'89 86,23 09t88 a 1654 NCRR

SUMMARY OF CHANGES TO FORTRAN DRAFT

In response to the first public review comments on the drafl proposed Fortran stan-

dard (X3J3/88.104), a number of changes were made to the document resulting in a
revised draft standard (X3J3/88.112).

* Numerous editorial changes proposed by X3J3 in their final ballot commeatary were

considered in additiorn to the public review commentary. These changes corrected
many errors and resulted in a document that is editorially sound. Improvements were
mzde to the technica! content of the draft as well.

A table of items summarizes the technical changes made based on the public review,
+ A rationale is submitted for making these changes. Two more general responses from
the public review letters are included in the Hnal section of this report. These two
. responses were approved formally by X3J3 at their last mecting.

92

'89 06-23 099:988 E 1654 HCAR 83

-2-

TABLE OF CHANGES MADE TO FORTRAN DRAFT
GENERAL CONCEPTS

The concept of deprecation was removed. The concept of obsolescence was retalned.
INCLUDE was added.
Rlanks were made significant in free form source.

PROCEDURES AND PROGRAM UNITS

User-defined elemental functlons were removed.

Interface blocks were changed to accomodate user-defined generic specs
(permitting overlosded procedure names).

The syntax for internal and module procedures were made the same as for
external procedures.

DATA CONCEPTS

Pointers were added.

RANGE/SET RANGE and ALIAS/IDENTIFY were removed.

All Intrinsic Types are parameterized.

The MIL-STD 1753 bit intrinsic functions were added.

The new form of the DATA statement was removed. _
Derived types {and structures) were allowed in COMMON and EQUIVALENCE.
Parameterized derived type was removed.

Array objects of zero-size may be declared.

Array constructors use implied-DO syntax;(/,/) pairs instead of square brackets.
Vector valued subscripis were restored from an Appendix in S8.104.

Binary, octal and hexadecimal constants were added.

CONTROL BSTRUCTURES
DO TIMES was replaced by DO WHILE.

Overlapping CASE selector ranges were prohibited.
The ease action was well defined even in the absence of DEFAULT.

INPUT OUTPUT
Partial record (stream) [/O was added.

Binary, octal and hexadecimal edit descriptors were added.
The VALUES= [/O specifier was removed.

‘8% 06/23 09:@9 2 1654 NCAR

.3

RATIONALE FOR MAJOR CHANGES TO DRAFT FORTRAN STANDARD
(Jeanne Adams, Chalr, and Jerrold Wagener, Vice-chair)

GENERAL CONCEPTS

1. Deprecated Features Removed

The: Deprecated Features have been removed entirely. Storage association, including
COMMON and EQUIVALENCE, had been deprecated (removal possible in 20+ years).
The public review commonts contained significant opposition to this, so the concept of
deprecated features was removed. Obsolescent features remain, however. These are
features that could be removed in the next revision of standard Fortran, in 10+ years or
so. Thoerc are only o few, rather minor, cbsolescent featuras, such as arithmetic IF, donbie
precision DO indices, etc. (They’re all identified in 56.112).

2. INCLUDE Added

Probably the single strongest request from the public review commenis was to add
INCLUDE to Fortran 8x. Though modules provide most of the functiopality of INCLUDE,
INCLUDE is so strongly entrenched as common practice that many want it svandardized.
Thua, INCLUDE was added (and modules were kept).

3. Blank Significance

Blanks arc significant in free form source. This decision was not made lightly, and a
necessary cousequence is that Fortran must suppert two incompatible source forms from
now on. Strong public support for significant blanks, and the existence of significant
blanks in virtually all other programming lsnguages, make this decision desirable. To
maintain compatibility with Fortren 77 codes, Fortran 8X will continue to support the
traditional fixed form, with its special formats. Blanks remain insignificant charncters in
fixcd form. 1t seems impossible Lo combine the fxed and [roe forms in a way thal is Lom.
patible with Fortran 77; thercfore Fortran will have two source forms for the foracenble
future.

PROCEDURES AND PROGRAM UNITE

1. Remove User-defined Elemental Functions

One of features that was removed to reduce the complexity of Lhe draft Fortran Standard
was user-defined elemental functiona,

2. Change Interface Blocka

The interface facility was unduly restricted in $8.104. The feature iu 58.112 is generalized
so that all procedures (both external and module) may have operator and generic proper-
ties. The fcature was simplified in response to the comments received on complexity.

3. Internal and Modu_lc Procedures

‘89 @6-23 99:09 S 1654 NCAR

-4-

Prior to the public revicw, procedures defined in modules could be given generic names and
could be associated with user-defined operators. These properties did not extend to exter-
nal procedures. (External procedures are Fortran 77 procedures; module procedures were
{almeat) the same, except their definitions were contained in MODULE program units
rather than external to all other program unite of the application.) In essence, the public
roview comments requested thal either (1) module procedures and external procedures be
exaclly the same, or (2) get rid of module procedures. The committee chose option (1),
removing 2ll operator syntax from module procedure definitions and requiring a unique
name for all module procedures in a given module. Operator and generic properties are
given o moadule and extornal procedurss alike via a generalized form of tho procedure
interfaee block.

Why were module procedures retained now that they're the same as extornal procedures?
There appear to be three reasons, a software engineering reason, a reliability rcason, and
an efficiency reason. The first is that since modules are program units for grouping related
dats that is used globally in the application, it is highly desirable to be able io package
with thosc data objects the procedures whose primary (or only) purposc 1s Lo provide vari-
ous operations on that data. The second reason is that the inter{ace information for a
module procedure does not have to be duplicated in a procedure interface block as it does
for an cxlernal procedurs; as duplication is always error-prone, module procedures there-
fore provide increased reliability over external procedures when oxplicit procedure inter
facos are roquired. And the third reason is thal module procedures cnhance the
processor’s ability to perform the optimization of inline expansion.

DATA CONCEPTS

. Pointers Added

Another very strong request from the publie review comments was for pointers. Pointers
had not been added previously, primarily because of concerns about their impact on
efficiency. (One principle in developing Fortran 8x was Lo maintain Fortran's historic
characteristic of high run-time efficiency). Therc were two central issues in the ensuing
discussion on pointers. One had to do with declaring pointocs (pointer targets) as well as
pointers, as a means not to preclude certain optimizations because of the presence of
pointers, and hence help preserve offiviency. The second issue wus whether poiniers should
be provided via a data type attribute (presumably these would be “safe" pointers, while

providing adequate capability for dynamic objecis) or via a general pointer data type. '

These were tough decisions, but in the end a pointer facility involving POINTER and
TARGET attributes was adopted.

. RANGE and IDENTIFY Removed.

These array features allowed an alias to be given to o portion of a parent array, and the
shape of thie alias could change dynamiocally. This introduced complexities/confusion
involving "declared bounds” and "eflective bounds" concepts that permeated the language.
There was aignificant objection to this in the public review comments, and RANGE and
IDENTIFY were therefore removed. The functionality that they provided has been al

B5

'89 06,23 99:l@ 2 1654 NCRR

«5.

least partinlly restored by pointers; wrray can bo declared with the pointor atiribute and
subsequently refer 1o » dynemioally varying array scction.

The pointer facility provides all of the removed RANGE functionality (without the disad-
vantages of RANGE) and most of the IDENTIFY functionality (2l except for skewed sce-
-tions). These lcatures were removed to simplify the language.

. Parameterized Intringic Types

All of the intrinsic data types (integer, real, complex, logical, character) have been
paramelerized in o oonsistent way, with the KIND paramotcr. The functionalivy provided
is that of, for example, REAL*8 and INTEGER*2, but with slightly difficrent syntax. For
example, REAL*S may be written as REAL(8) or REAL{KIND=8}, and similarly with the
other data types. The KIND numbers (e.g., 8) are not specified, but the KIND intrinsic
function provides a measure of portability. For example IKIND(1.0D0) returns Lhe double
precision (REAL*8) KIND value for that processor; to continue this example, if DP were
an integer symbolic eonstant given this value, then REAL(DP) would be a portable way of
specifying REAL*S.

This change was prompted by significant public review protest to the “selectable precision”
capability criginally provided. With selectable precision, REAL(8) meant 8 decimul digits
of precision, and the processor had to provide the smallest numeric storage unit available
having et least REAL(9); even if they both produced the same hind of numeric object,
could not be legnlly associated across procedure boundaries. The KIND parameterizalion
resolves this and other probiems with sclectable precision and it is more like current com-
mon practice. However, a measure of the functionality of selectable precision, which is
important for some numerically sensitive algorithms, is retained in Lhe
SELECTED_REAL_KIND intrinsic function. This function ¢ekes an argument that
specifies the desired number of decimal digits of precision and returns the appropriate
corresponding IKIND value for that processor. For example,

INTEGER, PARAMETER :: LP = SELECTED_REAL_KIND(20)

would establish LP (which could stand for "long precision™) with the appropriate KIND
value for objects with 20 decimal digits of precision. Then REAL(LP) could be used to

declarce objects of Lhat KIND (if the processor supports them - otherwise an error condi-

tion exists).

The KIND parametor is similarly used for complex, integer, and logical declarations. This
provides the functionality of current common practice (c.g., INTEGER(2), .OGICAL{!)),
as requested in many of the public review commentas.

Another reason for the consistent application of KIND paramecterization to intrinsic Ly pes
was the significant call in the public review commonts largely from internalional sources,
eupucially Japan, but slso from U.S. vendors, to support edditional character sets such as
‘Kanji. (This is sometimes called mulii-byte character support, since Kanji has about
10,000 characters and Hanzi (Chinese) has about 7,000 characters. Most Fortran 77
implementations of CHARACTER use one byte per character, which is adequate for the

13

'89 986,23 8911 2 1654 NCRR

ASCIl or EBCDIC character sets, but not for character sets with more than 256 charac-
ters.) With parameterized character, things like CHARACTER(KANJI) (whare KANIJI
has been parameterizad to the appropriate integer value for that processor) san be used to
specily objecte of the desired character net,

The KIND parameterization of the intrinsic data types addresses in a conceptually con-
gistent way the problems with seloctable precision, the accommodation of common prac-
tice, and the need to support large character seLs.

MIL-8TD. 1753 Dit Intrinsie Functions Added

The public review comments strongly requested that Fortran 8x provids bit-level capahili-
ties, This surprised no onc, as there have been several attempts in the past to add a biv
data type. The problem has always becn that there are different groups of users that
require different kinds of bit data type. For example, bit arrays are appropriate for some,
whereas variable-length bit-strings are required by others. There has never been a bit
data type proposal presented that adequately satisfies this diverse set of bit processing
needs, and the public review comments, whilo underscoring the need for such, did not help
in identifying what that facility might be. Thercfore, emsentially to provide something as o
stop-gap measure until a better solution is devised, the MIL-STD bit intrinsic functlions
were added to the Fortran 8x intrinsic functions. These functions provide access Lo ihe
bits of integer data objects. .

New Form of DATA Statemenl Removed

This was removed in response to the general request o reduce tha complexity of the
language.

Structures Allowed in COMMON and EQUIVALENCE

Tho two things consistently mest requested in Fortran have been array operations and
data struciyres, which have heen imporiant parts of Fortran Sx almost [rom the begin-
ning. However, structurcd objects, which can contain any mix of component types (real
snd character, for example), were not permitied in COMMON blocks. The rationale for
this restriction is the Fortran 77 prohibition on having numeric and character objecis in
the samo COMMON block. It was thought that not allowing data structures in COM-
MON was not a serious restriction, since they could be made global by placing them in
MODULE program units. However, the public review commenta strongly requesied that
data structures (and sll other data objects) be allowed in COMMON blocks. Some For-
tran 77 restrictions on COMMON blocks have therefore been removed to allow structures
in COMMON, though there are still some rules on how things can be placed in a given
COMMON block 30 that a measure of portability is retained. Apny mix of data objects
can still be placed in MODULES; which is the simplest way to provide global access to
data safely and portably. But MODULE packaging of global data objects does not allow
the storage association manipulation of internal structure that COMMON provides, and
the public review comments requested that capability.

In order to make storage association in Foriran compatible with the new data types,
structurcs were allowed in EQUIVALENCE as well

N3

1c,

11.

.2

‘89 P6-23 09111 2 1654 NCRR

-7-

Parameters Removed from Derlved Type

The committee decided Lo remove parameterization of user-defined types to reduce the
complexity of Fortran 8x in response to the simplicity issue in the public review comments.
The possibility of adding material to the Jouraal of Development on this topic may be con-
sidered at & later time, il the second public review indicates the need. The 150 commun-
iLy supporta inclusion of this feature.

Declaration of Zero-sized objects was allowed.

Allowing zero-sized arrays regularizes the syntax, and climinates a restriction. It also
simplifies thie description of arrays in the draflt standard.

Syntax of Array Constructors Changed

Tho ayntax was modified to be more consistent with other eonventions in the language.
The squnre brackets were removed. There was strong ISO support for their removal.

Vootor-valued Subsoripte Restored

Vector-valued subscripts had been removed before the public review because Lhey were the
only form of array section for which the clements are not necessarily regularly spaced
within an array object. Vector-valued sections were, however, Lhe only means of providing
gather-scatter functionality, and the public review comments indicated that suech func-
tionality was nceded. (Also, hardware support for vector-valued subacripta has become
more widespread in the last couple of years.) Vector-valued subscripts were therefore rein-
stated.

Binary, Qctal, Hexadecimal Constanis Added

There were many requests in the public review comments for this featurc. They are avail-
able in ourrent compilers and represent commen practico.

CONTROL STRUCTURES

. DO WHILE Added, DO TIMES Removed

At public request, s WHILE option was added to the DO construct. With vhe addition of
the bit intrinsics, INCLUDE, and DO WHILE, all of the MIL-STD 1763 cxtensions to For-
tran 77 have been included in Fortran 8x.

In response to the general criticizm that the draft was too complex, and beeausc DO
WHILE was added, DO TIMES was removed

Overlapping CASE Ranges Disallowed

08

'89 86,23 89:12 2 1654 NCRAP

-8-

‘Phe CASE construct is processed in parallel, it allows processors 1o branch immediately to
the selected case. The public review comments requested Lhis prohibition.

. CASE Action has been Well-defined {even in absence of DEFAULT)

The CASE construct has beon modified so that, if no mateh is found and there is no CASE
DEFAULT, oxecution continues with the statement following the CASE construct. This
was considered preferable Lo terminatiug on an error condition.

INPUT/OUTPUT

. Partis! Record 1/0O Added

The international community pravided most of the public comment on character process-
ing, such as described above for Kanji support. Another roquest rom this comimunity wus
for varying character capabilivy. 1v was finally agreed that the best way 1o provide this
was as a varying character module, but that somc sort of stream 1/O0 (e.g.
GETCHAR/PUTCHAR) was needed to do that. As a suream 1/O facility would have
much wider use than just this application it was decided to add a stream I/0 capahility to
Fortran 8x. Initially considered were GETCHAR and PUTCHAR intrinsic functions.
However, the final decision was (o add versions of the READ and WRITE statemonts that
work on only part of the current 1/0 record - hence, the term partial record 1/O.

. Binary, Octal and Hexadecimal Edit Descriptors Added

In response 1o a jarge number of requests in the public review commentary, Lhis feature
was added. It is available in many current Fortran compilers. 1t was also a [eature sup-
ported by the ISO Fortran community. :

. VALUES=1/O Spocifier Removed

The VALUES= specifier iz 8 cilist was removed because it can be impossiblc to determine
where an error occurred in an input stream. NULLS= is provided for the NAMELIST
feature.

89

'89 Q€-23 09312 2 18654 NCRR

-9-

TWO GENERAL RESPONSES FROM X3J3 T0 PUBLIC COMMENTERS

There ate two responses prepared by the General Concepte subgroup of X3J3 that
address the rationale for the changes in a more genera! way. The first begins by
sddrassing the concept of deprecation, the second examines the issue of the size and
complexity of the lsnguage.

Both responses were approved by X3J3 at thelr last meetlng. The public comment
responses have been approved, and the letters to commenters are In preparation.

RESPONSE TO THE ISSUE OF DEPRECATION

There was consideradie reaction ¢ e concept of deprecstion (n the public commants. Although
many approved of the concept of lenquage evoluton and felt that festures sheukd eventually be
removed from the ianguage, the clesr majority of the comments about language evolution were
opposed to large scale removal of festures, particularly storage association, rom Rortran. Thers
was 3iso considerable oppesition within X3J3 towarcs the language evoiution model. As & resuft of
the public comment evaluation we fave ramoved the concapt of deprecation from the aratt of
Fortran 8X. In addition, we have further integrated some of the new festures with the relates ¢i0
features; for axampie, structures and objects of nondefault kinds can be in common and can be
equivaienced. Although we aannet contral the actions of future stancardization commiliees we
belleve that, 89 a practical matter, this means storage association will never be remeved from
Roriran. '

We have not removed the concept of language evolution nor have we macs sny changes 10 the
current obsalescant festures list, We believe that provision must be maintained for remeving
festures from the language that prove to be seidom uSed. unsafe or non-portable. An exsmple
from FORTRAN 86 would ba the Hollerith dats type. Althcugh It was widely impiemented, it was
not standardized in FORTRAN 77 becauss the impiementations dittared significantly. A current
exampia wouid ba DO loops with REAL index veriables. They are on the cbsclescent featres list
bscause they are not portabla: the actual number of iterations may vary among machines wilh
difterent round off characteristics. With the. rules and procedures that X343 follows the only
features that oould be considered for ramoval from the next revigion of Fortran are 1he features
in the obsolescent festures list; the clesr intent of the cutrant comminee membars is that these
feaiures not be removed uniess they have truly tallen into cisuse.

Wae reslize that agging ngw teaiures withoul removing oid ones makes he |8nguage both larger and
more redundant. We believe that the resundant new featurss make codes easier to write and
maintain and that, just s current programmers generslly use IF-THEN-ELSE blocks rather than
3 branch IFs, most programmers will quickly adopt the new reduncant syntax. New features such
a8 MODULE/USE are admittedly "large®, but they have consideradie public support: there does
not ssem 1o ba & practical way 1o remave aqually “arge” current features 1o mainwin the language
sigs. Although thers it sham disagreement within the committes, the majority has basically
sccepted 1he increase in size of the languags and feels that the benefits gre worn 1he accec
complexity.

Since FORTRAN 77 is 8 subset of Fortran 8X we belisve there should be no need to extensively
modily cocles and Httle or nO conversion costs associated with moving @ stancard conforming codle
1o the new &X compilers. Forran 8X has added 2 large number of new intrinsic functions. In
meving a code 1o an 8X compiler it will be necassary te check for conflicts between user supplied
external functions and tha new intrinsics. The conflicts can be rescived by adding en EXTERNAL
statement. Mos!, But not all, of the naw function names are longer than € characters and snouid
not conflict with existing standard conforming codas.

18

‘8% B&8/23 B9 l3 2 1654 - NCAR

RESPONSE TO THE ISSUES OF SIZE AND COMPLEXITY

The public expressec considerable concem about the size and complexity of Fortran 8X. Although
many falt that’the langusge wes neither 100 Big nor 1oo aamplex the clear majority of pecpie
commenting on size or camplexity disagreed. Reisted comments obsarvad that this was & new
language with iittle reistionship 1o tradiional FORTRAN; thet the committes did not foliow s
eharter fo “standardize exigting practice”; thet the sise and compiexity wouid make it difficult 10
iesm to use the langusge. Others felt that compilers would be Inetficient, late in arriving and be
riddied with errors. Some suggested that the language should be spht into two (anguages, either
by cefining one or More subsats of Foriran 8X or Dy defining @ new lsnguage with most or all of
ihe obsolescent. depracated. or redundant festures of FORTRAN 77 removes. A significant
minarity of the commitiee Mambers echoed some or al of these sentiments, Thare was often
supoon for some af the features, or sets of features, in Fortran 8X, ususily couplad with strong
opposition to other features in the language.

Al the same tima (hare was cansiderable prassure in the comments and from the international
counterpan of X3J3 to produce a standard in a timeiy manner and la not significantly reduce the
scopa of the standard.

We have made significant changes 10 the proposed standerd in en gtiempt 18 reach & broader
cangansus within X3J3, Me user community, anc the (ntemational community. We have removed

the RANGE and IDENTIFY statements, generic precision, and he ¢oncept of deprecation. We have

simplifled specified pracision, generic functions and structure definitions. We have added an

INCLUDE statement, POINTERs, the DO-WHILE loop, the milltary standard 1783 BIT

manipulation functions, suppon for a logical data type which does not have o occupy 8 full werd,

supoont for additional charactar sets, and we have sfiowed structures and objects of nondefauit

kind 1o ba in common and equivaiance. FORTRAN 77 continues to be a complate subset of Fortran

ax.

We agree that the draft language is larger and more compiex than FORTRAN 77. Although there is
disagresment on this point within the sommities, the majority belleves that the added
functionality is beneficial and the secompanying increases in size and complexity are not
sxcessive. Most of the newly sianderdized features are based on extensiona available In existing
Fortrgn compliers. OMers have exisied for years In “smal” languages such ss ¢ or Pascel. In
some cases we have tried 10 standarcize tha iment ana tuncluonaiity of common practice rather
ihan the exact syniax. A good exampla would be the specified precision feature, We gid not
alempt lo standardize the "REAL'4" syniax since the implementation of this varies from machine
o machine. Rather we standardized a paramaterizec data type. Individusl processors can susily
map their version of "REAL"4° onto the parameterized types &8 an extension.

Erom a programmers point of view most of the new faatures are ressonably independent of esch
pther. Amay procsssing, specified pracision, and modules snd darived data types can all be usec
independently of aach other. Although some basic tamiliarity with the entire language will be
desirable there iononnd!ebouaomonmmpummmmmtmcddw:plmmwm
problem. In eddition, since FORTRAN 77 is & subset of Fortran 8X there is no need to “unisarn”
anything yntll new features are used as repiscements for existing features. Nor is there any need
to exiensively modity existing stancarg conforming codes to R tham with a Fertran 8X comgiler.
@ecause of he large number of new Intrinsic tunctians added it might be necessary (o add
EXTERNAL statements 10 resoive Name confiicts with existing extemal tunctions.

'89 86,27 0914 2 1654 NCRR

-11-

Some of the aize of Fortran 8X Is due to the mkiiton of recundant feaiures. We belleve that,

sithough they sre recundant, the New CONtIG! STrUCIUres and new Oats definition statements will

make It gasier 10 writs ang maintain programs. The FORTRAN 77 IF-THEN-ELSE bicck is

regunoant with IF-GOTO and the three branchad IF, yet most programmaers. prefer it since it adds

g:m gto 't::ésﬁmmm flow. Wa predict that DO-ENDDO will quickly repiace DQ-CONTINUE as the
re.

Many of the new features are providad to eliminate one of FORTRAN'S biggest wasknasses: tha
chance for error in the subrouting call procass. interiace blocks, keyward arguments, modules,
and new data attributes all aliow, but do not require, agoption of ¢ style that allows for compile
time ohecking of most of the cail interfese. |

Although ciesrly a matter of subjestive judgment the committes majority does not bellsve the
language will be 100 Big for Micro computers. NOF G0 we betieve that the language wiil be 100
compigx for (ne average scientist or engineer 10 use.

Wae are concerned about program efficlency. We have removed two stalemants ofign commented on
as being inafficient: the RANGE and IDENTIFY suatements. We dor't belleve that the other
additions to ihe language are inherenily inefficient. Many of the new arrgy Intringic functions
perform compiax aperations and will execute *siowly”. However, there does fnct seem 10 be any
reasen 1 belleve they will executs any siowsr than the carrespancing FORTRAN 77 code wouid. in

fact, they might execute faster since the complier can genarate *aptimal® coda or call an efficient .

Hbrary routine witheut heving 1o recognize a complex source code pattern. Soma of the new
foatures, particularly some of the array processing fastures, will require compilgr optimization.
howevet, we o nat bellgve the optimizations are beyond the range of currant sompiler technaiogy.

The commities is aimost unanimously opposed 1© the concept of subsets. Experience with
EORTRAN 77 indicated that subsets wers Simost never impiemenied; anc when they were there
was ysualy marketpiace confusion sbout what sxactly was impigmented. Given the magnitude of
the changes made to the standard there does not seem 1o be & practical way 1o defing @ subsat. The
majority of tha committee also does nol believe 1t would be practical or desirable to attempt io
define 8 naw "modern® Fortran with ihe deprecated or redundant features removed. There is
simpiy toe much investmaent in ¢ld codes 1o propose & wholesale repiacement with a naw language.
Since FORTRAN 77 is & compiete subset of Fortran AX and since we have included many of the
current exisnsions we befleve thers can be & gradusl shift 1© the naw fegtures and stll preserve
the investment in oid codes.

12

