involve the arrays:

A = [AMD,...,AN]
X = IX,...,X(N]
cos(x) = [COS(X(1)),...,COS(X(N))]
A*COS(X) = A1) *COSCX(1)), ..., A(NI*COS(X(N))]

The final scalar result is obtained simply by summing the elements of the last of these
arrays. Thus, the compiler is dealing with arrays at every step of the calculation.

Version 99 1986 March Page C-10

SECTION NOTES X3J3/s8

10

15

20

25

30

35

40

C.13.2.2 Conditional Array Computations. Suppose we wish to compute the Fourier sum
in the above example, but to include only those terms a(i) cos x(i) that satisfy the condition
that the coefficient a(i) is less than 0.01 in absolute value. More precisely, we are now
interested in evaluating the conditional Fourier sum

5 CF = Y}, a xcosx
|a] <0.01

where the index runs from 1 to N as before.

This can be done using the MASK parameter of the SUM function, which restricts the sum-
mation of the elements of the array A * COS(X) to those elements that correspond to true
elements of MASK. Clearly, the logical expression required as the mask is ABS(A) .LT.
0.01. Note that the stages of evaluation of this expression are:

A
ABS (A)
ABS(A) .LT. 0.01

[AC(),...,A(ND]
[ABS(A(1)),...,ABSCACN))]
[ABS(A(1) .LT. 0.01,...,ABSCA(N)) .LT. 0.01]

The conditional Fourier sum we arrive at is:
CF = SUM (A * COS (X), MASK = ABS (A) .LT. 0.01)
If the mask is all false, the value of CF is zero.

The use of a mask to define a subset of an array is crucial to the action of the WHERE
statement. Thus for example, to set an entire array to zero, we may write simply A = 0; but
to set only the negative elements to zero, we need to write the conditional assignment

WHERE (A .LT. 0) A =0

The WHERE statement complements ordinary array assignment by providing array assign-
ment to any subset of an array that can be restricted by a logical expression.

In the Ising model described below, the WHERE statement predominates in use over the
ordinary array assignment statement.

C.13.2.3 A Simple Program: The Ising Model. The Ising model is a well-known Monte
Carlo simulation in 3-dimensional Euclidean space which is useful in certain physical studies.
We will consider in some detail how this might be programmed. The model may be
described in terms of a logical array of shape N by N. Each gridpoint is a single logical vari-
able which is to be interpreted as either an up-spin (true) or a down-spin (false).

The Ising model operates by passing through many successive states. The transition to the
next state is governed by a local probabilistic process. At each transition, all gridpoints
change state simuiltaneously. Every spin either flips to its opposite state or not according to
a rule that depends only on the states of its 6 nearest neighbors in the surrounding grid.
The neighbors of gridpoints on the boundary faces of the model cube are defined by assum-
ing cubic periodicity. In effect, this extends the grid periodically by replicating it in all direc-
tions throughout space.

The rule states that a spin is flipped to its opposite parity for certain at points where a mere
3 or fewer of the 6 nearest neighbors currently have the same parity as it does. Also, the
flip is executed only with probability P(4), P(5), or P(6) if as many as 4, 5, or 6 of them have
the same parity as it does. (The rule seems to promote neighborhood alignments that may
presumably lead to equilibrium in the long run).

Version 99 1986 March Page C-11

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

C.13.2.3.1 Problems To Be Solved. Some of the programming problems that we will
need to solve in order to translate the Ising model into Fortran statements using entire
arrays are:

(1) Counting nearest neighbors that have the same spin;
(2) Providing an array-valued function to return an array of random numbers; and
(3) Determining which gridpoints are to be flipped.

C.13.2.3.2 Solutions In Fortran. The arrays needed are:

LOGICAL ISING (N, N, N), FLIPS (N, N, N)
INTEGER ONES (N, N, N), COUNT (N, N, N)
REAL RANDOTHRESHOLD (N, N, N)

The array-valued function needed is:

FUNCTION RANDOM (N, N, N)
REAL THRESHOLD (N, N, N)

The transition probabilities may be passed across in the array
REAL P(6)

The first task is to count the number of nearest neighbors of each gridpoint g that have the
same spin as g.

Assuming that ISING is given to us, the statements

ONES = 0
WHERE (ISING) ONES = 1

makes the array ONES into an exact analog of ISING in which 1 stands for an up-spin and 0
for a down-spin.

The next array we construct, COUNT, will record for every gridpoint of ISING the number of
spins to be found among the 6 nearest neighbors of that gridpoint. COUNT will be com-
puted by adding together 6 arrays, one for each of the 6 relative positions in which a nearest
neighbor is found. Each of the' 6 arrays is obtained from the ONES array by shifting the
ONES array one place circularly along one of its dimensions. This use of circular shifting
imparts the cubic periodicity.

COUNT = CSHIFT(ONES, DIM = 1, SHIFT = -1) &
+CSHIFT(ONES, DIM = 1, SHIFT = 1) &
+CSHIFT(ONES, DIM = 2, SHIFT = -1) &
+CSHIFT(ONES, DIM = 2, SHIFT = 1) &
+CSHIFT(ONES, DIM = 3, SHIFT = -1) &
+CSHIFT(ONES, DIM = 3, SHIFT = 1)

At this point, COUNT contains the count of nearest neighbor up-spins even at the gridpoints
where the Ising model has a down-spin. But we want a count of down-spins at those
gridpoints, so we correct COUNT at the down (false) points of ISING by writing:

WHERE (.NOT. ISING) COUNT = 6 = COUNT

Our object now is to use these counts of what may be called the “like-minded nearest neigh-
bors” to decide which gridpoints are to be flipped. This decision will be recorded as the true
elements of an array FLIP. The decision to flip will be based on the use of uniformly distri-
buted random numbers from the interval 0 <= p =< 1. These will be provided at each
gridpoint by the array-valued function RANDOM. The flip will occur at a given point if and
only if the random number at that point is less than a certain threshold value. In particular,
by making the threshold value equal to 1 at the points where there are 3 or fewer like-

Version 99 1986 March Page C-12

SECTION NOTES

X3J3/S8

minded nearest neighbors, we guarantee that a flip occurs at those points (because p is
always less than 1). Similarly, the threshold values corresponding to counts of 4, 5, and 6
are set to P(4), P(5), and P(6) in order to achieve the desired probabilities of a fiip at those
points (P(4), P(5), and P(6) are input parameters in the range 0 to 1).

5 The thresholds are established by the statements:

THRESHOLD = 1

WHERE (COUNT .EQ. 4) THRESHOLD
WHERE (COUNT .EQ. 5) THRESHOLD
WHERE (COUNT .EQ. 6) THRESHOLD

P(4)
P(5)
P(6)

10 and the spins that are to be flipped are located by the statement:
FLIPS = RANDOM (N> .LE. THRESHOLD

All that remains to complete one transition to the next state of the ISING model is to reverse
the spins in ISING wherever FLIPS is true:

WHERE (FLIPS) ISING = .NOT. ISING

15 C.13.2.3.3 The Complete Fortran Subroutine. The complete code, enclosed in a subrou-
tine that performs a sequence of transitions, is as follows:

SUBROUTINE TRANSITION (N, ISING, ITERATIONS, P)

LOGICAL ISING (N, N, N), FLIPS (N, N, N)
INTEGER ONES (N, N, N>, COUNT (N, N, N)

20 REAL THRESHOLD (N, N, N), P (&

| This interface block is needed to specify
! that RANDOM is array-valued.

INTERFACE
FUNCTION RANDOM (N)
25 REAL RANDOM (N, N, N)
END INTERFACE

DO (ITER = 1, ITERATIONS)
ONES = O
WHERE (ISING) ONES = 1

30 COUNT = CSHIFT (ONES, 1, —1) + CSHIFT (ONES, 1, 1) &
+CSHIFT (ONES, 2, -1) + CSHIFT (ONES, 2, 1) &
+CSHIFT (ONES, 3, -1) + CSHIFT (ONES, 3, 1)
WHERE (.NOT. ISING) COUNT = 6 - COUNT

THRESHOLD = 1

35 WHERE (COUNT .EQ. 4) THRESHOLD
WHERE (COUNT .EQ. 5) THRESHOLD
WHERE (COUNT .EQ. 6) THRESHOLD

P(4)
P(5)
P(6)

FLIPS = RANDOM (N) .LE. THRESHOLD
WHERE (FLIPS) ISING = .NOT. ISING

40 END DO
END

C.13.2.3.4 Reduction of Storage. The array ISING could be removed (at some loss of
clarity) by representing the model in ONES all the time. The array FLIPS can be avoided by
combining the two statements that use it as:

45 WHERE (RANDOM (N) .LE. THRESHOLD) ISING = .NOT. ISING

Version 99

1986 March Page C-13

SECTION NOTES X3J3/S8

but an extra temporary array would probably be needed. Thus, the scope for saving storage
while performing whole array operations is limited. If N is small, this will not matter and the
use of whole array operations is likely to lead to good execution speed. If N is large, stor-
age may be very important and adequate efficiency will probably be available by performing

5 the operations plane by plane. The resulting code is not as elegant, but all the arrays
except ISING will have size of order N2 instead of N3.

C.13.3 FORmula TRANslation and Array Processing. Many mathematical formulas can
be translated directly into Fortran by use of the array processing features.

We assume the following array declarations:
10 REAL X (N), A (M, N)

Some examples of mathematical formulas and corresponding Fortran expressions follow.

C.13.3.1 A Sum of Products. The expression
M
Y Pi=1a;
j=1
15 can be formed using the Fortran expression

SUM (PRODUCT (A, DIM=1))

The argument DIM=1 means that the product is to be computed down each column of A. If
A had the value

ABC
Y DEF
the result of this expression is AD + BE + CF.

C.13.3.2 A Product of Sums. The expression
M N
PXa
i=1j=1
25 can be formed using the Fortran expression

PRODUCT (SUM (A, DIM = 2))

The argument DIM = 2 means that the sum is to be computed along each row of A. If A
had the value

ABC
30 DEF

the result of this expression is (A+B+C)D+E +F).

C.13.3.3 Addition of Selected Elements. The expression

o X

x> 041
35 can be formed using the Fortran expression
SUM (X, MASK = X .GT. 0.1)

The mask locates the elements where the array of rank one is greater than 0.1. If X had the
value [0.0, 0.1, 0.2, 0.3, 0.2, 0.1, 0.0], the resuit of this expression is 0.7.

Version 99 1986 March Page C-14

SECTION NOTES X3J3/58

10

15

20

25

30

35

C.13.4 Variance from the Mean. The expression

N
Y0 —x mean)”

i=1
can be formed using the Fortran statements

XMEAN = SUM (X) / SIZE (X)
VAR = SUM ((X - XMEAN) #* 2)

Thus, VAR is the sum of the squared residuals.

C.13.5 Matrix Norms: Euclidean Norm.
NORMZ2 (A) = SQRT (SUM (A**2))

(Note: The Euclidean norm of a real matrix is the square root of the sum of the squares of
its elements)

C.13.6 Matrix Norms: Maximum Norm.
NORM_INFINITY (A) = MAXVAL (SUM (ABS (A), DIM = 2))

(Note: The maximum__norm of a real matrix is the largest row__ sum of the matrix of its
absolute values)

C.13.7 Logical Queries. The intrinsic functions allow quite complicated questions about
tabular data to be answered without use of loops or conditional constructs. Consider, for
example, the questions asked below about a simple tabulation of students’ test scores.

Suppose the rectangular table T (M, N) contains the test scores of M students who have
taken N different tests. T is an integer matrix with entries in the range 0 to 100. Example
A: the scores on 4 tests made by 3 students held as the table

85 76 90 60
T= |71455080
66 45 21 55

Question: What is each student’s top score?

Answer: MAXVAL (T, DIM = 2); in Example A: [90, 80, 66].
Question: What is the average of all the scores?

Answer: SUM (T) / SIZE (T); in Example A: 62.

Question: How many of the scores in the table are above average?

Answer: ABOVE = T .GT. SUM (T) / SIZE (T); N = COUNT (ABOVE); in Example A:
ABOVE is the logical array (t = true, . = false):

e, e
. .
—

and COUNT (ABOVE) is 6.
Question: What was the lowest score in the above-average group of scores?

Answer: MINVAL (T, MASK = ABOVE), where ABOVE is as defined previously; in Example
A: 66.

Version 99 1986 March Page C-15

SECTION NOTES X3J3/58

10

15

20

25

30

35

Question: Was there a student whose scores were all above average?

Answer: With ABOVE as previously defined the answer is yes or no according as the value
of the expression ANY (ALL (ABOVE, DIM = 2)) is true or false; in Example A the answer is
no.

C.13.8 Parallel Computations. The most straightforward kind of parallel processing is to
do the same thing at the same time to many operands. Matrix addition is a good example of
this very simple form of parallel processing. Thus, the array assignment A = B + C
specifies that corresponding elements of the identically-shaped arrays B and C be added
together in parallei and that the resulting sums be assigned in parallel to the array A.

The “process” being done “in parallel” in the example of matrix addition is of course the
process of addition. And the array feature that so successfully implements matrix addition as
a parallel process is the element-by-element evaluation of array expressions.

These observations lead us to look to element-by-element computation as a means of imple-
menting other simple parallel processing algorithms.

The applications of element-by-element computation to parallel processing include the foliow-
ing:

C.13.8.1 Parallel Evaluation of Polynomials. This encompasses both the evaluation of
several polynomials at one point and the evaluation of one polynomial at several points.

C.13.8.2 Parallel Computation of FFTs. In radar signal processing it is convenient to per-
form the Fast Fourier Transform in parallel on many sets of radar signals (each such set
might consist of, say, 64 complex numbers).

C.13.8.3 Parallel Sorting. We will address the problem of sorting the several columns of a
matrix in parallel.

C.13.8.4 Parallel Finite Differencing. We will examine the parallel computation of finite
difference approximations to partial derivatives at all points of a grid.

C.13.9 Examples of Element-By—Element Computation.

C.13.9.1 Polynomials. Severai polynomials of the same degree may be evaluated at the
same point by arranging their toefficients as the rows of a matrix and applying Horner's
method for polynomial evaluation to the COLUMNS of the matrix so formed.

This procedure is illustrated by the code to evaluate the three cubic polynomials:
in parallel at the point t = X and to place the

resulting vector of numbers [P(X), Q(X), R(X)] in

the real array RESULT (3).

The code to compute RESULT is just the one statement
RESULT =M (z, 1) + X * (M (:, 2 +X* (M (:, 3 +X*M(:, 4)
where M represents the matrix M (3, 4) with value

Pit) =1 + 2t — 3t + 413

Q(t) = 2 — 3t + 42 — 53

R(t) = 3 + 4t — 5t% + 6t3

Version 99 1986 March Page C-16

SECTION NOTES X3J3/s8

1 2 -3 4
40 2 -3 4 -5
3 4 -5 6

C.14 Section 14 Notes.

C.15 Section 15

Version 99 1986 March Page C-17

APPENDIX D SYNTAX RULES

1 INTRODUCTION

2 FORTRAN TERMS AND CONCEPTS

R201 executable-program is external-program-unit
[external-program-unit 1...

Constraint: An executable-program must contain exactly one main-program program-unit.

R202 external-program-unit is main-program
or external-subprogram

R203 main-program is [program-stmt |
program-unit-body
end-program-stmt

R204 external-subprogram is external-proc-subprogram
or module-subprogram
or block-data-subprogram

R205 external-proc-subprogram Is procedure-subprogram

R206 procedure-subprogram is function-subprogram
or subroutine-subprogram

R207 function-subprogram Is function-stmt
program-unit-body
enad-function-stmt

R208 subroutine-subprogram Is subroutine-stmt
program-unit-body
end-subroutine-stmt

R209 module-subprogram is module-stmt
program-unit-body
end-module-stmt

Constraint: A module program-unit-body must not contain an execution-part.
R210 block-dlata-subprogram is block-data-stmt

Constraint: A block-data-subprogram program-unit-body may contain only IMPLICIT, PARAM-
ETER, type declaration, COMMON, DIMENSION, EQUIVALENCE, DATA, and
SAVE statements.

R211 program-unit-body is [use-sitmt]...
[implicit-part]...
[declaration-part }...
[stmt-function-part |...
{ execution-part |...
[contains-stmt
[internal-proc-subprogram ... |

Version 99 1986 March Page D-1

SYNTAX RULES

R212 implicit-part

Constraint:

R213 declaration-part

R214 stmt-function-part

Constraint:
function-stmt.

R215 execution-part

Constraint:

X3J3/S8

is implicit-stmt
or parameter-stmt
or format-stmt

or entry-stmt

The last implicit-part, if any, in a program unit body must be an implicit-stmt.

is derived-type-def

or interface-block

or lype-declaration-stmt
or specification-stmt

or parameter-stmt

or format-stmt

or entry-stmt

Is format-stmt
or data-stmt

or entry-stmt

or stmi-function-stmt

The first stmt-function-part, if any, in a program unit body must be a stmt-

is executable-construct
or format-stmt

or data-stmt

or eniry-stmt

The first execution-part, if any, in a program unit body must be an executable-

construct or a DATA statement.

R216
R217 specification-stmt

internal-proc-subprogram

Constraint:

is proc-subprogram

is access-stmt
or condition-stmt
or exponent-letter-stmt
or external-stmt
or initialize-stmt
or intent-stmt

or intrinsic-stmt
or optional-stmt
or range-stmt

or save-simt

or common-stmt

or dimension-stmt
or equivalence-stmt

An intent-stmt or optional-stmt must not appear in a module or main program

because they apply only to dummy arguments.

R218 executable-construct

Version 99

is action-stmt

or case-construct
or do-construct

or enable-construct
or if-construct

or where-construct

1986 March

Page D-2

FORTRAN TERMS AND CONCEPTS SYNTAX RULES

R219 action-stmt is allocats-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or endfile-stmt
or exit-stmt
or forall-stimt
or goto-stmt
or identify-stmt
or if-stmt
or inquire-stmt
or open-stmt
or print-stmt
or read-stmt
or return-stmt
or rewind-stmt
or set-range-stmt
or signal-stmt
or stop-stmt
or where-stmt
or write-stmt
or arithmetic-if-stmt
or assign-stmt
or assigned-goto-simt
or computed-goto-stmt
or pause-stmt

Constraint: An entry-stmt or return-stmt must not appear in a main program; an entry-stmt
must not appear in constructs.

3 LEXICAL ELEMENTS

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit

or underscore
R303 symbolic-name Is letter [alphanumeric-character ...
Constraint: The maximum length of a symbolic-name is 31 characters.

R304 constant is literal-constant
or symbolic-constant

R305 literal-constant is int-constant
or real-constant

Version 99 1986 March Page D-3

SYNTAX RULES X3J3/s8

or complex-constant
or logical-constant
or char-constant

or bit-constant

R306 symbolic-constant is symbolic-name

R307 intrinsic-operator is power-op
or mult-op
or add-op
or bnot-op
or band-op
or bor-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R308 power-op is **
R309 mult-op is *

or /
R310 add-op is +

or —
R311 bnot-op is .BNOT.
R312 band-op is .BAND.

R313 bor-op is .BOR.
or .BXOR.

R314 concat-op is //

R315 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or <>
or <
or <=
or >
or > =

R316 not-op is .NOT.
R317 and-op is .AND.
R318 orop is .OR.

R319 equiv-op is .EQV.
or .NEQV.

R320 defined-operator is overloaded-intrinsic-op

Version 99 1986 March Page D-4

LEXICAL ELEMENTS

R321
R322
R323

Constraint:

R324

R401
R402
R403

R404
R405

R406

R407

R408

R409
R410

Constraint:

R411
R412

R413

R414

R415

R416

overloaded-intrinsic-op

defined-unary-op
defined-binary-op

SYNTAX RULES

or defined-unary-op
or defined-binary-op

is intrinsic-operator
is . letter [letter |... .
is . letter [letter]... «

A defined-unary-op and a defined-binary-op must not contain more than 31 char-

acters and must not be the same as any intrinsic-operator or logical-constant.

label

int-constant
signed-int-constant

sign

signed-real-constant

real-constant
significand
exponent

exponent-letter

exponent-letter-stmt

defined-exponent-letter

complex-constant
real-part

imag-part

char-constant

logical-constant

bit-constant

Version 99

is digit [digit [digit [digit [digit] 111

4 DATA TYPES

is digit [[—] digit]...
is [sign] int-constant
is +
or —
is [sign] real-constant

is significand [exponent-letter exponent |
or int-constant exponent-letter exponent

is int-constant . [int-constant |
or . int-constant

is signed-int-constant

is E

or D

or defined-exponent-letter

is EXPONENT LETTER precision-selector defined-exponent-letter
Is letter

A defined-exponent-letter must be a letter other than E, D, or H.

is (real-part, imag-part)

Is signed-int-constant
or signed-real-constant

is signed-int-constant
or signed-real-constant

is ' [character |..."’
or ” [character }... *

is .TRUE.
or .FALSE.
is B"0”
or B0’
orB"”
or B'1’

1986 March Page D-5

SYNTAX RULES X3J3/S8

R417 derived-type-def is derived-type-stmt
component-def-stmt
[component-def-stmt ...
[variant-component |

end-type-stmt
R418 derived-type-stmt is [access-spec | TYPE type-name | (type-param-name-iist) |
R419 end-type-stmt is END TYPE [type-name]
Constraint: A derived type type-name must not be the same as any intrinsic type-name.
Constraint:
R420 component-def-stmt is type-spec [[, component-attr-spec]... :: | component-decl-list
Constraint: A type-spec in a component-def-stmt must not contain a type-param-value that is

an asterisk.
R421 component-attr-spec is PRIVATE
or ARRAY (explicit-shape-spec-list)

R422 component-dec! is component-name [(explicit-shape-spec-list)]
R423 variant-component is select-case-stmt

[case-stmt [component-def-stmt ...]...

end-select-stmt

Constraint: The select-case-simt and end-select-stmt in a variant-component must not spec-
ify a construct-name.

R424 derived-type-constructor is type-name [(type-param-spec-list) | (expr-list)

Constraint: The type-param-spec option must be supplied if and only if the referenced type
definition includes type parameters.

R425 array-constructor is [array-constructor-value-list |
or (/ constructor-value-list /)

R426 array-constructor-value is scalar-expr
or rank-1-array-expr
or scalar-int-expr : scalar-int-expr [: scalar-int-expr |
or [int-constant-expr | array-constructor

5 DATA OBJECT DECLARATIONS AND SPECIFICATIONS

R501 type-declaration-stmt is lype-spec [[, attr-spec]... :: | object-decl-list

R502 type-spec is INTEGER
or REAL [precision-selector |
or DOUBLE PRECISION
or COMPLEX [precision-selector |
or CHARACTER [length-selector]

or LOGICAL

or BIT

or TYPE (type-name [(type-param-spec-list) |)
R503 type-param-spec is [type-param-name =] type-param-value
R504 type-param-value is specification-expr

Version 99 1986 March Page D-6

DATA OBJECT DECLARATIONS AND SPECIFICATIONS SYNTAX RULES

R505 attr-spec

R506 objeci-decl/

or *

is value-spec

or access-spec

or ALIAS

or ALLOCATABLE

or ARRAY (array-spec)
or INTENT (intent-spec)
or OPTIONAL

or RANGE

or SAVE

is object-name [(array-spec)] [* charfength | [= constant-expr]

Constraint: No attr-spec may appear more than once in a given type-declaration-stmt.

Ceonstraint:

Canstraint: The = constant-expr must appear if and only if the statement contains a value-
spec attribute (5.1.2.1, 7.1.6.1). '

Ccenstraint: The * char-length option is permitted only if the type-spec is CHARACTER. If
present *char-length overrides the length-selector for that specific object-dec/ in

which it appears.

Ccnstraint: The ALLOCATABLE and RANGE attributes may be used only when declaring

array objects.

Constraint:

Constraint: An array specified with an ALIAS attribute must be declared with an aflocatable-

spec.
Constraint:
R507 precision-selector

is (type-param-value [, [EXPONENT__RANGE =] O
Ll type-param-value |

or (PRECISION = type-param-value O

O [, EXPONENT_RANGE = type-param-value])

or (EXPONENT_RANGE = type-param-value (]

O [, PRECISION = type-param-vaiue])

Censtraint: The type-param-value must be an integer constant expression or an asterisk.

RS508 length-selector

R509 char-length

R510 value-spec

R511 access-spec

R512 intent-spec

R513 array-spec

Version 99

is [LEN =] type-param-value
or * charlength [,]

is (type-param-value)
or scalar-int-constant

is PARAMETER
or INITIAL

is PUBLIC
or PRIVATE

is IN

or OUT

or INOUT

is explicit-shape-spec-list
or assumed-shape-spec-list

1986 March Page D-7

SYNTAX RULES X3J3/s8

or allocatable-spec-list
or assumed-size-spec

R514 explicii-shape-spec is [lower-bound : | upper-bound
R515 lower-bound is specification-expr
R516 upper-bound is specification-expr

Constraint: An explicit shape array whose bounds depend on the values of variables must
either be a dummy argument or a local array of a procedure.

R517 assumed-shape-spec is [lower-bound | :
R518 allocatable-spec is :
R519 assumed-size-spec is [explicit-shape-spec-list . | [lower-bound :] *

Constraint: assumed-size-spec must not be included in an ARRAY attribute.

Constraint:

R520 intent-stmt is INTENT (intent-spec) [::] dummy-arg-name-list
R521 optional-stmt is OPTIONAL [::] dummy-arg-name-list

R522 access-stmt is access-spec [[::] object-name-list]

Constraint: An access-stmt may appear only in a module and only one accessibility state-
ment with omitted object name list is permitted in a host program unit.

R523 save-stmt is SAVE [[::] saved-object-list]

R524 saved-object is object-name
or / common-block-name /

Constraint: An object name must not be a dummy argument name, a procedure name, a
function result name, an automatic array name, an alias name,

Constraint: If a SAVE statement with an omitted saved object list occurs in a program unit,
no other occurrence of the SAVE attribute or SAVE statement is permitted.

R525 dimension-stmt is DIMENSION array-name (array-spec) [, array-name (array-spec) |...

Constraint: In a DIMENSION statement, only explicit shape and assumed-size array-specs
are permitted.

R526 initialize-stmt is INITIALIZE (initial-value-def-list)
R527 initial-value-def is variable = constant-expr
R528 parameter-stmt is PARAMETER (symbolic-constant-def-list)
R529 symbolic-constant-def is symbolic-constant-name = tonstant-expr
R530 condition-stmt is CONDITION [::] condition-name-list
R531 range-stmt is RANGE [/ range-list-name / | array-name-list
R532 implicit-stmt is IMPLICIT implicit-spec-list

or IMPLICIT NONE
R533 implicit-spec is type-spec (letter-spec-list)
R534 letter-spec is letter [— letter |
R535 equivalence-stmt is EQUIVALENCE equivalence-set-list
R536 equivalence-set is (equivalence-object , equivalence-object-list)

Version 99 1986 March Page D-8

DATA OBJECT DECLARATIONS AND SPECIFICATIONS SYNTAX RULES

R537 equivalence-object Is object-name

or array-element
or substring

Constraint: object-name must be a scalar variable name or an array variable name.
Constraint:

Constraint: Each subscript or substring range expression in an equivalence-object must be
an integer constant expression.

R538 common-stmt is COMMON [/ [common-block-na_wme } 7 Yeommon-block-object-list O

O {[.]/[common-block-name } /common-block-object-iist)...
R533 common-block-object is object-name [(explicit-shape-spec-fist) |

Constraint: object-name must be a scalar-variable-name or an array-variable-name. Only
one appearance of object name is permitted in all common block object lists
within a program unit.

Constraint:
Constraint: Each bound in the explicit-shape-spec must be an integer constant expression.

R540 data-stmt is DATA data-stmt-init [[,] data-stmi-init ...
R541 data-stmt-init is dafa-stmt-object-list / data-stmi-value-list /
R642 data-stmt-object is object-name

or array-element

of data-implied-do
R543 data-stmt-value is [data-stmt-repeat * | data-stmt-constant
R544 data-stmt-constant is constant

or signed-int-constant

or signed-real-constant
R545 data-stmi-repeat Is int-constant

or scalar-int-symbolic-constant
R543 data-implied-do is (data-i-do-object-list, do-variable = scalar-int-expr, scalar-int-expr {, scalar-int-expr])
R547 data-f-do-object Is array-element

or data-implied-do

6 USE OF DATA OBJECTS

R601 variable Is scalar-variable-name

or array-variable-name

or array-element

or array-section

or structure-component

or substring
R602 substring Is parent-string (substring-range)
R603 parent-string is char-scalar-variable-name

or char-array-element
Version 99 1986 March Page D-9

SYNTAX RULES X3J3/S8

or scalar-char-structure-component
or scalar-char-symbolic-constant
or scalar-char-constant

R604 substring-range is [scalar-int-expr | : | scalar-int-expr |
R605 structure-component is parent-structure % component-name [array-selector |
R606 parent-structure is derived-type-scalar-variable-name

or derived-type-array-variable-name
or derived-type-array-element

or derived-type-array-section

or derived-type-structure-component
or derived-type-symbolic-constant

Constraint: An array-selector may appear only if the component specified by component-
name is an array.

R607 array-selector is (subscript-list)

or (section-subscript-list)
R608 allocate-simt is ALLOCATE (array-allocation-ist)
R609 array-allocation is array-name (explicit-shape-spec-list)

Constraint: array-name must be the name of an allocatable array.
Constraint:

Constraint: The number of explicit-shape-specs in an array-allocation explicit-shape-spec-list
must be the same as the declared rank of the array.

R610 deallocate-stmt is DEALLOCATE (array-name-list)

R611 array-element is parent-array (subscript-list)

Constraint: The number of subscripts must equal the declared rank of the array.

R612 array-section is parent-array (section-subscript-list) | (substring-range)]

R613 parent-array is array-variable-name
ar array-symbolic-constant-name

Constraint: At least one section-subscript must be a subscript-triplet or a vector-int-expr.

Constraint:
R614 subscript is scalar-int-expr
R615 section-subscript is subscript

or subscript-triplet
or vector-int-expr

Constraint: A vector-int-expr section-subscript must be a rank one integer array.

R616 subscript-triplet is [subscript] : [subscript] [: stride |
R617 stride is scalar-int-expr
R618 set-range-stmt is SET RANGE ([effective-range-list |) array-name-list

or SET RANGE ([effective-range-list }) / range-list-name /

R619 effective-range is e);plicif-shape-spec
or [lower-bound | : | upper-bound |

Version 99 1986 March Page D-10

USE OF DATA OBJECTS SYNTAX RULES

Constraint: The number of effective ranges in an effective-range-list must equal the rank of
the arrays being ranged.

Constraint:

Constraint: An array that is a member of a range list must not appear in an array-name-list
of a SET RANGE statement.

R620 identify-stmt is IDENTIFY (alias-name = parent)
or IDENTIFY (alias-element = parent-element , (I
0 alias-range-spec-list)

Constraint: The alias and parent objects must conform in type, rank, and type parameters.

Constraint:
R621 alias-element is alias-name (subscript-range)
Constraint: The number of subscript-names in an alias element must equal the number of
alias-range-specs. '
Constraint:
R622 parent-element is parent-name (subscript-mapping) [% component-name [(subscript-list)]]...
R623 subscript-mapping is subscript-list

Constraint: Each subscript must be linear in the alias-element subscript-names.
R624 alias-range-spec Is subscript-range = subscript : subscript

Constraint: The subscript ranges in a subscript-name-list must be identical to the subscript
ranges in the corresponding alias range specification list, and must appear in
the same order. A name must not appear more than once in such a list.

Constraint:
7 EXPRESSIONS AND ASSIGNMENT

R701 primary is constant

or variable

or array-constructor

or derived-type-constructor

or function-reference

or (expr)
R702 level-1-expr Is [defined-unary-op | primary
R322 defined-unary-op is . letter [letter |... .
R703 muit-operand is level-1-expr | power-op mult-operand |
R704 add-operand is [add-operand mult-op | mult-operand
R705 level-2-expr is [add-op]| add-operand

or level-2-expr add-op add-operand
R308 power-op is **
R309 mult-op Is *

or /

Version 99 1986 March Page D-11

SYNTAX RULES

R310 add-op

R706 band-operand
R707 bor-operand
R708 level-3-expr
R311 bnot-op

R312 band-op

R313 bor-op

R709 flevel-4-expr
R314 concat-op
R710 Jevel-5-expr
R315 rel-op

R711 and-operand
R712 or-operand
R713 equiv-operand
R714 level-6-expr

R316 not-op
R317 and-op
R318 or-op

R319 equiv-op

R715 expr

R323 defined-binary-op
R716 assignment-stmt
R717 where-stmt

R718 where-construct

Version 99

is
or

X3J3/58

+

[bnot-op | level-2-expr

[bor-operand band-op | band-operand
[level-3-expr bor-op | bor-operand
.BNQOT.

.BAND.

.BOR.

.BXOR.

| level-4-expr concat-op] level-3-expr
//

[level-4-expr rel-op] level-4-expr

EQ.
.NE.
AT.
.LE.

@
—

Voo

VVAAATL B

[not-op | level-5-expr

[or-operand and-op | and-operand

[equiv-operand or-op | or-operand

[level-6-expr equiv-op | equiv-operand
.NOT.

AND.

OR.

EQV.
.NEQV.

[expr defined-binary-op] level-6-expr

. letter [letter 1... .

variable = expr

WHERE (array-mask-expr) array-assignment-stmt

where-construct-stmt
[array-assignment-stmt]...
[elsewhere-stmt
[array-assignment-stmt]... |
end-where-stmt

1986 March Page D-12

EXPRESSIONS AND ASSIGNMENT SYNTAX RULES

R719 where-construct-stmt Is WHERE (array-mask-expr)
R720 array-mask-expr is logical-expr
or bit-expr
R721 elsewhere-stmt is ELSEWHERE
R722 end-where-stmt is END WHERE
Constraint: The shape of the array-mask-expr and the variable being defined in each array-
assignment-stmt
must be the same.
R723 forall-stmt is FORALL (forall-triplet-spec-list [,scalar-mask-expr]) forall-assignment
R724 forall-triplet-spec is subscript-name = subscript : subscript [: stride]

Constraint: subscript-name must be a scalar-symbolic-name of type integer.
Constraint:

R725 forall-assignment is array-element = expr
or array-section = expr

Constraint: The array-section or array-element must contain references to all subscript
names in the forall-triplet-spec-list. expr in a forall-assignment must reference all
of the forall-triplet-spec subscript-names.

8 EXECUTION CONTROL

R801 block is [execution-part]...
R802 if-construct is if-then-stmt
block
[else-if-stmt
block]...
[else-stmt
block |
end-if-stmt
R803 if-then-stmt is [if-construct-name :] IF (scalar-mask-expr) THEN
R804 else-if-stmt is ELSE IF (scalar-mask-expr) THEN
R805 else-stmt is ELSE
R806 end-if-stmt is END IF [if-construct-name |

Constraint: If an if-construct-name is present, the same name must be specified on both
the if-then-stmt and the corresponding end-if-stmt.

R807 if-stmt is IF (scalar-mask-expr) action-stmt
Constraint: The action-stmt in the if-stmt must not be an if-stmt.

R808 case-construct is select-case-stmt
[case-stmt
block ...
end-select-stmt
R809 select-case-stmt Is [select-construct-name : | SELECT CASE (case-expr)

Version 99 1986 March Page D-13

SYNTAX RULES _ X3J3/S8

R810 case-stmt is CASE case-selector
R811 end-select-stmt is END SELECT | select-construct-name |

Constraint: If a select-construct-name is present, the same name must be specified on both
the select-case-stmt and the corresponding end-select-stmt.

R812 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr
or scalar-bit-expr

R813 case-selector is (case-value-range-list)
or DEFAULT

Constraint: Only one DEFAULT case-selector may appear in any given case-construct.

R814 case-value-range is case-value
or [case-value] : [case-value |

R815 case-value is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr
or scalar-bit-constant-expr

R816 do-construct is do-stmt
do-body
do-termination
R817 do-stmt is [do-construct-name : 1 DO [label] [[,] loop-control |
R818 /oop-control is do-variable = scalar-numeric-expr, scalar-numeric-expr [, scalar-numeric-expr |

or (scalar-int-expr TIMES)
Constraint: The do-variable must be a scalar integer, real, or double precision variable.
R819 do-body is [execution-part }...

R820 do-termination is end-do-stmt
or continue-stmt
or do-term-stmt
or do-construct

R821 do-term-stmt is action-stmt

Constraint: If the /abel is omitted in a do-stmt, the corresponding do-termination must be an
end-do-stmt.

Constraint:
Constraint: If the do-termination is a continue-stmt

Constraint: A do-term-stmt must not be a continue-stmt, goto-stmt, return-stmt, stop-stmt,
exit-stmt, cycle-stmt, arithmetic-if-stmt, assigned-goto-simt, computed-goto-stmt,
nor an if-stmt that causes a transfer of control.

Constraint:

Constraint: If a do-termination is a do-construct, the do-termination of that do-construct must
not be an end-do-stmt.

R822 end-do-stmt is END DO [do-construct-name |

Version 99 1986 March Page D-14

EXECUTION CONTROL SYNTAX RULES

Constraint: If a do-construct-name is used on the do-stmt, the corresponding do-termination
must be an end-do-stmt that uses the same do-construct-name. If a do-
construct-name does not appear on the do-stmt, a do-construct-name must not
appear on the corresponding do-termination.

R823 exit-stmt is EXIT [do-construct-name])
R824 cycle-stmt is CYCLE [do-construct-name]
R825 enable-construct is enable-stmt
block
[handle-stmt
biock ...
end-enable-stmt
R826 enable-stmt is [enable-construct-name : | ENABLE [(condition-name-list)]
R827 handle-stmt is HANDLE (condition-name-list)
or HANDLE (*)
R828 end-enable-stmt is END ENABLE [enable-construct-name |

Constraint: A condijtion-name must not appear more than once in a single condition-name-
list.

Constraint:

Constraint: HANDLE (*) may appear at most once in an ENABLE construct.
Constraint:

R829 signal-stmt Is SIGNAL (condition-name)

or SIGNAL (*)
Constraint: SIGNAL (*) is permitted only in a HANDLE block.
R830 goto-stmt is GO TO label

Constraint: /abel must be the statement label of a branch-target that appears in the same
program unit as the go-to-simt.

RE31 computed-goto-stmt is GO TO (labeliist) [,] scalar-int-expr

Constraint: Each label in label-list must be the statement label of a branch target that
appears in the same program unit as the computed-goto-stmt.

RE32 assign-stmt is ASSIGN Jabel TO scalar-int-variable
Constraint: /abel must be the statement label of a branch target or a format-stmt.
RE33 assigned-goto-stmt is GO TO scalar-int-variable [[,] (label-list)]

Constraint: Each label in label-list must be the statement label of a branch target that
appears in the same program unit as the assigned-goto-stmt.

R834 arithmetic-if-stmt is IF (scalar-numeric-expr) label, label, label

Constraint: Each /abe/ must be the label of a branch target that appears in the same pro-
gram unit as the arithmetic-if-stmt.

Constraint:

R835 continue-stmt is CONTINUE

R836 stop-stmt is STOP [access-code]
R837 access-code is char-constant

Version 99 1986 March Page D-15

SYNTAX RULES X3J3/S8

or digit [digit | digit [digit [digit 111]
R838 pause-stmt is PAUSE [access-code |

9 INPUT/OUTPUT STATEMENTS

R901 io-unit is external-file-unit
or *
or internal-file-unit

R902 external-file-unit is scalar-int-expr
R903 internal-file-unit is char-variable
R904 open-stmt is OPEN (connect-spec-list)
R905 connect-spec is [UNIT =] external-file-unit

or IOSTAT = iostat-variable

or ERR= Jabel

or FILE = scalar-char-expr

or STATUS = scalar-char-expr
or ACCESS = scalar-char-expr
or FORM = scalar-char-expr
or RECL = scalar-int-expr

or BLANK = scalar-char-expr
or POSITION = scalar-char-expr
or ACTION = scalar-char-expr
or DELIM = scalar-char-expr
or PAD = scalar-char-expr

Constraint: Each specifier must not appear more than once in a given open-stmt; the
UNIT = specifier must appear.

Constraint:

Constraint: |f the STATUS = specifier is 'SCRATCH’, the FILE = specifier must be absent.
Constraint: .

R906 close-stmt is CLOSE (close-spec-list)

R907 close-spec is [UNIT =] external-file-unit
or IOSTAT = jostat-variable
or ERR= /abel
or STATUS = scalar-char-expr

Constraint: A given specifier must not appear more than once in a given close-stmt; the
unit specifier must appear.

Constraint:

R908 read-sitmt is READ (io-control-spec-list) | input-item-list]
or READ format [, input-item-list]

R909 write-stmt is WRITE (io-control-spec-list) [outpui-item-list |

R910 print-stmt is PRINT format [, output-item-list]

R911 io-control-spec is [UNIT =] io-unit

Version 99 1986 March Page D-16

INPUT/QUTPUT STATEMENTS SYNTAX RULES

or [FMT =] format

or REC = scalar-int-expr

or PROMPT = scalar-char-expr
or IOSTAT = jostat-variable

or ERR= /abel

or END = /abel

or NULLS = scalar-int-variable
or VALUES = scalar-int-variable

Constraint: An jo-control-spec-list must contain exactly one io-unit and may contain at most
one of each of the other specifiers.

Constraint:
R912 format is char-expr
or label
or *
or *%
or scalar-int-variable
R913 Jostat-variable is scalar-int-variable
R914 input-item is variable
or jo-implied-do
R915 oulput-item is expr
or io-implied-do
R916 io-implied-do is (io-implied-do-object-list , io-implied-do-control)
R917 io-implied-do-object is input-item
or output-item
R918 io-implied-do-control is scalar-numeric-expr , O

L) scalar-numeric-expr , | scalar-numeric-expr |

Constraint: In an input-item-list, an io-implied-do-object must be an input-item. In an output-
item-list, an io-implied-do-object must be an output-item.

Constraint:

Constraint: The do-variable of an io-implied-do that is contained within another io-implied-do
must not appear as, nor be associated with, the do-variable of the containing

io-implied-do.
R919 backspace-stmt is BACKSPACE external-file-unit
or BACKSPACE (position-spec-list)
R920 endfile-stmt is ENDFILE external-file-unit
or ENDFILE (position-spec-list)
R921 rewind-stmt is REWIND external-file-unit

or REWIND (position-spec-list)

Constraint: BACKSPACE, ENDFILE, and REWIND apply only to files connected for sequen-
tial access.

R922 position-spec is [UNIT =] external-file-unit
or IOSTAT = iostat-variable
or ERR = Jabel

Version 99 1986 March Page D-17

SYNTAX RULES

Constraint:

X3J3/58

A position-spec-list must contain exactly one external-file-unit and may contain at
most one of each of the other specifiers.

R923 inquire-stmt

R924 inquire-spec

Constraint:

Constraint:

An INQUIRE statement must contain one FILE=

is INQUIRE (inquire-spec-list) | output-item-list]

is FILE = scalar-char-expr

or UNIT = external-file-unit

or IOSTAT = iostat-variable

or ERR = /abel

or EXIST = scalar-logical-variable

or OPENED = scalar-logical-variable
or NUMBER = scalar-int-variable

or NAMED = scalar-logical-variable

or NAME = scalar-char-variable

or ACCESS = scalar-char-variable

or SEQUENTIAL = scalar-char-variable
or DIRECT = scalar-char-variable

or FORM = scalar-char-variable

or FORMATTED = scalar-char-variable
or UNFORMATTED = scalar-char-variable
or RECL = scalar-int-variable

or NEXTREC = scalar-int-variable

or BLANK = scalar-char-variable

or POSITION = scalar-char-variable
or ACTION = scalar-char-variable

or DELIM = scalar-char-variable

or PAD = scalar-char-variable

or IOLENGTH = scalar-int-variable

specifier, but not both, and at most one of each of the other specifiers.

R1001 format-stmt

10

R1002 format-specification

Constraint:

Constraint:

INPUT/OUTPUT EDITING

is FORMAT format-specification

is ([format-item-list])

The format-stmt must be labeled.

R1003 format-item

R1004 r
Constraint:

Constraint:

Version 99

is [r] data-edit-desc

or control-edit-desc

or char-string-edit-desc
or [r] (format-item-list)

is int-constant

r must be positive. It is called a

specifier or one UNIT=

The character underscore (__) is prohibited in an int-constant in a format

specification.

1986 March

Page D-18

INPUT/OUTPUT EDITING

R1005 data-edit-desc

R1006 w
R1007 m
R1008 d
R1009 e

Constraint: w and e must be positive and d and m must be zero or positive.

Constraint:
R1010 control-edit-desc

R1011 k
R1012 position-edit-desc

R1013 n
R1014 sign-edit-desc

R1015 blank-interp-edit-desc

R1016 char-string-edit-desc

R1017 ¢

Constraint: ¢ must be positive.

R200 main-program

Version 99

is lw[.m]
orFw.d
orEw.d[Ee]
orENw.d[Ee]
orGw.d[Ee]
or Bw

orLw

or Afw]

or Dw.d

is scalar-int-constant
is scalar-int-constant
is scalar-int-constant

is scalar-int-constant

is position-edit-desc
or[r]/

or:

or sign-edit-desc

orkP

or blank-interp-edit-desc

is scalar-signed-int-constant

is Tn
or TL n
orTRn
ornX

is scalar-int-constant
is S

or SP

or SS

is BN
or BZ

is char-constant
or c H character [character |...

is int-constant

PROGRAM UNITS

is [program-stmt]
program-unit-body
end-program-stmt

1986 March

SYNTAX RULES

Page D-19

SYNTAX RULES X3J3/S8

R1101 program-stmt is PROGRAM program-name
R1102 end-program-stmt is END | PROGRAM [program-name]]

Constraint: The program-name may be included in the end-program-stmt only if the optional
program-stmt is used and, if included, must be identical to the program-name
specified in the program-stmt.

R200 module-subprogram is module-stmt
program-unit-body
end-module-stmt

R1103 module-stmt is MODULE module-name
R1104 end-module-stmt is END [MODULE | module-name | |

Constraint: If the module-name is specified in the end-module-stmt, it must be identical to
the module-name specified in the module-sitmt.

R1105 use-stmt is USE [module-name] [[,] all-clause]

or USE [module-name] [,] ONLY ([only-iist])
R1106 all-clause Is ALL ([rename-list])

or ALL [([rename-list])}] EXCEPT (except-list)
R1107 rename is use-name = > local-name
R1108 except is use-name
R1109 only is use-name [= > local-name |
R1110 use-name is variable-name

or procedure-name
or lype-name

or condition-name
or constant-name

R1111 block-data-subprogram is block-data-stmt
R1112 block-data-stmt is BLOCK DATA [block-data-name |
R1113 end-block-data-stmt is END [BLOCK DATA [block-data-name | |

Constraint: The block-data-name may be included in the end-block-data-stmt only if it was
provided in the block-data-stmt and, if included, must be identical to the block-
data-name in the block-data-stmit.

12 PROCEDURES

R1201 interface-block is interface-stmt
interface-specification
end-interface-stmt

R1202 interface-stmt is INTERFACE

R1203 end-interface-stmt is END INTERFACE

R1204 interface-specification is interface-header
[use-stmt]...

[implicit-part ...
[declaration-part]...

Version 99 1986 March Page D-20

PROCEDURES SYNTAX RULES

R1205 interface-header Is function-stmt

or subroutine-stmt
R1206 external-stmt is EXTERNAL external-name-list
R1207 external-name Is external-procedure-name

or dummy-arg-name
or block-data-name

R1208 intrinsic-stmt is INTRINSIC intrinsic-name-list
R1209 intrinsic-name is intrinsic-procedure-name
or intrinsic-condition-name
R1210 function-reference Is function-name ([actual-arg-spec-list |)
Constraint: The actual-arg-spec-list for a function reference must not contain an alt-return-
spec.
R1211 call-stmt is CALL subroutine-name [(| actual-arg-spec-list])]
R1212 actual-arg-spec Is [keyword =] actual-arg
R1213 keyword is dummy-arg-name
R1214 actual-arg is expr
or variable
or procedure-name
or condition-name
or aff-return-spec
R1215 altreturn-spec is * label

Constraint: The keyword may be omitted from an actual-arg-spec only if the keyword has
been omitted from each preceding actual-arg-spec in the argument list.

Constraint:
R207 function-subprogram is function-stmt
program-unit-body
end-function-stmt
R1216 function-stmt is [prefix] FUNCTION function-name ([dummy-arg-name-list]) | suffix |
R1217 prefix Is type-spec [RECURSIVE]
or RECURSIVE | type-spec]
R1218 suffix Is RESULT (result-name) [OPERATOR (defined-operator) |
or OPERATOR (defined-operator) [RESULT (result-name)]
R1219 end-function-stmt is END [FUNCTION [function-name | }
Constraint: FUNCTION must be present on the end-function-stmt of an internal function.
Constraint:
R1220 subroutine-subprogram is subroutine-stmt
program-unit-body
end-subroutine-stmt
R1221 subroutine-stmt is [RECURSIVE] SUBROUTINE subroutine-name [J
U [(dummy-arg-list)] [ASSIGNMENT]
R1222 dummy-arg is dummy-arg-name

or *

Version 99 1986 March Page D-21

SYNTAX RULES X3J3/58

R1223 end-subroutine-stmt is END. [SUBROUTINE [subroutine-name |]
Constraint: SUBROUTINE must be present on the end of an internal subroutine.
Constraint:

R1224 entry-stmt is ENTRY entry-name { ([dummy-arg-list 1)]

Constraint: A dummy-arg may be an alternate return indicator only if the ENTRY statement
is contained in a subroutine subprogram.

R1225 return-stmt is RETURN [scalar-int-expr]

Constraint: The return-stmt must be contained in a function or subroutine subprogram.
Constraint:

Constraint: The expression must produce a scalar result of type integer.

R1226 stmt-function-stmt is function-name ([dummy-arg-name-list]) = expr

Constraint: The expr may be composed only of constants (literal and symbolic), references
to scalar variables and array elements, references to functions, and intrinsic
operators. If a reference to another statement function appears in expr, its
definition must have been provided earlier in the program unit.

Constraint:

13 INTRINSIC PROCEDURES

14 ENTITY SCOPE, ASSOCIATION, AND DEFINITION

15 DEPRECATED FEATURES

13 INTRINSIC PROCEDURES

Version 99 1986 March Page D-22

APPENDIX E PERMUTED INDEX FOR HEADINGS

11.4 Data

9.2.1.2 File
9.2.1.2.1 Sequential
9.2.1.2.2 Direct
Statement 9.6.1.7
Statement 9.3.4.3
5122

523

Statement 9.6.1.17
Statement 9.3.4.8

14.21.21

of Identified and Rename
§.1.2.7

6.1.2.4.3

11.3.2.4 Global

13.31.1.4 Automatic and

6.2.2 The

14.1.11

13.17.3

/Arguments Associated with
6.2.7 Summary of Array Name
14211

12.4.1 Actual

Status Functions 13.3

Status Functions 13.3

Status Functions 13.8.1

Status Functions 13.8.1

12.2.1 Characteristics of Dummy
Characteristics of Asterisk Dummy
on Entities Associated with Dummy
13.6.1 The Shape of Array
13.6.1 The Shape of Array
13.6.2 Mask

13.6.2 Mask

Elemental Intrinsic Function
Elemental Intrinsic Function
Alternate Return/ 12.4.1.4
Conditions 12.4.1.3

Data Objects 12.4.1.1
Procedures 12.4.1.2

12.5.2.8 Restrictions on Dummy
8.2.5

Element or Substring to a Dummy
2442

5.1.2.4.1 Explicit Shape
5.1.2.4.2 Assumed-Shape
5.1.2.4.3 Allocatable

5.1.2.4.4 Assumed-Size

13.6.1 The Shape of

13.6.1 The Shape of

General Form of the Masked
7.5.3.1 General Form of Element
7.5.3 Element

7.5.2 Masked

7.5.2.2 Interpretation of Masked
Interpretation of Element

51.24

13.31.2.1 Unconditional
13.31.2.2 Conditional

8.21.1

13.31.1.74

13.6.6

13.6.6

13.8.13

13.8.13

13.31.15

45

5.4.1.3 Array Names and

Version 99

Abstraction
Access s
ACCESS .cvrnnresnassanssarsassnsassnasnannassnns

Access -
ACCESS= Specifler in the INQUIRE . -
ACCESS= Specifier in the OPENccveesemcrrurmmmnissinaans
Accessibility Attribute

Accessibility Statements
ACTION = Specifier in the INQUIRE .
ACTION = Specifier in the OPEN ..
Active and Inactive DO Constructsc.covrereeens RN
Actual Argument List
Addition of Selected Elementscueeesecramnene [.
Alias Assoclation .
Alias Association By IDENTIFY
Alias Associations /Comparison
ALIAS Attribute
Allocatable Array
Allocatable Arrays .
Allocatable Arrays
ALLOCATE Statement
Allowable Name Conflicts

Alternate RETURN — sssisssvasuans AssavenerivasEisa
Alternate Return Indicators g
Appearances
Argument Assoclation
Argument List

Argument Presence and Condition ...c...c-civesesssnsssssnnenne

Argument Presence and Condition ...

Argument Presence and Conditionc......

Argument Presence and Condition

Arguments NibeseseNevITSHeTERSSEIES
Arguments 12.2.1.4
Arguments 12.5.2.9 Restrictions

Arguments ...
Arguments .

Arguments ...

Arguments

Arguments and Results 13.2
Arguments and Results 13.2
Arguments Associated with
Arguments Associated with DUMMYceverersrenncenssaneenene
Arguments Associated with Dummy
Arguments Assoclated with Dummyccceeue.
Arguments Not Associated
Arithmetic IF Statement
Array 13.16.2 Passing an Array
Array
AMTay ccocereenes
Array
Array
Array
Array Arguments
Array Arguments
Array Assignment 7.5.2.1
Array Assignment
Array Assignment FORALLcouvannmmecenstinsinecsnmnennnen
Array Assignment WHERE
Array AsSiIgNMents ...cccrerceennnenns

Array Assignments 7.5.3.2
ARRAY Attribute
Array Computations
Array Computations
Array Constants and Variables
Array Construction Functions
Array Construction Functionsu. pisssessevEsaTETbaayFuans
Array Construction FUNCHIONScceiscesenecsnannnsivincssnannnne
Array Construction Functions
Array Construction Functions
Array Constructors
Array Constructors
Array Element Names

1986 March

Page E-1

PERMUTED INDEX FOR HEADINGS

Dummy Array 13.16.2 Passing an
6.2.4.1

13.31.1.1 Whaole

13.31.1.7.6

Functions 13.6.8

Functions 13.6.8

Functions 13.8.15

Functions 13.8.15

13.31.1.7.3

13.6.5

13.6.5

13.8.12

13.8.12

13.6

13.6

13.31.1.75

13.6.7

13.6.7

13.8.14

13.8.14

6.2.7 Summary of

Names 5.4.1.3

13.31.3 FORmula TRANSslation and
6.2.1.2 Declared and Effective
13.311.7.2

13.6.4

13.6.4

13.8.11

13.8.11

13.31.1.2

8.24.3

11.3.2.4 Global Allocatable
13.16.1 Assumed-Size Dummy
Automatic and Allocatable

6.2

6.2.1 Whole

6.2.4 Subsets of

13.17.4

Statement 8.2.4

13.17.4 ASSIGN and

8.2.4 ASSIGN and

12.4.5 Elemental

4.2

7 EXPRESSIONS AND

7.5

General Form of the Masked Array
General Form of Element Array
7.5.1.4 Intrinsic

7.5.3 Element Array

7.5.1

7.5.1.2 Intrinsic

7.5.1.3 Defined

interpretation of Defined

7.5.2 Masked Array

Whole Array Expressions and
Interpretation of Intrinsic
Interpretation of Masked Array
Interpretation of Element Array
on Dummy Arguments Not
Indicators 12.4.1.4 Arguments
/Restrictions on Entities
12.4.1.3 Arguments

Objects 12.4.1.1 Arguments
12.4.1.2 Arguments

12.4.1.5 Sequence

13.16 Storage

14.2

14.2.1 Name

14.2.1.1 Argument

14.2.1.2 Alias

14.2.2 Storage

256

5.4.1.1 Equivalence

5.4.2.3 Common

14 ENTITY SCOPE,
14.2.1.2.1 Alias

14.2.2.3

Version 99

Array Element or Substring o0 @cc.ocormeciiminincemeisinennns
Array Elements ..o s reesee
Array Exprassions and Assignments .
Array Geometric Functions
Array Geometric Location ..
Array Geometric Location ..
Array Geometric Location ..
Array Geometric LOCAtION ..uiiiesciinimsnscercnnnasnisssessiesnanes
Array Inquiry FUNCHIONS .c..virieeerieresensmsenermsanesenssensaniss
Array Inquiry Functions ..
Array Inquiry Functions ..
Array Inquiry Functions ..
Array Inquiry Functions ..
Array Intrinsic Functions .
Array Intrinsic Functions
Array Manipulation FURCHIONScccovereecireeescrsnccsronesannnan
Array Manipulation FUNCHIONScorevemumviivereroncennsinne
Array Manipulation Functions
Array Manipulation Functions
Array Manipulation Functions
Array Name Appearances
Array Names and Array Element ...
Array Processingc.cieseeinasiiensean
Array Range
Array Reduction Functions ...
Array Reduction Functions ...
Array Reduction Functions ...
Array Reduction Functions
Array Reduction Functions
Array Sectionscccccvssremmeinnnraiinnn
Array SOCHONS ...virrrerrnemsensrsmsenmnrnmissrernmasnssenssrnesssaanes
Arrays
AITEYS reesrecarneessncesarsesassnnsansonnans
Arrays 13.31.1.4
AITAYS 1eeeiiiiineeecninanninimnennn, remsrmeereesrasrasianaransnnas
AITAYS ;ureesnirssaecnmsssaisinusssanssensinsnsassensssasesarensens
AITAYS seeeiiiemmairaneseiensneeneninans
ASSIGN and Assigned GO TO
ASSIGN and Assigned GO TO ...
Assigned GO TO ...cceeevvne enaes
Assigned GO TO Statementccoveeercrnnnns
Assignment Feveeeeey

ASSIgNMONt .oeeiviiiicriiarimieeinrcsnrcaresesannenaens
ASSIGNMENT
Assignment
Assignment 7.5.2.1 ..
Assignment 7.5.3.1cccecieiaas
Assignment Conformance Rules .
Assignment FORALLccete -
Assignment Statementcoeeeeenceiiiremteaniinee e
Assignment Statementccccrmeeerireniirneaiirnnireenni.
Assignment Statement
Assignment Statements 7.5.1.6 .
Assignment WHEREcccvsececmniimanmanenninminnesine
Assignments 13.31.1.1 BeSESaTEssasassnesaunssansnenantuRnsanS
Assignments 7.5.1.5
Assignments 7.5.2.2
Assignments 7.5.3.2 . .
Associated /Restrictionsccvcererenninesiniecnnnaann
Associated with Alternate Return o
Associated with Dummy Argumentscceeeremsesmssossiniens
Associated with Dummy Conditionseceevemmneiinnnnnans
Associated with Dummy Datacccaiemeinninoinniinenin.
Associated with Dummy Proceduresc.cceesiseeesasssnanns
Association Fessssssisssasaseses CT Ty U
ASSOCIAION «uveveeerenernmarararmiaranariiintirainsrcesecenasenasissnaene
Association ...
Association ...
Association
Association
Association
Association
Association .
Association
ASSOCIATION, AND DEFINITION
Association By IDENTIFY
Association of Data Objects ...

1986 March

X3J3/S8

Page E-2

PERMUTED INDEX FOR HEADINGS

5.4 Storage

142.2.2

of ldentified and Rename Allas
1.5.2

5.1.24.2

51244

13.16.1

12.2.1.4 Characteristics of
5.1.2.1 Value

5.1.2.1.1 PARAMETER
5.1.2.1.2 INITIAL

5.1.2.2 Accessibility

5.1.2.3 INTENT

5.1.2.4 ARRAY

5.1.25 SAVE

5.1.2.6 OPTIONAL

5.1.2.7 ALIAS

5.1.2.8 RANGE

Statements 5.2

5.1.1 Type-Specifier

5.1.2

13.31.1.4

10.5.2

13.12 Supplementary Standards
13.11 Supplementary Standards
Events That Cause Variables to
Events That Cause Variables to
7.3.2

5.1.1.7

13.4 Numeric, Mathematical,
13.4 Numeric, Mathematical,
13.4.3

13.4.3

13.8.4

1384

13.4.4

1344

13.85

13.8.5

7.1.7.4 Evaluation of

7.2.2

4.3.23

between Named Common and
Statement 9.6.1.15

Statement 9.3.4.6

10.9.1.2

12.3.2,1 Procedure interface
2.2.3.3 Procedure interface
5.4.2.2 Size of a Common
8.1.1.3 Execution of a

13.16.3

11.5

5.4.2.1 Common

11.3.2.1 Identical Common
Executable Constructs Contalning
8.1.1 Rules Governing

8.1.1.1 Executable Constructs In
8.1.1.2 Control Flow In

10.6.6

9.4.1.5 Error

9.4.1.6 End of File

8.2

10.6.6 BN and

8.1.3

8.1.3.1 Form of the

8.1.3.2 Execution of a

8.1.3.3 Examples of

14.3.1 Events That

Undefined 14.3.2 Events That
5.1.1.5

13.4 Numeric, Mathematical, Bit,
13.4 Numeric, Mathematical, Bit,
Descriptor 10.7.1

101.2

Version 99

Association of Data Objects ...

Association of Storage SeqUENCeSc..eicereasresrarsiiiacees
Associations /Summary Comparisonciiaensanen
Assumed Syntax Rules
Assumed-Shape Array ... T
Assumed-Size Array
Assumed-Size Dummy Arrays TR
Asterisk Dummy Arguments Fesasasess
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute .. .
AHNDULE .orcmeirmeearmmiseeisneinseenasenescsntsesinnnessnaasansnnes
Attribute
Attribute Specification
Attributes
Attributes
Automatic and Allocatable Arraysc...ccssmicmiesassas
B Editing
Based on Module Libraries
Based on Procedure Libraries
Become Deflned 14.3.1ccciimreiesmeennimecsnecinnineeasanas
Become Undefined 14.3.2
Binary Defined Operation
BIT
Bit, Character, and Derived-Type/
Bit, Character, and Derlved-Type/ eesrsnssesanens PR,
Bit Functions
Bit Functions
Bit Functions
Bit Functions
Bit Inquiry Functions
Bit Inquiry Functions
Bit Inquiry Functions ..
Bit Inquiry Functions
Bit Intrinsic Operations
Bit Intrinsic Operations
Bit Type
Blank Common /Differences Svsssssssssssssssssssasavae
BLANK= Specifier in the INQUIREciconimeimmmmicnnennne
BLANK = Specifier in the OPEN
Blanks
Block
Block
BIOCK .ceernnenanesnseercssnannessussnnacasesnrannionnsennnsssasnnesnsnnnans
Block ..
BLOCK DATA Subprogram
Block Data Subprograms
Block Storage Sequence ..
Blocks
Blocks 8.1
Blocks
Blocks
Blocks .. eateasEasERSSERRSRERa s aRRRun RSt unu s e R e nnen HRne
BN and BZ Editing
Branch
Branch .. 0
Branching
BZ Editing
CASE Construct
CASE Construct
CASE Construct
CASE Constructs
Cause Variables to Become Definedcccccciuiienaan R
Cause Variables to Bacome
CHARACTER
Charactar, and Defived-TYP/ ..cccreesersresmmernmarasmmaraneanens
Character, and Derived-Type/

Character Constant Editcommersmearmmarmmnsssmmsrmmmnsanencnns
Character Format Specification SisTsTivsssssT s TaseeE
Character Functions

Character Functlons

Character Functions

1986 March

X3J3/s8

Page E-3

PERMUTED INDEX FOR HEADINGS X3J3/S8

13.8.6 Character FUNCHIONS .iurueiiviciiiiiminenimnnsecsmnesnenessnanananas

3.1.4 Character Graphics
13.4.6 CHARACTER Inquiry Functions ...
13.46 CHARACTER Inquiry Functions ...
13.8.7 Character Inquiry FUNCIONScoviveeiiriiiiecemeiiiieniinennns
13.8.7 Characier Inquiry FUNCLIONScoicvrenceiiianmnimneseimenniin
7.1.7.5 Evaluation of the Character Intrinsic Operation ...
7.2.3 Character Intrinsic Operation ...
5.4.1.2 Equivalence of Character Objects
3.1 Fortran Character Set
10.7 Character String Edit Descriptors ...
4.3.2.1 Character TYPe ..c.ccrvecesmmansssinnasinas
1.5.3 Syntax Conventions and Characteristicsccvcerrmenesasorannees
Arguments 12.2.1.4 Characteristics of Asterisk Dummy ..
Arguments 12.2.1 Characteristics of Dummy
Conditions 12.2.1.3 Characteristics of DUMMY ...cceeeeerureririisineimmeennenrecsinnn.
Objects 12.2.1.1 Characteristics of Dummy Datacccveeereiiiiereniiinineas

Procedures 12.2.1.2 Characteristics of Dummy

Results 12.2.2 Characteristics of Function
12.2 Characteristics of Procedures
3.1.3 Special Characters ...c..ccc.ccooeermeessecinen

Definition 12.1.2 Procedure Classification by Means of
12.1.1 Procedure Classification by Reference ..
12.1 Procedure Classificationscccceeneennans
9.3.5 The CLOSE Statement .
9.3.5.1 STATUS= Specifier in the CLOSE Statement
3.1.5 Collating Sequence
10.6.3 Colon Editing
3.3.1.1 Commentary
between Named Common and Blank Common 5.4.2.4 Differences
Differences between Named Common and Blank Common 5.4.2.4
5.4.2.5 Restrictions on Common and Equivalence
5.4.2.3 Common Association
5.4.2.2 Size of a Common Blockcovevereriisininins
5.4.2.1 Common Block Storage Sequencecccsescirereennnes
11.3.2.1 Identical Common BIOCKSccrmeiimeiiimiiimciimeiiiiirenir e
13.16.4 COMMON Statement ..
5.4.2 COMMON Statement
Rename Alias/ 14.2.1.2.3 Summary Comparison of Identified andccceaviremriiiirincnnisennns
13.10.4 Compatibility ...cceeececiiiimiimmiiiiircirneciinerec e
13.31.2.3.3 The Complete Fortran Subroutine
5.1.1.4 COMPLEX ..cocrmrrnmmrcnirinnnes
10.5.1.3 Complex Editing .
7.2.1.2 Complex Exponentiation .
4.3.1.3 Complex Typecceer...
4.41,2 Derived-Type Variant Component
6.1.2 Structure Components
Examples of Element-by-Element Computation 13.31.9 .
13.31.8.2 Parallel Computation of FFTs ..
13.31.2.1 Unconditional Array Computations
13.31.2.2 Conditional Array Computations ...
13.31.8 Parallel Computations
/Example Replacement of the GComputed GO TO Statement
8.2.3 Computed GO TO Statementccccvrveseinrsesensisenisnnines
4.1 The Concept Of TYPE .cicccerrmeriimmriireniiiiniesniimmensmeneneieinannen
2 FORTRAN TERMS AND CONCEPTS
2.2 Program Unit Concepts ...
2.3 Execution Concepts .
2.4 Data CONCOPIS wruveerrnrirnrassrsnrsrmnssemsmmssornesssarannsisarnnnnens
2.5.10 Conditioncccccnens
8.1.5.2.1 Condition Enabling ..
8.1.6.2.3 Condition Handling ..
8.1.5.2.2 Condition Signaling
5.2.8 CONDITION Statement ..
13.3 Argument Presence and Condition Status Functions ..
13.3 Argument Presence and Condition Status Functions
13.8.1 Argument Presence and Condition Status Functions
13.8.1 Argument Presence and Condition Status Functions
13.31.2.2 Conditional Array Computationseusssee T —_—
Characteristics of Dummy Conditions 12.2.1.3
Arguments Associated with Dummy Conditions 12.4.1.3
8.1.5.4 Intringic Conditions
9.4.2.1 Error and End-of-File ConditionSc..oumereesmiiseeesessnciersunesenismmmnmenneeranmnannnnes
14.1.1.1 Allowable Name Conflictsoeeeemeeriirerieiireiiratememcnnieien e sscnienn
Intrinsic Operations 7.1.5 Conformability Rules for
13.14 Standard Conformance
1.4 CoNfOrMAnNCecossseerceesirmsasssiessassrrernsasianssmesirnsae

Version 99 1986 March Page E-4

PERMUTED INDEX FOR HEADINGS

1.8 Deprecated Features, Core
7.5.1.4 Intrinsic Assignment
9.3 File

9.3.2

2433

10.7.1 Character

7.1.6.1

323

4.1.2

8.2.1.1 Array

8.1.2 IF

8.1.2.1 Form of the IF
8.1.2.2 Execution of an IF
8.1.3 CASE

8.1.3.1 Form of the CASE
8.1.3.2 Execution of a CASE
8.1.4.1 Form of the DO
8.1.4.2 Range of a DO
8.1.4.4 Execution of a DO
8.1.5 ENABLE

8.1.5.1 Form of the ENABLE
8.1.5.2 Execution of an ENABLE
13.31.1.7.4 Array

13.6.6 Array

13.6.6 Array

13.8.13 Array

13.8.13 Array

13.31.1.5 Amay

4.5 Array

8.1.2.3 Examples of IF
8.1.3.3 Examples of CASE
8.1.4.3 Active and Inactive DO
8.1.4.5 Examples of DO
8.1.5.5 Examples of ENABLE
8.1 Executable

8.1.1.1 Executable

8.1 Executable Constructs
125.2.7

3.3.1.3 Statement

8.3

10.4 Positioning by Format
8 EXECUTION

8.1.4 Ilteration

10.8

8.1.1.2

9.4.1

1.5.4 Text

1.5.3 Syntax

13.10.5

1.6 Deprecated Features,
9.4.1.7 Nulls

9.4.1.8 Values

8.1.4.4.2 The Execution
8.1.44.3

10.5.1.22 E and

11.3.2.2 Global

Models for integer and Real
Models for Integer and Real
114

24

10.5

243

2.4.3.1

SPECIFICATIONS 5
Characteristics of Dummy
Arguments Associated with Dummy
14.2.2.3 Association of

5.4 Storage Association of

6 USE OF

5.5

11.3.2.3

13.168.3 BLOCK

11.5 Block

9.2.1.3.1 File Position Prior to
9.2.1.3.2 File Position After
9.4.3.1 Direction of

9.434

Version 99

Conformance

Conformance Rules

Connection

Connectlon of a Flle to a Unit
(07137 7 Ty |

Constant Edit Descriptor

Constant Expression

Constants ...uceermereremrasrsaees

Constants

Constants and Variables

Construct

Construct

Construct
Construct

Conatruct

Construct

Construet

Construct

Construct

Construct

Construct

Construct

Construction Functions

Construetion Functions

Construction Functions

Construction Functions

Construction Functions

Constructors

Constructors

Constructs

Constructs

Constructs

Constructs ...

Constructs

Constructs Containing Blocks ..

Constructs in Blocks

Containing Blocks

CONTAINS Statement

Continuation ...

CONTINUE Statement

Control

CONTROL

Control .iccreveansenanans

Control Edit Descriptors

Control Flow in Blocks

Control Information List

Conventions

Conventions and Characteristics

Core

Core Conformance

Count

Count

Cycle

Cycle Interruption

D Editing

Data

Data 13.5.1

Data 13.5.1
Data AbStraction ...c.ccieesessescrsnsaearaserenenanaane

Data Concepts

Data Edit Descriptors
Data Entity

Data Object

DATA OBJECT DE(:,‘LARATIONS AND F—

Data Objects 12.2.1.1
Data Objects 12.4.1.1

Data Objects

Data Objects .

DATA OBJECTS

DATA Statement
Data Structures

DATA Subprogram

Data Subprograms

Data Transfer

Data Transfer

Data Transfer

Data Transfer

1986 March

X3J3/S8

Page E-5

PERMUTED INDEX FOR HEADINGS

9.4.3.4.1 Unformatted
9.4.3.4.2 Formatted

9.4.2

Statement 9.4.3 Execution of a
9.4

241

13.4.7 Derived

13.4.7 Derived

Shape of a Primary 7.1.4.1
Shape of an Expression 7.1.4
Shape of the Result of/ 7.1.4.2
4

4.3 Intrinsic

242

13.7.1

13.71

6.2.3 The

253

5.1 Type

5 DATA OBJECT

Range 6.2.1.2

13.10.3

That Cause Variables to Become
7.5.1.3

7.5.1.6 Interpretation of
12.5.2 Procedures

7.1.7.8 Evaluation of a

7.3.1 Unary

7.3.2 Binary

713

7.3 Interpretation of
Classification by Means of
12.5 Procedure

12.5.1 Intrinsic Procedure
ENTITY SCOPE, ASSOCIATION, AND
254

4.4.1 Derived-Type

8.1.5.3 Effects of Signaling on
14.3

Other Than Fortran 12.5.3
Statement 9.6.1.18

Statement 9.3.4.9

3.2.6

15

Conformance 1.6

Functions 13.4.7

Functions 13.4.7

24.1.2

4.41.1 Type Parameters of
5.1.1.8

4.4.1.3 Equivalence of

4.4.3 Operations on

4.4

441

Mathematical, Bit, Character, and
Mathematical, Bit, Character, and
442

4.4.1.2

10.7.1 Character Constant Edit
10.2.1 Edit

10.5 Data Edit

10.6 Control Edit

10.7 Character String Edit
and Blank Common 5.4.2.4
13.31.8.4 Parallel Finite

3.1.2

5.2.5

9.21.2.2

Statement 9.6.1.9

9.4.3.1

7.2.1.1 Integer

5113

10.5.1.2 Real and

4.3.1.2 Real and

12.2.1 Characteristics of
Characteristics of Asterisk

on Entities Associated with

Version 99

Data Transforccccecisrsviiimicrernrmrncmsessemsisensmmensenn
Data Transfercccceeueeeet
Data Transfer Input/Output List ...
Data Transfer Input/Output ...
Data Transfer Statements ..
Data TYPe .uocvciviierirmcrarrecasrcnsirmasrrmasrmasssmmesnnanse
Data Type Inquiry Functionsccccevvneieccincnnns
Data Type Inquiry Functions
Data Type, Type Parameters, and .
Data Type, Type Parameters, and
Data Type, Type Parameters, and .
DATA TYPES ..coovverieranannanans
Data Types ...
Data Valueccccevnees
Date and Time Subroutines ..
Date and Time Subroutines ..
DEALLOCATE Statement ..
Declarationccoveeenas
Declaration Statementsccceceseermiicesonns
DECLARATIONS AND SPECIFICATIONS
Declared and Effective Arrayccoevcormeersniirensinneninne,
Decremental Foaturesccivreeimerieccesensiisisrenecannes
Defined 14.3.1 Events
Defined Assignment Statement
Defined Assignment Statements
Defined by Procedure Subprograms .
Defined Operationcccecevevirieniireeees
Defined Operation ...
Defined Operation ...
Defined Operations .
Defined Operations
Definition 12.1.2 Procedure
Definition
Definitionc.coune
DEFINITION 14 e
Definition .c.ccvirmimiireiinicr e e
Definition ...
Definitlon ..ceecevenneens

Definition and Undefinition
Definition of Procedures by Meansccccccesvervnncnnnns
DELIM = Specifier in the INQUIREccccoevvvvmmmenmvennens
DELIM = Specifier in the OPEN

Delimiterscccirmemsinmcirnnnnnns
DEPRECATED FEATURES ..
Deprecated Features, Core
Derived Data Type Inquiry ...
Derived Data Type Inquiry ...
Derived Type
Derived Type
Derived Type
Derived Types ..
Derived Types
Derived-Data Types .
Derived-Type Definition i
Derived-Type Functions /NUMeric, ...omiemimiianiianenen.
Derived-Type Functions /NUMETIC, ...c.oceremmrumscrnsernrenaas
Derived-Type Valuesc...ccueeen
Derived-Type Variant Component
DesCriptoriieeiiiiiieciniie e e
DOSCHPLOrS rvvrevirciiriimciisniivsiiciiniercsarancrasennaas
Descriptors ...
Descriptors
Descriptors
Difterences between Named Common .
Differencingeevcerersmmserncirerennens
Digits «.oreeerairnenirarnranenes
DIMENSION Statement
Direct ACCBSSviereiimacsianisnaiianens
DIRECT = Specifier in the INQUIRE .
Direction of Data Transfer
Division ...c.ceeueuenen
DOUBLE PRECISION
Double Precision Editing .. -
Double Precision TYPEcirrerremsssrsssrnrsrssrssarssasssnaeaansen
DUMMy ArQUMENES .oveeeecieiireeesmneerarsmmrnrmsssenseessaesnanns
Dummy Arguments 12.2.1.4 .
Dummy Arguments /ReStrictionsiicecvevemennieeniennnns

1986 March

X3J3/S8

Page E-6

PERMUTED INDEX FOR HEADINGS

12.5.2.8 Restrictions on
Array Element or Substring to a
13.16.1 Assumed-Size
12.2.1.3 Characteristics of
Arguments Associated with
12.2.1.1 Characteristics of
Arguments Associated with
121.23

12.2.1.2 Characteristics of
Arguments Assoclated with
105.1.2.2

10.7.1 Character Constant
10.241

10.5 Data

10.6 Control

10.7 Character String

10 INPUT/OQUTPUT
10.5.1 Numerlc

10.5.1.1 Integer

Real and Double Precision
105.1.21 F

10.5.1.22 Eand D
10.5.1.2.3 EN

10.5.1.24 G

10.5.1.3 Complex

10.5.2 B

1053 L

1054 A

10.6.1 Position

10.6.1.1 T, TL, and TR
10.8.1.2 X

10.6.2 Siash

10.6.3 Colon

10.6.4 S, SP, and S8
1065 P

10.6.6 BN and BZ

10.7.2 H

6.2.1.2 Declared and
Subprograms 12.5.2.1
Definition 8.1.5.3
General Form of
753

7.5.3.2 Interpretation of
5.4.1.3 Array Names and Array
Array 13.16.2 Passing an Array
3.2.7 Lexical

1245

12.4.3

Arguments and Results 13.2
Arguments and Results 13.2
13.31.9 Examples of
13.31.3.3 Addition of Selected
3 LEXICAL

6.2.4.1 Array

10.5.1.2.3

8.1.5

8.1.5.1 Form of the

8.1.5.2 Execution of an
8.1.5.5 Examples of
8.1.5.2.1 Condition

9.4.1.6

2.3.3 The

9.1.3

9.4.2.1 Error and

12.5.2.9 Restrictions on
14.2.1.2.2 Renamse of
14.1.1 Name of an

24.3 Data

DEFINITION 14

12.5.2.5

13.16.5

Restrictions on Common and
5411

5.4.1.2

4.41.3

13.16.6

5.4.1

7.5.31

Version 99

X3J3/58

Dummy Arguments Not Associated [. N
Dummy Array 13.16.2 Passing an ...cccccccesemssrasirnes .
Dummy Arrays
Dummy Conditions
Dummy Conditions 12.4.1.3
Dummy Data Objects
Dummy Data Objects 12.4.1.1
Dummy Procedures ..
Dummy Procedurescciuceemnns P
Dummy Procedures 12.4.1.2
E and D Editing
Edit Descriptor

Edit Descriptors
Edit Descriptors
Edit Descriptors
Edit Descriptors
EDITING
Editing ..oeveeeeen
Editing
Editing
Editing
Editing
Editing
Editing ..
Editing -
Editing
Editing
Editing S
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Editing
Effective Array Range
Effects of Intent on Procedurecscoseamssenacesnnensens
Effects of Signaling on ..
Element Array Assignment .
Eiement Array Assignment FORALLc.ccccomamummianennes
Element Array Assignments
Element Names
Element or Substring to a Dummy
Element Sequence and Separationccceaseeeeneensnnnans
Elemental Assignment
Elemental Function Reference
Elemental Intrinsic Function
Elemental Intrinsic Funetion
Element-by-Element Computation
Elements
ELEMENTScconeee
Elements
EN Editing
ENABLE Construct
ENABLE Construct
ENABLE Construct
ENABLE Constructs
Enabling
End of File Branch
END Statement
Endfile Record pesssss
End-of-File Conditions
Entities Assoclated with Dummy/
Entities in a USE Statement

10.5.1.2

Entity
Entity

ENTITY SCOPE, ASSOCIATION, ANDccc...
ENTRY Statement
ENTRY Statementcccvasersesenmmesenccmnmramsmmanamnssemmananines
Equivalence 5.4.2.5

Equivalence Association
Equivalence of Character Objects
Equivalence of Derived Types
EQUIVALENCE Statement
EQUIVALENCE Statement ...

1986 March Page E-7

PERMUTED INDEX FOR HEADINGS

5.4.1.4 Restrictions on
9421

9.4.15

9.4.3.3

13.31.5 Matrix Norms:
71.78

Operations 7.1.7.4
Operations 7.1.7.7
Operations 7.1.7.3
7.1.71

71.7

13.31.8.1 Paralle!
intrinsic Operations 7.1.7.6
Intrinsic Operation 7.1.7.5
Become Defined 14.3.1
Become Undefined 14.3.2
Computed GO TO Statement 13.17.2
13.31.2

8.1.3.3

8.1.45

Computation 13.31.9
8.1.5.5

8.1.2.3

11.3.2

1.3.2

Blocks 8.1

8.1.1.1

11.1.2 Main Program
2.21

141.21

Statements 2.3.1
Statement 9.6.1.2
9.2.1.1 File

9.3.1 Unit

Methods 10.1

12.3.1.1

12.3.1 Implicit and
5.1.2.4.1

7.2.1.2 Complex

71

7.1.1.2 Level1
7.1.1.3 Level-2
7.1.1.4 Level-3
7.1.1.5 Level-4
7.1.1.6 Level-5
7.1.1.7 Level-6

7.1.6 Kinds of

7

13.31.1.1 Whole Array
11.3.2.6 Operator
121.2.2

9.2.1

2231

12.3.2.2

10.5.1.2.1

10.6.5.1 Scale

13.15 Fortran

13.10.1 Primary
13.10.2 Incremental
13.10.3 Decremental
13.31.1 Summary of
15 DEPRECATED
1.6 Deprecated
Parallel Computation of
10.2.2

8.21.2

8.41.6 End of

Transfer 9.2.1.3.1
9.5

9.2.2.1 Internal
9222 Internal
Statement 9.6.1.1

Version 99

EQUIVALENCE Statementscccccsnienisnecinnniinsninnnns
Error and End-of-File Conditions .
Error Branth ..uecccieeiimniimeinnic i ac e cranene
Establishing a FOrmatccocccimiiinimnmrinieecsecncnnnna,
Euclidean Normcccoeeremuirnn
Evaluation of a Defined Operation .
Evaluation of Bit Intrinsic
Evaluation of Logical Intrinsic ..
Evaluation of Numeric¢ Intrinsic
Evaluation of Operands
Evaluation of Operations ..
Evaluation of Polynomials .
Evaluation of Relational

Evaluation of the Charactercccccirereneiciemeennirnnnes
Events That Cause Variables 10ccccevereericreniennnunns
Events That Cause Variables to .
Example Replacement of the ..
EXamplescceereremreensnniinnns
Examples of CASE Construct:
Examples of DO Constructs
Examples of Element-by-Element .
Examples of ENABLE Constructs
Examples of IF Constructs
Examples of Modules -
EXCIUSIONS vivvecramrisaeiraannes mrsemcemirrnisnarernrrneenas
Executable Constructs Containingcoseevenecerceranncenn.
Executable Constructs in BIOCKSccccvermmecirenianinan.
Executable Partccoccimaimiimiic e
Executable Programccoierreereeremanisansmeninaeea,
Executable Program Scopecccccecivveremmmmeemnmnsiinennan
Executable/Nonexecutablecccoerviiriirciciininranne,
EXIST = Specifier in the INQUIREcccereireerrmcnnnane
EXIStONCO ovieuiiimmiiimmiiirim et sttt
EXISIONCE .itrariimaiiseniriiimiriar e
Explicit Format Specificationcccciieniiimcimmeniinniinnina..
Explicit Interfacecoeeemeeereriiinimremsmenicn e eerninaes
Explicit Interfacescc..ccceaiiinenanns
Explicit Shape AIfay ...c.ceiersrsseccsseimerimemsiaemec.
Exponentiationcc.ceciimiirmninninnis i s
Expressions
Expressions
EXProsSioNSicceveiiseusinirencinmansnrieniosmmssseresmnsinenennens
EXProSSIONS wu..iccireiiieineiiniiimiiac st saan e ne s nnanrennns
EXProSSIONS wiiiusrseneesnosiinemssaismaiinennsnmmnensensonermmsnrennane
EXPreSSiONS ...iceuerreesrnasisesiarseraismneiiessinsissiraninsreens
EXPressionscccecesaersnrmsanirasrnmmsssismmerseenmsrmeesiseren
EXPressionsccciecvimevcrcnnrcnsinnnranes

EXPRESSIONS AND ASSIGNMENT
Expressions and Assignments ...
EXtensionsccecsmninmscismosseiinaenns
External and Internal Procedures . .
External Filesccieeiimreimirmmuirennscsssessineessassnmesesnnnens
External Procedurecc..cceveciimiosensenisiminncayinmnnannnnnn,
EXTERNAL Statement
F Editing .eoeirereeanens
L T2 (o
Family of Standardsccccciviiiiiiciiinrciienncininnann,
Features
Features ...
Features ...
Features

FEATURES ..cccvviiimrersennnnanes
Features, Core Conformance .
FFTs 13.31.8.2
FieldS .ccvvnverrees
File Access ..
File Branchcciiciiicinnicnrinnneieact e renanens
File CONNOCtIoNuccvciirererercneninaimiesecenmnmeeenncasinnnnn,
File Existence ..
File Inquiry ...
File POSItION civveessecrmisimminsaisnenismmessismaimmimmsiesmnnns
File Position After Data Transferc.ccevevsiinenienianinne
File Position Prior to Data

File Positioning Statements
File Propertiesc.ceceemmurersrmermcresacirerenenssesineenen
File ReStrictionsccoiccoriiicirnciiinianiniinenineenns
FILE= Specifier in the INQUIRE

1986 March

X3J3/S8

Page E-8

PERMUTED INDEX FOR HEADINGS

Statement 9.3.4.1

9.3.2 Connection of a

9.2

9.2.1 External

9.2.2 internal

13.31.8.4 Parallel

332

Functions 13.5.3

Functions 13.5.3

Functions 13.8.9

Functions 13.8.9

8.1.1.2 Control

7.56.3 Element Array Assignment
13.31.1.3 WHERE and

3.3 Source

3.3.1 Free Source

3.3.2 Fixed Source

7.5.1.1 General

10.2

7441

7.1.1.8 General

7.5.3.1 General

8.1.3.1

8.1.4.1

8.1.5.1

8.1.2.1

Assignment 7.5.2.1 General
Statement 9.6.1.10
Statement 9.3.4.4

Between Input/Output List and
9.4.3.3 Establishing a

10.4 Positioning by

10.2 Formof a

10.1.2 Character

10.1 Explicit

9.4.1.1

10.1.1

9.4.34.2

9.1.1

9.4.4 Printing of

INQUIRE Statement 9.6.1.11
10.8 List-Directed

10.9 Name-Directed

9.4.3.5 List-Directed

9.4.3.6 Name-Directed
Processing 13.31.3

of Procedures by Means Other Than
13.31.2.3.2 Solutions in

3.1

13.15

13.10 The

13.31.2.3.3 The Complete

2

3.3.1

12.6.3.1 Statement

13.2 Elemental Intrinsic

13.2 Elemental Intrinsic
12.4.2

12.4.3 Elemental

ltems 9.7 Restrictions on
12.2.2 Characteristics of
125.2.2

13.17 Redundant

13.18 Redundant

12.1.2.4 Statement

13.1 Intrinsic

13.1 Intrinsic

Internal Functions for Statement
Presence and Condition Status
Presence and Condition Status
13.31.1.7 Intrinsic

Vector and Matrix Multiply
13.31.1.7.2 Array Reduction
13.31.1.7.3 Array Inquiry
13.31.1.7.4 Array Construction
13.31.1.7.5 Array Manipulation
13.31.1.7.6 Array Geometric

Version 99

FILE= Specifier in the OPEN
File to a Unit
Files
Files
Files
Finite Differencing
Fixed Source Form
Floating Point Manipulation
Floating Point Manipulation
Floating-point Manipulation
Floating-point Manipulation
Flow in Blocks
FORALL
FORALL Statements
Form
Form
Form ...
FOIM cirvniennsaisasimmmianircennstcnnicenseniasnisaisanernassosuarsnensans
Form of a Format Item List
Form of an EXPressionccosescammesnassannanssnannnnnannns
Form of an Expression
Form of Element Array Assignment verasesnnesnnnesnsinn
Form of the CASE Construct
Form of the DO Construct
Form of the ENABLE CONStructcccomsacerenenenes
Form of the IF Construct .
Form of the Masked Array
FORM=Specifier In the INQUIRE TEVTTEN emeE
FORM= Specifier in the OPEN
Format 10.3 Interaction
Format
Format Control
Format ltem List
Format Specification
Format Specification Methods
Format Specifierc.cccuscesssrssnisiessassenttaranisssassssnnnnnas
FORMAT Statement
Formatted Data Transfer
Formatted Record
Formatted Records
FORMATTED = Specifier in the ..
Formatting
Formatting
Formatting
Formatting
FORmula TRANSslation and Array
Fortran 12.5.3 Definition
Fortran
Fortran Character Set
Fortran Family of Standards
Fortran Language Standard
Fortran Subroutine
FORTRAN TERMS AND CONCEPTS ...ccconmsensneensecsaneens
Free Source Form .
FUNCHON .vvieecssnnsmrsnismmeenimnerenmsunmnisesnssnnasessassssnnainsvens
Function Arguments and Results
Function Arguments and Results
Function Reference
Function Reference
Function References and List
Function Results
Function Subprogram
Functionality .
Functionality
Functions
Functions
Functions .
Functions 13,17.1 Use of
Functions 13.3 Argument
Functions 13.3 Argument
Functions
Functions 13.31.1.7.1
Functions -
FUNCHIONS .eveosnseansssesencasassesnasernasssnnssnnsennacnsnanes
Functions
Functions ..
Functions ..

1986 March

X3J3/s8

Page E-9

PERMUTED INDEX FOR HEADINGS

Bit, Character, and Derived-Type
Bit, Character, and Derived-Type
13.4.1 Numieric

13.4.1 Numeric

13.4.2 Mathematical

13.4.2 Mathematical

13.4.3 Bit

13.4.3 Bit

13.4.4 Bit Inquiry

13.4.4 Bit Inquiry

13.4.5 Character

13.4.5 Character

13.4.6 CHARACTER Inguiry
13.4.6 CHARACTER Inquiry
13.4.7 Derived Data Type Inquiry
13.4.7 Derived Data Type Inquiry
Numeric Manipulation and Inquiry
Numeric Manipulation and Inquiry
13.5.2 Numeric Inquiry

13.5.2 Numeric Inquiry

Floating Point Manipulation
Floating Point Manipulation

13.6 Array Intrinsic

13.6 Array Intrinsic

Vector and Matrix Multiplication
Vector and Matrix Multiplication
13.6.4 Array Reduction

13.6.4 Array Reduction

13.6.5 Array Inquiry

13.6.5 Array Inquiry

13.6.6 Array Construction

13.6.6 Array Construction

13.6.7 Array Manipulation
13.6.7 Array Manipulation
13.6.8 Array Geometric Location
13.6.8 Array Geometric Location
13.8 Tables of Generic Intrinsic
13.8 Tables of Generic Intrinsic
Presence and Condition Status
Presence and Condition Status
Vector and Matrix Multiply
Vector and Matrix Multiply
13.8.11 Array Reduction

13.8.11 Array Reduction

13.8.12 Array inquiry

13.8.12 Array Inquiry

13.8.13 Array Construction
13.8.13 Array Construction
13.8.14 Array Manipulation
13.8.14 Array Manipulation
13.8.15 Array Geometric Location
13.8.15 Array Geometric Location
Table of Specific Intrinsic

Table of Specific Intrinsic

13.8.2 Numeric

13.8.2 Numeric

13.8.3 Mathematical

13.8.3 Mathematical

13.8.4 Bit

13.8.4 Bit

13.8.5 Bit Inquiry

13.8.5 Bit Inquiry

13.8.6 Character

13.8.6 Character

13.8.7 Character Inquiry

13.8.7 Character Inquiry

13.8.8 Numeric Inquiry

13.8.8 Numeric Inquiry
Floating-point Manipulation
Floating-point Manipulation
13.17.1 Use of Internal

2.5

10.5.1.24

7.5.1.1

7.1.1.8

Assignment 7.5.3.1

Assignment 7.5.2.1

Version 99

Functions /Numeric, Mathematical,cccoeevirreenirennnnes
Functions /Numeric, Mathematical, ..

Functionsc.iccicemicieciniinsnnnenn:

Functions ..

Functions ..

Functions ..

Functions ..

Functions
Functions
Functions ..
Functions
Functions
Functions ..
Functions ..
Functions ..
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions
Functions
Functions 13.8.1 Argument ...
Functions 13.8.1 Argument
Functions
Functions
Functions
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions ..
Functions
Functions
Functions
Functions
Functions
Functions
Functions .
Functions .
Functions .
Functions .
Functions .
Functions .
Functions
Functions
Functions
Functions
Functions
Functions
Functions
Functions 13.8.9ccccicimiiniiennensenanens
Functions 13.8.9 ...cccrccecriniranimmvirmirennninen
Functions for Statement Functions
Fundamental Terms
G Editing
General FOrMceeuiiravensnas
General Form of an Expression .
General Form of Element Array ...
General Form of the Masked Array .o.eccccesesinenrecciinnnenan

1986 March

X3J3/S8

Page E-10

PERMUTED INDEX FOR HEADINGS

13.6.8 Array

13.8.15 Array

11.3.2.4

11.3.2.2

8.1.1 Rules

3.1.4 Character

10.7.2

259

8.1.5.2.3 Condition

21

11.3.21

14.2.1.2.3 Summary Comparison of
14.2.1.2.1 Alias Association By
15.24.1.6 The

6.224 The

9.4.3.2

12.3.1

12.3.1.2

12.3.24

53

8.1.4.3 Active and

1.31

16.1.2

Assoclated with Alternate Return
9.4.1 Control

5.1.21.2

526

8.1.4.4.1 Loop

10.8.1 List-Directed

10.9.1 Name-Directed

10

9.4.2 Data Transfer

10.3 Interaction Between
Execution of a Data Transfer

9

9.8 Restriction on

9.4.14

9.6.1.1 FILE= Specifier in the
9.6.1.10 FORM= Specifier in the
FORMATTED= Specifier in the
UNFORMATTED = Specifier in the
9.8.1.13 RECL= Specifier in the
NEXTREC = Specifier in the
9.6.1.15 BLANK= Specifier in the
POSITION = SpecHier in the
ACTION = Specifier in the
9.6.1.18 DELIM= Specifier in the
9.6.1.19 PAD= Specifier in the
9.6.1.2 EXIST= Specifier in the
IOLENGTH= Specifier in the
9.6.1.3 OPENED= Specifier in the
9.6.1.4 NUMBER= Specifier in the
9.6.1.5 NAMED= Specifler in the
9.6.1.6 NAME= Specifier in the
9.6.1.7 ACCESS= Specifier in the
SEQUENTIAL= Specifier in the
9.6.1.9 DIRECT= Specifier in the
9.6 File

13.4.4 Bit

13.4.6 CHARACTER

13.5 Numeric Manipulation and
13.5.2 Numeric

13.6.5 Array

13.8.12 Array

13.8.5 Bit

13.8.7 Character

13.8.8 Numeric

15.24.1.7.3 Array

9.6.1

9.6.1.20.1 Restrictions on
Subprogram 12.5.2.4

56.1.1.1

13.5.1 Models for

7211

10.5.1.1

4.3.1.1

717.2

Version 99

Geomatric Location FUNCHONSciiecveseresernsssessarenssanrans
Geometric Location Functions ..
Global Allocatable Arrays
Qlobal Datacce..
Governing BIOCKS ...uicivceersnsissmsssmonninennesisessanssseenannsens

Graphics

H Editing o

Handler

Handling

High Level Syntax

Identical Common Blocks
Identified and Rename Alias/ Sesssssswssssasy LT =

IDENTIFY
IDENTIFY Statement

IDENTIFY Statement renernerarsessnnes P —
Identifying a Unit

Implicit and Explicit Interfaces

Implicit Interface N —

Implicit Interface Specification
IMPLICIT Statement
Inactive DO Constructs
Inclusions
Incremental Features
Indicators 12.4.1.4 Arguments
Information List
INITIAL Attribute e
INITIALIZE Statement ..
Initiation
Input
Input
INPUT/OUTPUT EDITING .
Input/Qutput List
Input/Output List and Format .
Input/Output Statement 9.4.3 Eessssns ST
INPUT/QUTPUT STATEMENTS
Input/Output StAtEMENES ...ccceveiricerntesrmeesnnserenessnnsnsarns
Input/Output Status
INQUIRE Statement
INQUIRE Statement .

INQUIRE SIBIOMeNt 8.6.1.11 eoommmsessrersormsosseresoserernes

INQUIRE Statement 9.6.1.12
INQUIRE Statement
INQUIRE Statement 9.6.1.14 ...c.ccvcecerrevmmrrannecinnessnnas
INQUIRE Statement ... S
INQUIRE Statement 9.6.1.16
INQUIRE Statement 9.6.1.17
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement 9.6.1.20
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement
INQUIRE Statement 9.6.1.8
INQUIRE Statement
Inquiry
Inquiry Functions

Inquiry Functions

Inquiry Functions
Inquiry Functions
Inquiry Functions
Inquiry Functions
Inquiry Functions
Inquiry Functions Fessreesres
Inquiry Functions ..
Inquiry FUNCtionsceceeerneeenee

Inquiry Specifiers ..

Inquiry Spacifiers

Instances of a Procedurececereerenrerns
INTEGER .

Integer and Real Data

Integer Division S
Integer Editing
Integer Type ermmnsnann

Integrity of Parentheses ..

1986 March

X3J3/58

Page E-10

PERMUTED INDEX FOR HEADINGS

51.23

12,5.2.1 Effects of

5.2.1

List and Format 10.3

12.3 Procedure

12.3.1.1 Explicit

12.3.1.2 Implicit
Specification of the Procedure
12.3.2.1 Procedure

2.2.3.3 Procedure

15.2.1

16.3.1

12.3.2.4 Implicit

12.3.1 Implicit and Explicit
9.221

9.22.2

9.2.2

Functions 15.8.1 Use of
2232

11.1.3 Main Program
12.1.2.2 External and
Assignment Statements 7.5.1.6
Operations 7.3

Assignments 7.5.3.2
Assignments 7.5.1.5
Operations 7.2

Assignments 7.5.2.2
8.1.4.4.3 Cycle

2.5.7

Rules 7.5.1.4

75.1.2

7.5.1.5 Interpretation of
8.1.54

43

Results 13.2 Elemental
13.1

13.6 Array

13.8 Tables of Generic
13.8.17 Table of Specific
15.241.7

Evaluation of the Character
7.2.3 Character

7.1.2

7.1.5 Conformability Rules for
7.1.7.3 Evaluation of Numeric
7.1.7.4 Evaluation of Bit
7.1.7.6 Evaluation of Relational
7.1.7.7 Evaluation of Logical
7.2 Interpretation of

7.2.1 Numeric

7.2.2 Bit

7.2.4 Relational

7.25 Logical

12.5.1

12.1.2.1

13

13.9 Specifications of the
12.3.2.3

13.7

13.8.16 Table of

24.1.1

1

INQUIRE Statement 9.6.1.20
15.24.2.3 A Simple Program: The
10.2 Form of a Format

on Function References and List
8.1.4

252

14.1.2.2 Program Unit Plus
3.21

7.1.6

10.5.3

3.2.5 Statement

8.2.1 Statement

15,1 The Fortran

311

2.1 High

Version 99

INTENT Attribute
Intent on Procedure Subprogramsc.ccaeussssescinessssaene
INTENT Statement
Interaction Between Input/Qutput
Interface ..

interface ... rerren
Interface ...
Interface 12.3.2ccccisnrecsmnnssnennncnsiserrenses [
Interface BIOCKcccuruenmernierimnsnscerumasersarannnnns
Interface Block

Interface Mechanisms
Interface Mechanisms
Interface Specification
Interfaces
Internal File Properties ..

Internal File Restrictionscocesasrennass

Internal Files .
Internal Functions for Statementcccccceuesee sasssessssussans o
Internal Procedure
Internal Procedures
internal Procedures
Interpretation of Defined
Interpretation of Defined
Interpretation of Element Array
Interpretation of Intrinsic

Interpretation of Intrinsic
Interpretation of Masked Arfay ...ccsssersescrssssaraennnees Eeiane
Interruption

Intrinsic

Intrinsic Assignment Conformancececeseseerscercnrenes

Intrinsic Assignment Statement ...
Intrinsic Assignments
Intrinsic Conditions

Intrinsic Data Types
Intrinsic Function Arguments and
Intrinsic Functions
Intrinsic Functions
Intrinsic Functions
Intrinsic Functions

Intrinsic Functions
Intrinsic Operation 7.1.7.6 B vwesasssarvsssan s
Intrinsic Operation =
Intrinsic Operations

Intrinsic Operations .
Intrinsic OPOrationscecccsirsmmmenmeisesarsssnenennenisansaen

Intrinsic Operations
Intrinsic Operations
Intrinsic Operations
Intrinsic Operations
Intrinsic Operations

Intrinsic Operations g

Intrinsic Operations .

Intrinsic Operations

Intrinsic Procedure Definitlon

Intrinsic Procedures

INTRINSIC PROCEDURES
Intrinsic Procedures
INTRINSIC Statement

Intrinsic Subroutines
Intringic SUbrOUtINGS ..cucveesctseemmarrasersarereverrmmersnnmerares
Intrinsic Type

INTRODUCTION =
IOLENGTH = Spaecifier in theccvcecmeecnnis ST
Ising Model

Item List

ltems 9.7 Restrictions

Iteration Control
Keyword
Keyword Scope
Keywords
Kinds of Expressions ..
L Editing
Labels ...coccerniinees .
Labels
Language Standard
Lettorscouiisrans
Level Syntax feeeererees rrrrryrrerT

1986 March

X3J3/S8

Page E-11

PERMUTED INDEX FOR HEADINGS

71.1.2

7.1.1.3

7.1.1.4

7115

7116

7417

Separation 3.2.7

3

11.3.2.5 Procedure
Standards Based on Procedure
Standards Based on Module
10.2 Form of a Format ltem
12.4.1 Actual Argument
9.4.1 Control Information
9.4.2 Data Transfer Input/Output
Interaction Between Input/Output
on Function References and
10.8

9.4.35

10.8.1

10.8.2

13.6.8 Array Geometric
13.8.15 Array Geometric
5.1.1.6

7.1.7.7 Evaluation of

7.25

15.25

4322

8.1.4.4.1

8.1.444

3.2

1.1

222

11.1.2

11.1.3

11.14

Functions 13.5 Numeric
13.5.3 Floating Point

13.6.7 Array

13.8.14 Array

13.8.9 Floating-point
15.24.1.7.5 Array

13.6.2

7.5.2.1 General Form of the
752

7.5.2.2 Interpretation of
Functions 13.4 Numeric,
13.4.2

13.8.3

13.6.3 Vector and

13.8.10 Vector and
15.24.1.7.1 Vector and
15.24.5

15.24.6

15.24.6 Matrix Norms:
15.24.4 Variance from the
Procedure Classification by
Definition of Procedures by
15.2.1 Interface

15.3.1 Interface

Explicit Format Specification
A Simple Program: The Ising
13.5.1

224

Supplementary Standards Based on
11.3

11.3.2 Examples of

1.7

13.6.3 Vector and Matrix
13.8.10 Vector and Matrix
15.24.1.7.1 Vector and Matrix
2.5.1 Symbolic

14.14

6.2.3 Summary of Array
14.2.1

14.1.1.1 Allowable

14.1.1

Version 99

*Manipulation Functions ..

Level-1 EXPressionscicersssmseersasmmmnrrnrrrmsanrenisenaanans
Level-2 Expressions .
Level-3 Expressions .
Level-4 Expressions
Level-5 Expressions
Level-6 Expressions
Lexical Element Sequence and
LEXICAL ELEMENTS
Librarioscoccorsncsemnesrnenens
Libraries 15.2 Supplementary
Libraries 15.3 Supplementary
LISt evermncnrsrcvsmmninarsnuieennan

LISt ovireriemaiistaersmmmncnnninnrmnermnierasennansensnsnas
LiSt ceimemiiemccnnacienenrinnermaniisinnsiaciensaenonas
LiSt ceoveirercensrnrennnens

List and Format 10.3

List Items 9.7 Restrictions ...

List-Directed Formatting
List-Directed Formatting .
List-Directed input
List-Directed Output ..
Location Functions ...
Location Functions
LOGICAL ...ccreeeisansensuenassanns
Logical Intrinsic Operations ...
Logical Intrinsic Operations ...

Logical Queriescceeneenn

Logical TYPe wuureecemearanrisnrennsnns

Loop Initiation ..uicceeeereeiiieonernariiinnaniciseinasainn.

Loop Termination .

Low-Level SYntaxcccecvimiieacasarammensmmrnasaneresinaninsecesans
Main Program ... aerrassreernTrennneaasisanesinrebnnnnana anses
Main Programeeesesesservessssesosesnccsnesnansanes

Main Program Executable Part

Main Program Internal Procedures ...

Main Program Specificationscccvvveresnicsenrsnecnnenienaanns
Manipulation and INQUIFY ...ccememimeniinicieeneene.

Manipulation Functions ..
Manipulation Functions ..
Manipulation Functions ..
Manipulation Functions ..

Mask Arguments
Masked Array Assignmentc.....
Masked Array Assignment WHERE
Masked Array Assignments
Mathematical, Bit, and Character ...
Mathematical Functionsc........
Mathematical Functions
Matrix Multiplication Functions
Matrix Multiply Functions
Matrix Multiply Functions
Matrix Norms: Euclidean Norm
Matrix Norms: Maximum Norm
Maximum Norm
MEAaN ...coveseeirmencaniaanaasnren

Means of Definition 12.1.2
Means Other Than Fortran 12.5.3 ..
MechaniSmsccessrreeesranaranasssanns
Mechanisms ..
Methods 10.1 ...
Model 15.24.2.3 ...ceevrncnrioraannons .
Models for Integer and Real Datac..covvesinercrennensennens
MOdUIO® ..vvrericrcinrereemnessisarasnaninees
Module Libraries 15.3
Module Subprogramscc... “
MOJUIBS iseernnarirernsanrnnessrosnsisnasorasnnastaasassesnsanisnrennnses
MOAUIBS .recvirenriemsirmeireeraerrassrmeemnmsinsrasirnasrnaesranesrnans
Multiplication FUNCHONS «ucermeeemiecimeitnininensiiesisassassanseane
Multlply Functions
Multiply Functions ..
Namecccecsincssmannmnnanes
Name and Scoping Rules ...
Name Appearances
Name Association ..
Name Conflicts
Name of an Entityccceeeeseiiniennmmmmmmmmanmmnminmses.

1986 March

X3J3/S8

Page E-12

PERMUTED INDEX FOR HEADINGS

16.5.1

Statement 9.6.1.6

5.4.2.4 Differences between
Statement 9.6.1.5

10.9

9.4.3.6

10.9.1

10.9.2

12.5.4 Overloading

3.2.2 Symbolic

Array Names and Array Element
5.4.1.3 Array

Statement 9.6.1.14

432

15.24.5 Matrix Norms: Euclidean
15.24.6 Matrix Norms: Maximum
15.24.5 Matrix

15.24.6 Matrix

6.2.2.3.1 Triplet

1.6

15.12 Section 1

15.13 Section 2

15.14 Section 3

15.15 Section 4

15.16 Section 5

15.17 Section 6

15.18 Section 7

15.19 Section 8

15.20 Section 9

15.21 Section 10

15.22 Section 11

15.23 Section 12

15.24 Section 13

15.26 Section 14

15.27 Section 15

10.8.1.1

10.9.1.1

9.41.7

9.4.1.2 Record

Statement 9.6.1.4

10.5.1

13.4.1

13.8.2

135.2

13.8.8

7.1.7.3 Evaluation of

7.2.1

Functions 13.5

Character Functions 13.4

4.3.1

2.4.3.1 Data

SPECIFICATIONS 5 DATA
Characteristics of Dummy Data
Associated with Dummy Data
14.2.2.3 Assoclation of Data

5.4 Storage Association of Data
5.4.1.2 Equivalence of Character
6 USE OF DATA

9.3.4 The

9.3.4.1 FILE= Specifier in the
9.3.4.10 PAD= Specifier in the
9.3.4.2 STATUS= Specifier in the
9.3.4.3 ACCESS= Specifier in the
9.3.44 FORM= Specifier in the
9.3.4.5 RECL= Specifier in the
9.3.4.6 BLANK= Specifier in the
POSITION = Specifier in the
9.3.4.8 ACTION = Specifier in the
9.3.4.9 DELIM= Specifier in the
Statement 9.6.1.3

7.1.7.1 Evaluation of

and Shape of the Result of an
of the Character Intrinsic

7.1.7.8 Evaluation of a Defined
7.2.3 Character Intrinsic

7.3.1 Unary Defined

7.3.2 Binary Defined

Version 99

Name Registration
NAME = Spaecifier in the INQUIRE [
Named Common and Blank Common N
NAMED= Specifier in the INQUIRE
Name-Directed Formatting
Name-Directed Formatting
Name-Directed Input
Name-Directed Output
Names
Names
Names 5.4.1.3 .
Names and Array Element Namescc..cucnsaseasnense
NEXTREC = Specifier in the INQUIREccccrcecsannnans
Nonnumeric Types

Norm .
Norms: Euclidean NOrmccccorermrnanierarensarrorenrressnenns
Norms: Maximum Norm .
Notation
Notation Used in This Standardc.ceeerune P
Notes
Notes
Notes

Notes .. .
Notes

Notes .
Notes
Notes
Notes
Notes .
Notes] peeeeeee
Notes
Notes T T T L T

Notes ...cuvvenes
Null Values
Null Values
Nulls Count ...
Number
NUMBER = Specifier in the INQUIREc..coeersennrrcsanne
Numeric Editing

Numeric Functions
Numeric Functions
Numeric Inquiry Functions Ssssssssssessaness Sesseseavsiesee

Numeric Inquiry Functions ...
Numeric intrinsic Operations
Numeric Intringic Operations
Numeric Manipulation and Inquiry
Numeric, Mathematicai, Bit, and
Numeric Types ..
Object
OBJECT DECLARATIONS AND ..
Objects 12.2.1.1
Objects 12.4.1.1 Arguments

Objects
Objects
Objects
OBJECTS

OPEN Statement
OPEN Statement
OPEN Statement
OPEN Statement 5
OPEN Statement
OPEN Statement
OPEN Statement
OPEN Statement
OPEN Statement 9.3.4.7
OPEN Statement
OPEN Statement
OPENED = Specifier in the INQUIREccornveicsnnnensne
Operands -

Operation
Operation
Operation
Operation
Operation
Operation oo

1986 March

X3J3/58

.

Page E-13

PERMUTED INDEX FOR HEADINGS

4.1.3

7.1.2 Intrinsic

7.1.3 Defined

Rules for Intrinsic

7.1.7 Evaluation of
Evaluation of Numeric Intrinsic
Evaluation of Bit Intrinsic

of Relational Intrinsic
Evaluation of Logical Intrinsic
7.2 Interpretation of intrinsic
7.2.1 Numeric Intrinsic
7.2.2 Bit Intrinsic

7.2.4 Relational Intrinsic
7.2.5 Logical Intrinsic

7.3 Interpretation of Defined
44.3

258

11.3.2.6

3.24

7.4 Precedence of

5.1.2.7

522

2.3.2 Statement

6.2.2.2 Subscript

10.8.2 List-Directed

10.9.2 Name-Directed
1254

10.6.5

Statement 9.6.1.19
Statement 9.3.4.10
15.25.1.2

15.25.1

Polynomiais 15.25.1.1
15.25.1.4

15.25.1.3

5.1.2.1.1

5.2.7

Primary 7.1.4.1 Data Type, Type
7.1.4 Data Type, Type
Resuit/ 7.1.4.2 Data Type, Type
4.41.1 Type

7.1.7.2 Integrity of

11.1.2 Main Program Executable
14.1.2.4

Substring to a Dummy/ 15.7.2
15.8.5

8.5

14.1.2.2 Program Unit
13.5.3 Floating

15.25.1.1 Parallel Evaluation of
15.25.2.1

9.2.1.3 File

9.2.1.3.2 File

10.6.1

9.2.1.3.1 File

INQUIRE Statement 9.6.1.16
Statement 9.3.4.7

10.4

9.5 File

74

5.1.1.3 DOUBLE

10.5.1.2 Real and Double
4.3.1.2 Real and Double

' 9.3.3

Functions 13.3 Argument
Functions 13.8.1 Argument
7.1.1.1

Type Parameters, and Shape of a
16.1.1

9.4.4

9.2.1.3.1 File Position
15.24.2.3.1

2.2.3.1 External

2.23.2 Internal

of Definition 12.1.2
Reference 12.1.1

1%.1

Version 99

OPEratioNS .ueeecerrseersresmreeesmenssnsissnnsssarsressnnssnmsennecnnons
OPerationscicseecrmrmensmsnasssnnnsinisiinasennesannsansnenssnnsas
Operationsecveeeeneniians
Operations 7.1.5 Conformability
Operations
Operations 7.1.7.3 ..
Operations 7.1.7.4 .ccooveernaneee 5
Operations 7.1.7.6 Evaluation

Operations 7.1.7.7 .ccccsemsimmncainmnnimnne
Operations
Operations ...
Operations ...
Operations ...
Operations ...
Operationsccccccarrseirmsansnniene
Operations on Derived Types ...
OPErator ...ccccssarsrmrerseernsnasnne
Operator EXtensionscueeseeennnaas
QOperators
OpBrators wuuiveiseseeerarsissssassaranssnasnnnes
OPTIONAL Attribute

OPTIONAL Statement ..
Order ..cecverercanenssnnnnn
Order Value .

Overloading Names ..
P Editing ...
PAD = Specifier in the INQUIRE
PAD = Specifier in the OPEN ...
Parallel Computation of FFTS .cc.cciciensererenccaninmmmmmnsennene
Parallel Computationscisssmsarsreecsinmmnimserasreeninsen
Parallel Evaluation of
Parallel Finite Differencing ...e.eeeeeevcicrarens
Parallel Sorting ..
PARAMETER ...cocenevvinenes
PARAMETER Statement
Parameters, and Shape of a .
Parameters, and Shape of an/
Parameters, and Shape of the
Parameters of Derived Type
Parenthesescueens
- T s
Part of a Program Unit Scope ..
Passing an Array Element or ...
PAUSE Statementc.ueeeuanees
PAUSE Statement
Plus Keyword Scopec.eee...

Point Manipulation Functions
POIYNOMIAIS «1emvirmenersiererammaemmmasmnieranesrasineserarennannasenaes
POIYNOMIAIS «..euvimeeimmiimmiiiaceinirs s misssssssss s s esssresen
Position ..cccieecemecimmiaraaiinan
Position After Data Transfer ..
Position Editing veueseasersaninnees
Position Prior to Data Transfer .
POSITION=Specifier in the
POSITION = Specifier in the OPEN
Pasitioning by Format Control ..
Positioning Statements
Precedence of Operators ..
PRECISION ..coovvrreennseinaens
Precision Editing
Precision Type ..
Preconnectioncceeseieemnrne
Presence and Condition Status ..
Presence and Condition Status ..
Primary ...covcciremmimmcisncinmenneans
Primary 7.1.4.1 Data Type
Primary Features
Printing of Formatted Recordscuemeicuiiemieaacnenns
Prior to Data Transfer
Problems To Be Solved .
Procedurec.coeeeenses
Procedureccciceeumiensesennsnannsnnaann
Procedure Classification by Means ...
Procedure Classification by
Procedure Classificationsc.cc..cieceueenaen

1986 March

X3J3/S8

Page E-14

PERMUTED INDEX FOR HEADINGS

12.5

12.5.1 Intrinsic

123

12.3.2 Specification of the
12.3.2.1

2233

11.3.25

Supplementary Standards Based on
12.4

12.5.2.4 Instances of a

223

11.2

12.5.2 Procedures Defined by
12.5.2.1 Effects of intent on
11.1.3 Main Program Internal
12

12.1.2.1 Intrinsic

12.1.2.2 External and Internal
12.1.2.3 Dummy

12.2 Characteristics of
Characteristics of Dummy
Arguments Associated with Dummy
13 INTRINSIC
Specifications of the Intrinsic
Fortran 12.5.3 Definition of
Subprograms 12.5.2
FORmula TRANSslation and Array
1.2

15.243.2 A

15.24.3.1 A Sum of

15.24.2.3 A Simple

9.4.1.3

9.2.2.1 Internal File

1.1

15.25 Logical

Declared and Effective Array
5.1.29

8.1.4.2

529

6.2.2.3.3 The SET

5.1.1.2

10.5.1.2

4.3.1.2

13.5.1 Meodels for Integer and
Statement 9.6.1.13
Statement 9.3.4.5

9.1.1 Formatted

9.1.2 Unformatted

9.1.3 Endfile

9.4.1.2

9.1

9.4.4 Printing of Formatted
13.6.4 Array

13.8.11 Array

15.24.1.7.2 Array

15.24.2.3.4

. 15.10
15.8

Procedure Classification by
12.4 Procedure

12.4.2 Function

12.4.3 Elemental Function
12.4.4 Subroutine

255

9.7 Restrictions on Function
15.5.1 Name

7.1.7.6 Evaluation of

7.2.4

/Comparison of Identified and
Statement 14.2.1.2.2
Statement 15.8.2 Example
Statements 9.8

9.2.2.2 Internal File
Equivalence 5.4.2.5

Not Associated 12.5.2.7
Associated with Dummy/ 12.5.2.8
Statements 5.4.1.4

Version 99

X3J3/58

Procedure Definition
Procedure Definition
Procedure Interface
Procedure Interface
Procedure Interface Block
Procedure Interface Block
Procedure Libraries
Procedure Libraries 15.2
Procedure Reference
Procedure Subprogram
Procedure Subprogram
Procedure Subprograms
Procedure Subprograms
Procedure Subprograms
Procedures
PROCEDURES
Procedures . .
Procedures :
Procedures
Procedures
Procedures 12.2.1.2
Procedures 12.4.1.2
PROCEDURES
Procedures 13.9
Procedures by Means Other Thanceeeceeeinnean
Procedures Defined by Procedurecccuuiemmemineerinnanas
Processing 15.24.3
Processor
Product of Sums
Products
Program: The Ising Model
Prompt Specifier
Properties
Purpose
Queries
Range 6.2.1.2

RANGE Atiribute
Range of a DO Construct
RANGE Statement
RANGE Statement
REAL =
Real and Double Precision EAiting ...c..ciissmeicesnicesuncrees
Real and Double Precision TYPeccccserrrearceencersuoncnnses
Real Datacruee .
RECL= Specifier in the INQUIREcccoereirmrecrscnnnanne
RECL = Specifier in the OPEN
Record
Record
Record .
Record Number
Records
Records
Reduction Functions onaens
Reduction Functions
Reduction Functions
Reduction of Storage .
Redundant Functionality
Redundant Functionality
Reference 12.1.1
Reference
Reference
Reference .
Reference
Reference
References and List ltems
Registration
Relational Intrinsic Operations
Relational Intrinsic Operations -
Rename Alias Associations
Rename of Entities in a USE
Replacement of the Computed GO TOcrsceeserreneensns
Restriction on Input/Qutput
Restrictions
Restrictions on Common and
Restrictions on Dummy Argumentsc...u. covsrunrennansas
Restrictions on Entities
Restrictions on EQUIVALENCE

1986 March Page E-15

PERMUTED INDEX FOR HEADINGS

References and List ltems 9.7
Specifiers 9.6.1.20.1

Type Parameters, and Shape of the
Characteristics of Function
Intrinsic Function Arguments and
15.8.3 Alternate

Associated with Alternate

12.56.2.6

14,1 Name and Scoping

1.6.1 Syntax

1.5.2 Assumed Syntax

15.3.2

Intrinsic Assignment Conformance
7.1.5 Conformability

8.1.1

10.6.4

5.1.2.6

524

24.41

6.1

14.1.2.1 Executable Program
Program Unit Plus Keyword
14.1.2.3 Program Unit
14.1.2.4 Part of a Program Unit
14.1.2.5 Statement
DEFINITION 14 ENTITY
14.1 Name and

15.4

15.12

15.21

15.22

15.23

15.24

15.26

156.27

15.13

15.14

15.15

15.16

15.17

15.18

15.19

15.20

15.24.1.2 Array

6.2.2.3 Array

15.24.3.3 Addition of

Lexical Element Sequence and
3.3.1.2 Statement

14.2.21 Storage

2.3.4 Execution

3.1.5 Collating

5.4.2.1 Common Block Storage
3.2.7 Lexical Element

12415

14.2.2.2 Association of Storage
9.21.21

INQUIRE Statement 9.6.1.8

3.1 Fortran Character

4.1.1

6.2.2.3.3 The

5.1.2.4.1 Explicit

5.1.2.5 Assumed

Data Type, Type Parameters, and
Data Type, Type Parameters, and
13.6.1 The

/Data Type, Type Parameters, and
8.1.5.2.2 Condition

8.1.6.3 Effects of

15.2423 A

5.1.2.5.2 Assumed

5.4.2.2

10.6.2

15.24.2.3.2

15.24.2.3.1 Problems To Be

Version 99

Restrictions an FUnctioncccciinnnenenens eerasernsnsesanen
Restrictions on Inquiry
Result of an Operation /Type,
Results 12.2.2cceeeeennvrananss

Results 13.2 Elemental .
RETURN ..ccceeinerennnee "
Return Indicators /Argumantsceeieeecscsaaens
RETURN Statementecormnee

Rules 7.5.1.4 ..civcermiinninnecnn
Rules for Intrinsic Operations
Rules Governing Blocks
S, SP, and SS Editing
SAVE Attributec.cocceneses
SAVE Statementccceeeerereaees
Scalar

Scalarse..
Scale Factor
Scope
Scope ...
Scope
Scope 14.1.2.2
Scope
Scope ..
SCOPE «ruvernirnsnassnananss vrrees
SCOPE, ASSOCIATION, AND .
Scoping Rules ...cceemccciirninns
Secondary Standards .
Section 1 Notes
Section 10 Notes ...
Section 11 Notes ...
Section 12 Notes ...
Section 13 Notescceeeeirns .
Saction 14 NOES .cceccseecsssirmmsisrernssasestssssnsasnnisearasansnn
Section 15 NOIBS cciieecreermcimmenernsainiimassrncstansasacneanenas
Section 2 NOBS .iivueeeereenicesurammiasmmmmiareareunsninncananne
Section 3 NOOScccceicraserarnmmmeermmmenmmessiessicanansssanasnse
Section 4 Notes ..
Section 5 Notes ..
Section 6 Notes ..
Section 7 NOtES ..ceeeresscnerensinramsasneskonacsasasaansas
Section 8 NOtes ...c.ccerevrecnrciimminrnnserassaacsanns

Section 9 Notes ..

Sections-

Sectionsceesneares :

Solected EIEMENtSiccevmianarirsesivassnnsassasenastsnnssiseseonss
Separation 3.2.7

Separation
Sequence
Sequence .

Sequence .

SequUenceiwsresseen

Sequence and Separation .

Sequence Associationeeee cenneann

SOQUENCOS ..etrrnrrsnsessasnonsarsanas

Sequential Access .

SEQUENTIAL= Specifior in the

[27-

Set of Valuescc.cccsaine

SET RANGE Statement

Shape Array .i.eeeeeveressae

Shape Arrayscc.ceemmnenan

Shape of a Primary 7.1.4.1

Shape of an Exprassion 7.1.4civeerinseerassinsinnan
Shape of Array ArQUMENTSccccarereaarseniasnsssnnissinsans
Shape of the Result of an/ ..

Signaling-.. [N

Signaling on Definition «.u.eeeecveiinnee

Simple Program: The Ising Model

Size AITAY .ceercrvmsnrnsnmara P meertnassasinniesnutee
Size of a Common Block

Slash Editing -..cousesnesssnenemsermssssmmnsmmsissareneesnasenine
Solutions in Fortran .

Solved

1986 March

X3J3/S8

Page E-16

PERMUTED INDEX FOR HEADINGS

15.25.1.3 Parallel

3.3

3.3.1 Free

3.3.2 Fixed

10.6.4 S,

3.1.3

13.8.17 Table of

10.1.2 Character Format

12.3.2.4 Implicit Interface

7.1.6.2

10.1 Explicit Format

Interface 12.3.2

5.2 Attribute

11.1.1 Main Program

5 DATA OBJECT DECLARATIONS AND
Procedures 13.9

9.4.1.1 Format

9.4.1.3 Prompt

9.3.5.1 STATUS=

Statement 9.6.1.1 FILE=
Statement 9.6.1.10 FORM=
Statement 9.6.1.11 FORMATTED =
Statement 9.6.1.12 UNFORMATTED =
Statement 9.6.1.13 RECL=
Statement 9.6.1.14 NEXTREC =
Statement 9.6.1.15 BLANK =
Statement 9.6.1.16 POSITION =
Statement 9.6.1.17 ACTION =
Statement 9.6.1.18 DELIM=
Statement 9.6.1.19 PAD=
Statement 9.6.1.2 EXIST=
Statement 9.6.1.20 IOLENGTH =
Statement 9.6.1.3 OPENED =
Statement 9.6.1.4 NUMBER =
Statement 9.6.1.5 NAMED =
Statement 9.6.1.6 NAME =
Statement 9.6.1.7 ACCESS=
Statement 9.6.1.8 SEQUENTIAL=
Statement 9.6.1.9 DIRECT=
9.3.4.1 FILE=

9.3.4.10 PAD=

9.3.4.2 STATUS=

9.3.4.3 ACCESS=

9.3.44 FORM=

9.3.4.5 RECL=

9.3.4.6 BLANK=

9.3.4.7 POSITION=

9.3.4.8 ACTION=

9.3.49 DELIM=

9.6.1 Inquiry

Restrictions on Inquiry

10.6.4 S, SP, and

1.5 Notation Used in This

16.1 The Fortran Language

15.5

15.4 Secondary

15.6 Fortran Family of

Libraries 15.3 Supplementary
Libraries 15.2 Supplementary
15.24.1.3 WHERE and FORALL
2.3.1 Executable/Nonexecutable
5.1 Type Declaration

5.2 Attribute Spaecification

3 5.2.3 Accessibility
Restrictions on EQUIVALENCE

of Defined Assignment

9 INPUT/OUTPUT

9.4 Data Transfer

9.5 File Positioning

9.8 Restriction on Input/Output
9.4.1.4 Input/Output

Argument Presence and Condition
Argument Presence and Condition
Statement 9.3.5.1

Statement 9.3.4.2

8.4

15.24.2.3.4 Reduction of

Version 99

Sorting
Source Form . "
SOUrce FOIM ...ccviieencssaisesmscsssnernnanssannsnsses
Source Form
SP, and SS Editing =
Speclal Characters
Specific Intrinsic Functions
Spaecification
Specification
Speclfication Expression .
Specification Methodscuverserenmanmmniscanscarseanniannanene
Specification of the Procedure
Specification Statements
Specifications
SPECIFICATIONS
Specifications of the Intrinsic
Specifier
Specifier .
Specifier in the CLOSE Statementueseeeessmmeurscesnn
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Speclfier in the INQUIRE
Specifier in the INQUIRE ... T
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE . . .
Specifier in the INQUIREccevcimmicenraserceninnnienans
Specifier in the INQUIRE
Specifier in the INQUIREcccosmmmrnsnnasancaanas
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the INQUIRE
Specifier in the OPEN Statement
Specifier in the OPEN Statement
Specifier in the OPEN Statement .
Specifier in the OPEN Statement jemssunsessunananauysseasss
Specifier in the OPEN Statement
Specifier in the OPEN Statementccoveinenrmmmnininenas
Specifier in the OPEN Statement
Specifier in the OPEN Statement
Specifier in the OPEN Statement
Specifier in the OPEN Statement
Specifiers
Specifiers 9.6.1.20.1
S8 EdItiNG «evvveveneerrmniresssessnnnmninsnssrnersssrsssssansanssnnsssas
Standard
Standard . S L T T,
Standard Gonformance
Standards
Standards
Standards Based on Module
Standards Based on Procedure
Statements
Statements ...uceeeneeeeensersssimmrrinerenn
Statements
Statements
Statements
Statements 5.4.1.4
Statements /Interpretation
STATEMENTS
Statements
Statements .
Statements
Status
Status Functions 13.3

Status Functions 13.8.1
STATUS = Specifier in the CLOSEc.cueemererivnnnaenerecens
STATUS = Specifier in the OPEN Besssssssienaiasssasies
STOP Statement
SHOTAGO .uunneevmemssmmsienssnissassnnrsnasanasnsassnisasaissosranesnnerrons

................

1986 March

X3J3/58

Page E-17

PERMUTED INDEX FOR HEADINGS

245

14.2.2

15.7

15.9

Objects 5.4

14.2.21

5.4.2.1 Common Block
14.2.2.2 Association of
10.7 Character

6.1.2

11.3.2.3 Data

2432

12.5.2.2 Function
12.5.2.3 Subroutine
Instances of a Procedure
15.7.3 BLOCK DATA
2.2.3 Procedure

11.2 Procedure

11.3 Module

11.5 Block Data
Procedures Defined by Procedure
Effects of Intent on Procedure
15.24,2.3.3 The Complete Fortran
124.4

12523

13.7 Intrinsic

13.7.1 Date and Time
13.8.16 Table of Intrinsic
6.2.2.2

6.2.2.3.2 Vector

6.2.2

/Passing an Array Element or
6.1.1

15.24.3.1 A

and Rename Alias/ 14.2.1.2.3
6.2.3

15.24.1

15.24.3.2 A Product of
Module Libraries 15.3
Procedure Libraries 15.2
2.5.1

3.2.2

2.1 High Level

3.2 Low-lLevel
Characteristics 1.5.3
1.5.1

1.5.2 Assumed

10.6.1.1

13.8.16

Functions 13.8.17
Functions 13.8

8.1.4.4.4 Loop

2.5 Fundamental

2 FORTRAN

154

10.6.1.1 T,

10.6.1.1 T, TL, and

File Position Prior to Data
File Position After Data
9.4.3.1 Direction of Data
9.4.3.4 Data

9.4.3.4.1 Unformatted Data
9.4.3.4.2 Formatted Data
9.4.2 Data

9.4.3 Execution of a Data
9.4 Data

15.24.3 FORmula
6.2.2.3.1

2.4.1 Data

2.4.1.1 Intrinsic

2.4.1.2 Derlved

4.1 The Concept of
4.3.1.1 Integer

Real and Double Precision
4.3.1.3 Complex

4.3.2.1 Character

4.3.2.2 Logical

Version 99

SIOrage cevveirrenverarreasrmaasnisinees rreermassrratsressernnranaannrans
Storage Association ...
Storage Assaciation ...
Storage Association
Storage Association of Data ...cicenciecesneriennsinenniarsnnees
StOrage SOQUENCE .ueireirmisienisssnisissesssanimassnnassrnnsssennns
StOrage SEQUENCE ...cerrrersisarrrsrrerssssimssmnanensssennetinsnnans
Storage Sequences ...
String Edit Descriptors .
Structure Componentsees
SHUCLUrES evrerssanicnenrnmssnansnnnnes
Subobjects ...
Subprogram .
Subprogramc...couenes
Subprogram 12.5.2.4 ..
Subprogram eeceseeses
Subprogram ...
SUDProgramscceeesensssacsseassnessmnanasisnssses
Subprograms
Subprogramseeeee
Subprograms 12.5.2
Subprograms 12.5.2.1
Subroutingc.ieseessaesse
Subroutine Reference
Subroutine Subprogram
Subroutines ...c..ceeereanns
Subroutines .
Subroutingsuecseeveacasn
Subscript Order Value
Subscripts ..vveoreiineiiine.
Subsets of Arrays ...c.c.uveees
Substring to a Dummy Array
SubsStringsseeeeensenne
Sum of Products
Summary Comparison of ldentified
Summary of Array Name Appearances .
Summary of Features .
SUMS «eeevressseansmntenanernassesisnsinanions
Supplementary Standards Based on .
Supplementary Standards Based on .
Symbolic Name
Symbolic Names
Syntax ...eeess
Syntax ..
Syntax Conventions and ...
Syntax Rulescccoanens
Syntax Rules
T, TL, and TR Editing .e.oveeerinserasscnmemremmimnmnimiannieenecenne
Table of Intrinsic Subroutines
Table of Specific Intrinsic
Tables of Generic Intrinsic ..
Torminationccviserremmersessneirmnsiisnaesannss
TOIMS ceenrrmcernamamaarmansmmansnse
TERMS AND CONCEPTS ..
Toxt Conventionsccuvenees
TL, and TR Editing ...
TR Editing ..eceeermneens
Transfer 9.2.1.3.1
Transfer 9.2.1.3.2
TrANSFOI wavernerernccscasmmniraresnmmmmaecmsresninisnsssensassssaninsonas
TrANSTBE veeuveroneencsemsarmssrsurimesarnasrensarsssaasnasesarencenasancans
Transfer .
Transfer .
Transfer Input/Output List
Transfer Input/Output Statement .
Transfer Statementscc..oereeeviinanan
TRANSlation and Array Processing .
Triplet Notationcocermmnasenens
TYPE ceevmmcunanen
Type ...
TYPE conevrnecuereransrnnssserssrsassanennssasocnsansenas

TYPE eeceeemiicenrimninnnseneiiinanasasasaannaansnsnenne

TYpe .ceeen

Type 4.31.2 .

TYPE ceerecerermmmminnnisneseisiiraniasssanasansanas

TYPE ceverrrnrrsanssversesssnnsrsmmissanssnnsenanens
TYPE ceecernsssnrierasesreosmissonsarsssnnasssanesassantssnessrassinnssnaes

1986 March

X3J3/58

Page E-18

PERMUTED INDEX FOR HEADINGS

4.3.2.3 Bit

Type Parametars of Derived
5.1.1.8 Derived

5.1

4.4.1 Derived

Primary 7.1.4.1 Data Type,
Expression 7.1.4 Data Type,
Resuilt of an/ 7.1.4.2 Data Type,
4411

of a Primary 7.1.4.1 Data

of an Expression 7.1.4 Data
of the Result of/ 7.1.4.2 Data
4.4.2 Derived

4 DATA

4.3 Intrinsic Data

4.3.1 Numeric

4.3.2 Nonnumeric

4.4 Derived-Data

4.4.1.3 Equivalence of Derived
4.4.3 Operations on Derived
5.1.1

7.3.1

15.24.2.1

That Cause Variables to Become
14.3 Definition and

9.4.3.4.1

91.2

INQUIRE Statement 9.6.1.12
9.3.2 Connection of a File to a
9.4.3.2 Identifying a

2.2 Program

9.3.1

14.1.2.2 Program

14.1.2.3 Program

14.1.2.4 Part of a Program
11 PROGRAM

6

Statement Functions 15.8.1
11.3.1 The

Rename of Entities in a

2.4.2 Data

6.2.2.2 Subscript Order
5.1.2.1

10.8.1.1 Null

10.9.1.1 Null

4.1.1 Set of

4.4.2 Derived Type

2418

244

6.2.1.1 Array Constants and
14.3.2 Events That Cause
16.24.4

4.4.1.2 Derived-Type
Functions 13.6.3

Functions 13.8.10

Functions 15.24.1.7.1
6.2.2.3.2

7.5.2 Masked Array Assignment
Assignments 15.24.1.1

6.21

10.6.1.2

Version 99

Type ...
Type Declaratlon Statements
Type Definition
Type Parameters, and Shape of a
Type Parameters, and Shape of anc.cwseeenmnsicsmnaa
Type Parameters, and Shape of the ana
Type Parameters of Derived TYPeccccricissmmmmanaicnnanias
Type, Type Parameters, and Shapececccseceemnaicens
Type, Type Parameters, and Shapecccssamessasansran
Type, Type Parameters, and Shape P .
Type Values
TYPES
Types R
Types
Types -
Types ..
Types
Types
Type-Specifier Attributes
Unary Defined Operation
Unconditional Array Computations ...c..eceeeersrane
Undefined 14.3.2 Events

Undefinition .
Unformatted Data Transfer S . S T
Unformatted Record
UNFORMATTED = Specifier in thec..cueres S e
Unit
Unit
Unit Concepts
Unit Existence
Unit Plus Keyword Scop
Unit Scope
Unit Scope ..
UNITS
USE OF DATA OBJECTS
Use of Internal Functions for
USE Statement
USE Statement 14.2.1.2.2

Value
Value
Value Attribute
Values
ValuBS ..ccrverrensemncessieenssarnssarnarsannns
Values
Values
Values Count
Variable B S e
Variables
Variables to Become Undefined T T
Variance from the Mean

Variant Component
Vector and Matrix Multiplication ..
Vector and Matrix Multiply ..
Vector and Matrix Muitiply
Vector Subscripts
WHERE
Whole Array Expressions and
Whole Arrays
X Editing

1986 March

X3J3/58

Page E-19

