X3H5
Parallel Extensions

for Fortran
April 2, 1993

Document Number
X3H5/93-SD2-Revision A

TC X3H5/92-SD2-Revision A

Technical
Committee
X3H5/93-
S D 2 -
Revision A

for Parallel Computation-
Parallel Fortran-
Sandard

N B

1.0 INtroducCtion 8

1.1 Conceptual Model of Fortran Program Execution 8
1.2 Pseudo Code Form of the Conceptual Model 8
2.0 Standard Compliance 10
3.0 Terminology and Basic CONCeEPLSottt 11
4.0 Control SIrUCIUrES oot e e e 12
4.1 Paralle Region Construct 12
4.1.1 Syntax for Parallel RegionsConstruct 12

412 Interpretation 12

4.2 Work Sharing Constructs e e 13
421 PDO CoONSIrUCt 13
4211 Syntax forthePDO Construct 13

4212 Coding Rules 13

4.2.1.3 Interpretation 13

4214 PARALLEL PDO i 14

4214 Paralel PDO SyntaXoiiiii i 14

4216 Examples 14

422 PSECTION CONSIrUCt oot e e e 16
4.2.2.1 Syntax for the PSECTION Construct 17

4.2.2.2 Coding Rules for the PSECTION Construct 17

4221 Interpretation 17

4.2.3 PARALLEL PSECTIONS Construct 19
4231 SYNEAX . o v e 19

424 PDONE 19
4241 EXplicit Syntaxt 19

4242 CodingRules 19

4243 Interpretation 20

4244 Examples 20

4.3 GROUP CoNStrUCto e e e e 20
431 SYNEAX . ot 20

432 CodingRules 20

433 EXamples 21

4.4 Single Process SECtionot 22
441 EXplicit Syntax e 22

442 Explicit Syntax 22

44.3. Interpretation e e 22

45 Inquiry FUNCLIONSo 23
4.5.1 Maximum peformance improvement at thistime 24

452 TeaM SIZE . .. oo 24

453 Looking for work 24

N

45.4 Blocked processes 24

455 ACHVE PrOCESSES . . v v vttt e et e e 24

5,0 Data EnVironmentsttt e 25
51 Terminologyot 25
5.1.1 The model terminology mapped to Fortran 25
5111 ObJECt ..ottt 25

5112 Read/Modify 25

51.1.3 Dataenvironmentt 25

5114 Private/Shared 26

5.1.2 Fortran terminology extended for themodel: 26
51.21 ScopingUnit 26

5122 Instance of asubprogram 26

5.1.3 New terminology for thebinding 27
5.1.3.1 Iterative Control Variables 27

5133 Hidden 27

5.2 Allowable Parallel Access Attribute 27
5.2.1 Definition of Instance Attribute 28
52.1.1 Instance Statement Syntax 29

5.3 Private/Shared Attribute 29
5.3.1 References through Pointers 30

54 BasiC MeCchaniCst 30
54.1 Typesof DataEnvironments 30
54.1.1 Initia Data Environment 30

54.1.2 New DataEnvironment 31

5.4.1.3 Looking for Work Data Environment 31

5.4.2 Data Environments upon encountering a parallel construct 31

54.3 Object creation 31

544 Destroying Objectso 32

545 Exiting parallel constructs 32

5.4.6 Early Departuresof TeamMembers 33

55 Binding Considerations 33
55.1 APA and P/S Attributes with Fortran Scoping Rules 33

5.5.2 Data Environments and Lifetime of Fortran Objects 33

5.5.3 New Instances of Objects for Parallel Constructs 34
5531 Syntaxii 34

5532 Interpretation 34

5533 New Statementiiiii... 35

55.3.3.1 NEW Statement Syntax 35

5.5.34 lterative Control Variables 35

554 Alternative APA Attributes for Always Shared 35

5.5.4 External Data Objects and Multiple Processes 36
5551 Commonand Modules 36

5.6 Objectsand Synchronization 37

H

aprwdN

5.7 EXamples 37

6.0 INPUL/OULPUL o e 47
6.1 Multiple End-of-FileRecords 47
6.1.1 Explicit Syntax 48
6.2 EXamples 48
7.0 SynChronization e 50
7.1 Explicit Synchronization 50
7.1.1 Extensions Shared by Many Synchronization Methods 50
7.1.1.1 Representing States i 50
7.1.1.2 Testing for Uninitialized State 51
7.1.1.3 SYNCHRONIZE Statement 51
7.1.1.3.1 Proposed X3H5 Extended Syntax Rule 51

7.1.1.3.2 Consistency Rules for the SYNCHRONIZE
Statement 52
7.1.1.4 Representing Synchronization Operations 52
7.1.1.5 Use of Control Typesand Assignment 53
7.1.2 Limiting Synchronization Overhead 53
7.1.2.1 Proposed X3H5 Extended Syntax Rule 53
7.1.22 GUARDS Attribute 53
7.1.3 Critical SECHiONS o 54
7.1.3.1 Proposed X3H5 Extended Syntax Rule 54
7.1.3.2 Consistency Rules for CRITICAL SECTION 54
7.1.3.3 Operations on Objectsof TYPE (LATCH) 54
7134 Default Latch 55
7014 LOCKS .. 55
705 BEVENtS ..o 56
716 SEOQUENCES . . . ot et e e e e 56
7.2 Explicit Synchronization 56
721 Critical SECHiONSo 57
7211 Explicit Syntax 57
7212 CodingRules 58
7213 Interpretation 58
7214 EXamples 58
7.2.2 Event Synchronization 63
7221 Explicit Syntax 63
7222 CodingRules 63
7.22.3 Interpretation 63
7224 EXamples 64
7.2.25 Intrinsic Functionsfor Events 64
7.2.3 Sequences. Ordinal Synchronization 65
7.23.1 Explicit Syntax e 66
7232 CodingRules 66

O©CoOo~NOULr,WNE

[
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.233 Interpretation
7234 EXamples
7.2.3.5 Intrinsic Functions for Ordinals
7.2.4 Unstructured synchronization - Locks
7.24.1 Explicit Syntax
7242 CodingRules
7.24.3 Interpretation

7244 Examples

7.24.5 Intrinsic Functionsfor Locks

8.0 Nondeterministic Programst e e e

A.0 X3HS5Directive Binding
A.1 Directives- Introduction

A.1.1 Role of the DirectiveBinding

A.1.2 Single Process Execution Requirement for Compliant Programs . . .

A.1.3 Synchronization and Serial Execution

A.1.3.2 Scoping at Parallel Constructs and Serial Execution

Alternate Intrinsic Functions o oL

Ald Terminologyo

A.1.5 Directives - General Usage Requirements in Parallel Programs ..

A.15.1 Continued Directive i

A.1.6 Pardld Intrinsic Functions
A.1.6.1 Padle Intrinsic Behavior for Equivalent Seria

EXecution

A.1.6.2 Functionality Not Supported Under Serial Interpretation . .

A2 Syntax RUlES

A.21 Pardle DoConstruct
A211 SYNtaxXo
A212 CodingRules
A213 EXamples

A.2.2 Pardld SectionsConstruct
A221 SYNEX . .. oo
A.222 Interpretation
A223 EXamples

A.2.3 Synchronization Declarations
A231 SYNaX . .. oo
A.232 CodingRules

A.2.4 Unstructured Locking Synchronization
A241 SYNtaXo
A242 Examples

A.2421 Function Values for GATEsS in Serid
Execution
A.25 Critical Sections

O©Coo~NOULh,WNE

A251 Syntax 85

A251 EXxamples 85
A.2.6 Event Synchronization 88
A26.1 SYNtaXo 88
A.2.6.1.1 Function Vaues for Events in Serial

Execution 89
A.2.7 Ordina (Sequence) Synchronization 89
A27.1Syntax 89

A.271.1 Function Vaues for Counters in Seria
Execution 91
A3DataSharingo e 91
A.3.1 DataSharing Directives 91
A3LL SYNtaX . .. oo 91
A312 RUles 92
A.3.2 Partialy Shared Common Blocks 92
AB2L SYNAX . . oot 92
A322 RUES 92
A.4 Paralld Region Construct 94
AAL SYNEAX . oot 94
A42 Single Process Sections 98
Ad21 SYNEX . . . oo 98
A5 Exitsfrom Paralle Constructs 99
AL L SYNtaX . oo 99
A6 Extended INtrinSiC 100
A.6.1 Pardld Intrinsic Functions 100
A.6.2 Definition of Serial Execution Library 100
B.0 Syntax Rules (Informative) 102
C.0 Lex/Yacc Syntax Rules (Informative) i 105

~N O 01

O ©

11

12
13
14
15
16
17
18

19
20
21

22
23

24

25

26
27

28
29
30
31
32
33

1.0 Introduction

This standard defines parallel language extensions for Fortran. All of the extensions are designed
to feel Fortran-like to the programmer to be consistent with the X3H5 Language Independent
Model for Paralel Computation (X3H5/93-SD1-Revision A).

Wherever possible, the X3H5 extensions are described in terms of those entities which are
imported viaa MODULE (TY PE definitions, FUNCTIONS, and SUBROUTINES). Thereisno
presumption that this is, in fact, how they shall be implemented.

Where the gain in functionality is sufficiently meritorious, the extensions are additions to the
syntax definition of Fortran. When the X3H5 module is not used, a conformant implementation
need not accept these syntax extensions.

1.1 Conceptual Model of Fortran Program Execution

A parallel program written using the ANSI X3H5 Fortran Language (ANSI X3H5 FL), begins
execution in the Fortran main program as it would for an ordinary Fortran program. The initial
process as defined in the ANSI X3H5 language Independent Model, begins execution of the
main program. Execution proceeds as it would for a serial program until a parallel construct is
encountered. A parallel construct is defined by PARALLEL and END PARALLEL statements.
A worksharing construct is defined by PDO and END PDO or PSECTION and END PSECTION
statements.

The following statement combinations define both a parallel construct and a worksharing
construct: PARALLEL PDO and END PARALLEL PDO; PARALLEL SECTION and END
PARALLEL SECTION.

Implicit synchronizations occur ati: PARALLEL, END PARALLEL, PARALLEL PDO, END
PARALLEL PDO, PARALLEL SECTIONS and END PARALLEL SECTIONS.

A group construct is defined by PGROUP and END PGROUP statements.
1.2 Pseudo Code Form of the Conceptual M odel

The following is a pseudo code skeleton of a parallel program that uses the constructs described
herein.

program main
I only the initial process is active here
I serial execution occurs here

paralel
I each team member performs the same actions
pdo i=1,n,1 I beginning of worksharing construct

O©Coo~NOULE,WNE

I iterative work is distributed among team members

end pdo I'end of worksharing construct
group I beginning of group construct
I replicated code here executed by all team members
psection I beginning of worksharing construct
psection
end psection I end of worksharing construct
end group I'end of group construct

paralel do j=1,m,1 ! nested paralelism

end parallel do I end of nested parallelism
end parallel I end of parallel construct
I serial program execution
I possibly more parallel constructs

end

H
PO OWoWO~N® aprwdN =

'_\

2.0 Standard Compliance

This standard describes all standard conforming programs. A program is standard conforming
if it uses only those forms and relationships described in this standard and if that program has
an interpretation according to this standard. A program unit is standard conforming if it can be
included in a program in a manner that allows the program to be standard conforming.

A standard conforming implementation executes a standard conforming program in a manner that
fulfills the interpretations prescribed by this standard. A standard conforming implementation
may allow additional forms and relationships provided that such additions do not conflict with
the standard forms and relationships. In order to avoid name space pollution, al standard
conforming programs must contain a USE X3H5 statement. A standard conforming processor
may ignore al X3H5 constructs when USE X3HS5 is omitted.

10

A OWN

0o ~N O Ol

11
12

13
14

15
16

17
18
19

20
21

22

23
24

25
26

27

28

29
30

3.0 Terminology and Basic Concepts

The first time aword or phrase with a specia or restricted meaning is used in this document, it
is boldfaced and defined. An example of this convention is the word, Fortran, (any dialect of
ISO/IEC 1539:1991 (E) Fortran 90). All definitions are repeated in the glossary.

In describing the form of statements or constructs, or in explaining examples, the following
metal anguage conventions and symbols are used. These are similar to those defined by Fortran

90 (S8 Version 118, X3.198-1991 American National Standard Fortran 90, 1SO/IEC 1539:1991)
on pages 3-5.

1. The courier type font, such as ABCDEFGHI JKLMNOP, are characters from the Fortran
character set and are to be written as shown, except as otherwise noted.

2. A construct is referenced by capitalizing the first letter of the words that make up
the construct name (e.g., the Parallel Do construct).

3. A statement is referenced by capitalizing all of the letters that make up the
statement key words (e.g., the PARALLEL PDO statement).

4, Entities written in lower case italics, such as name, indicate general entities for
which specific entities must be substituted in actual statements.

Once a given name is used in a syntactic specification to represent an entity, all
subsequent occurrences of that name represent the same entity, until that name is
used in a subsequent syntactic specification to represent a different entity.

5. The entity name-list indicates a comma separated list of name. The entity name-
list will not be further defined, but name will be.

6. Square brackets (i.e., "[]") are used to indicate optional items.

7. Ellipses (i.e, "..") are used to indicate that only an abbreviated form of a
statement has been used, and that any form is allowed.

8. Blanks are used to improve readability, but unless otherwise noted, have no
significance.

9. The entity statements indicates zero or more statements.
10. The entity int-exp represents an integer expression.

References to sections in this document consist of section number and section title (e.g., "2.
Terminology and Basic Concepts”).

11

28

29
30
31
32
33

35
36
37
38

4.0 Control Structures
4.1 Parallel Region Construct

The Parallel Region construct and associated grouping and worksharing constructs are all block
structured constructs. All of the constructs follow the Fortran rules for block structured
constructs.

4.1.1 Syntax for Parallel Regions Construct

A parallel-region-construct is:

[nane:] PARALLEL [(parallel-option)]
dat a- shari ng- spec
par al | el - body
END PARALLEL [nane]

wher e
paral l el -option is MAX PARALLEL
ORDERED
MAX PARALLEL = int-expr, ORDERED
ORDERED, MAX PARALLEL = int-expr
paral |l el -body is statenents
paral | el - const ruct
paral | el -construct is parallel-region-construct
pdo- const r uct
psecti ons-construct |
gr oup- const ruct
paral | el - pdo-construct |
paral | el - psecti ons-construct
si ngl e- process- construct

i nt-expr |

Contstraint: If the parallel-construct has a name prefix, then the it nust have
the sane nane as a suffix.

4.1.2 Interpretation

The Parallel Region construct is used to specify paralel execution of a block of code. The
process that executes the PARALLEL statement becomes the base process. The processes that
enter the Parallel Region construct are those on the team.

If the MAX PARALLEL qualifier isnot specified on the PARALLEL statement, then the number
of processes on this team is limited only by the maximum number of processes available to the
program. (See the intrinsic function NPSAVL)

If the MAX PARALLEL qudlifier is specified on the PARALLEL statement, then the number
of processes on this team is limited by the iexpl.

12

O~NOOT DA~ WN P

©

10
11
12
13
14
15
16
17

18

19

20
21

23

24

25

26
27
28
29
30
31
32
33

All code inside a Parallel Region that is not enclosed by a worksharing construct shall be
redundantly executed by all of the processes on the team.

If one or more processes execute a statement that causes a transfer of control out of the block
defined by the parallel region, then the program is not standard conforming. Worksharing
constructs are used to identify work that is to be spread among all of the processes on the team
that encounter the worksharing construct.

4.2 Work Sharing Constructs

Worksharing constructs define units of work that shall bedistributed among the team within a
parallel region. Work sharing constructs may be coded outside of the lexical scope of a paralel
region. However, if paralel performance is to be achieved, a worksharing construct should be
encountered within a paralel region construct. Inside a worksharing construct, no new
parallelism shal begin unless a paralel construct is encountered to signal the formation of a new
team. Unless it is enclosed in an intervening paralel construct, the innermost of two nested
worksharing constructs shall be executed solely by the process that encounters it, even if idle
team members are available.

4.2.1 PDO Construct
PDO is an iterative worksharing construct as described in the LIM.

4.2.1.1 Syntax for the PDO Construct

[name:] PDO [(parall el -options)]
par al | el - body
END PDO [nane]

4.2.1.2 Coding Rules
4.2.1.3 Interpretation

If the MAX PARALLEL qudlifier is not specified on a PDO or PSECTIONS statement, then the
number of processes on this team that may enter the worksharing construct is limited only by the
number of processes on the team. (See the intrinsic function NPSTM (what is the new name for
NPSTM?))

If the MAX PARALLEL qualifier is specified on PDO or PSECTIONS statement, then the
number of processes on this team that may enter the worksharing construct is limited by the

iexp2.

13

WN -

co~NO O~

11

12
13
14
15
16

17
18
19

20
21

A Pdo construct may be executed by a single process. A process executes multiple units of
parallel work from a Pdo construct as specified by the the Language Independent Model for
Parallel Computation. For example it must:

1. for each unit of parallel work to be executed:
a assign the appropriate value to its index variable
b. execute the iterative portion
C. if EXTEND is specified, execute the statements up to the END .*

EXTEND statement

2. make all shared objects updated by this process within the Pdo and the group
block available to all processes

3. wait for all processes that participated in executing the Pdo to complete step 2)

The value of the loop index of a Parallel Do construct is undefined outside the scope of the
Parallel Do construct. The value of aloop index contained within a parallel construct is undefined
outside the scope of the enclosing parallel construct. The value of the index of an implied DO
contained within a parallel construct is undefined outside the scope of the enclosing parallel
construct.

4.21.4 PARALLEL PDO
The PARALLEL PDO construct is a combined parallel construct and worksharing construct and
has the same meaning as

PARALLEL
PDO

4.2.1.4 Paralledd PDO Syntax

The syntax for the PARALLEL PDO is:

[nane:] PARALLEL PDO iter-specification parallel-option-Iist
dat a- shari ng- spec
par al | el - body
END PARALLEL PDO [nane]

4.2.1.6 Examples

Exanpl e SUBROUTI NE EX48 (A, B, C, N)

REAL A(N), B(N), C(N)
PARALLEL PDO I =1,

NEW T

T = A(1)*B(1)

C(1+1) = T * (T-1.0)
END PARALLEL PDO
END

14

H
QOOO~NOOUIRWNEF

Example ? shows the Parallel Region equivalent form of the Parallel Do construct shown in
Example ?. Examples ? and ? compute the same results and exhibit the same amount of

parallelism.

Exanpl e 50

Exanpl e 51

Example 51 shows the Parallel Region equivalent form of the Parallel Sections construct shown
in Example 50. Examples 50 and 51 compute the same results and exhibit the same amount of

parallelism.

Exanpl e 52

10

20

10

20

SUBROUTI NE EX49 (A B, C N
REAL A(N), B(N), C(N)
PARAL LEL
NEW T
PDO I =1, N-1
T = A1) *B(1)
C(I+1) =T * (T-1.0)
END PDO
END PARALLEL
END

SUBROUTI NE EX50 (ZA, ZB, ZC, ZD, N)
REAL ZA(N), ZB(N), ZC(N) , ZD(N)
PARALLEL SECTI ONS

NEW T

DO 20 1=1,N
T = ZFUNC(ZB(1)-ZA(1))
ZD(|) =T* T

END PARALLEL SECTI ONS
END

SUBROUTI NE EX51 (ZA, ZB, ZC, ZD, N)
REAL ZA(N), ZB(N), Z&(N), ZD(N)
PARALLEL

END PSECTI ONS
END PARALLEL
END

SUBROUTI NE EX52 (A)
REAL A(*)

15

OO~NOUTRWNEF

51
52

GETLOCK B
GUARDS B(SUM
UNLOCK(B)
SUMEO. 0
PARALLEL
NEW SUML
SUML = 0.0
GROUP
PDO 1=1,N
SUML = SUML + A(l)
END PDO
CRI TI CAL SECTI ON (B)
SUM = SUM + SUML
END CRI TI CAL SECTI ON (B)
END GROUP
END PARALLEL
END

Example 52 shows a typica method for computing a reduction on a machine with a relatively
small number of processes. All of the processes initialize their new copy of SUML to zero, then
sum up the elements of A that correspond to the iterations assigned to each process, then, without
waiting for the other processes on the team, update the global SUM from their loca sum
(SUML). All of the processes on the team wait at the END GROUP statement before continuing.

Exanpl e 53 SUBROUTI NE EX53 (A, B, C D, N, M
REAL A(N), B(N), (N, (N
PARALLEL

PDO | =1, N
ACl) = B(I) * 1)
END PDO
PDO | =1, M
D) = A(l) - 1)
END PDO
END PARALLEL
END

Example 53 shows a typica method for reducing fork/join overhead by placing two adjacent
parallel loopsinside asingle Parallel Region. Because GROUP is not coded, the team members
wait at the end of the first Pdo construct for all of the work to be complete, and then begin
working on the second Pdo construct.

Exanpl e 54 SUBROUTI NE EX54 (A, C, N, M
REAL A(N,0: M, C(N, M
PARAL LEL
DO 10 J=1, M
PDO | =1, N
ACl,J) = C(1,3) /A, J3-1)
END PDO
10 END DO
END PARALLEL
END

Example 54 shows a typical method for greatly reducing fork/join overhead by floating the
Parallel Region outside of a serial loop.

16

ol w

'_\
O OO0

|_\

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28

29
30
31
32
33

35
36

4.2.2 PSECTION Construct
Psection is a non-iterative worksharing construct as described in the LIM.

4.2.2.1 Syntax for the PSECTION Construct

[name:] PSECTI ON
sections
END PSECTI ONS [nane]

where
sections is [sections section]
section is SECTION [name] [WAIT (name-list)]
parallel-region
4.2.2.2 Coding Rules for the PSECTION Construct

The Parallel Sections construct is a block structured construct. The SECTION statements mark
the beginning of each block. The end of each block is delimited by either another SECTION
statement or the END PARALLEL SECTIONS statement. The Parallel Sections construct follows
al of the rules of Fortran block structured constructs.

The identifier used for a section-name is a seventh class of local names in the sense of Fortran
page 18-2. This means that

A section-name must be unique within a program unit (ISO/IEC 1539:1991 Section 2.2)

Section-names share the single name space already shared by array, variable, constant,
statement function, intrinsic function, and dummy procedure names

In a standard conforming program the WAIT clause shall only reference the section-name of a
lexically preceding SECTION statement of the same Parallel Sections construct.

4.2.2.1 Interpretation

The Parallel Sections construct is used to specify parallel execution of the identified sections of
code. Each section of code identified in a Parallel Sections construct is interpreted as a unit of

work.

In a standard conforming program the sections of code shall be data independent, except where
appropriate synchronization mechanisms are used.

A section-name is a label with no programmer-visible storage association.

17

N

o0k W

o~

11
12

13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33

35
36

A Psections construct may be executed by one or more processes. A process executes multiple
units of parallel work from a Psections construct by performing this sequence:

1. for each unit of parallel work to be executed:
a if a WAIT clause is coded for this section, then wait until the sections
indicated by the WAIT clause have completed execution
b. execute the corresponding section of code
2. if the EXTEND quadlifier is specified, execute the statements up to the END

EXTEND statement

3. make al shared objects updated by this process within the Psections construct
available to all processes

4, wait for all processes that participated in executing the Psections construct to
arrive at step 2)

If the MAX PARALLEL qualifier is not specified on a PDO or PSECTIONS statement, then the
number of processes on this team that may enter the worksharing construct is limited only by the
number of processes on the team. (See the intrinsic function NPSTM (what is the new name for
NPSTM?))

If the MAX PARALLEL qualifier is specified on PDO or PSECTIONS statement, then the
number of processes on this team that may enter the worksharing construct is limited by the

iexp2.

If one or more processes executes a statement that causes a transfer of control out of the blocks
defined by the Parallel Sections construct, then the program is not standard conforming. <Do we
need our CYCLE and EXIT words here?>

The WAIT clause specifies a partial ordering among the sections of code. All sections whose
names are listed as section-names in the WAIT clause of a section must complete before that
section can begin. The WAIT clause does not require use of the ORDERED qualifier.

The GUARDS clause shall only be specified on the SECTION statement if the WAIT clause is
specified. The GUARDS clause explicitly identifies the names of objects that shall be made
consistent for the process executing the waiting section.

The GUARDS clause explicitly identifies the objects that must be made consistent and removes

a requirement for an implementation to make any other objects consistent at the point it is
specified.

18

O©Coo~NOULr,WNE

29

30
31

32

33

If the ORDERED qualifier is not specified, then, except for the partial ordering specified by
WAIT clauses, the sections of code must be execution order independent. The implementation
may assign the processes to sections of code in any order alowed by the partial ordering
specified by the WAIT clauses.

If the ORDERED qualifier is specified, then synchronization mechanisms may be used that
require some portion of an earlier (in lexical order) section to complete execution before some
portion of a later section begins execution. While use of the ORDERED qualifier in a Parallel
Sections construct that does not contain synchronization is standard conforming, it may incur a
performance penalty on some implementations.

If the MAX PARALLEL qualifier is not specified, then the number of processes on this team is
limited only by the number of Sections defined or the maximum number of processes available
to the program. If the MAX PARALLEL qualifier is specified, then the number of processes on
this team must be greater than zero and less than or equal to int-exp. Any lexically contained
do loop index variables are treated as newly scoped objects for the parallel section. They inherit
the same type as the objects of the same name outside of the parallel section. They have the
automatic storage class and have no storage associations thru equivalence classes or common
blocks.

There is an implicit synchronization at the end of a Parallel Sections construct.

4.2.3 PARALLEL PSECTIONS Construct

The PARALLEL PSECTIONS construct is a combination of the PARALLEL and PSECTIONS
constructs.

4.2.3.1 Syntax

[nane:] PARALLEL PSECTI ONS [parall el -opti ons]
dat a- shari ng- spec
sections

END PARALLEL PSECTI ONS [nane]

4.2.4 PDONE

The PDONE statement shall be used to indicate early completion of work
within a worksharing construct.

4.2.4.1 Explicit Syntax
PDONE

4.2.4.2 Coding Rules

19

N

O OO~ O

12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28

29

30
31

32

33
35

The PDONE statement is an executable statement.

The PDONE statement shall occur lexically nested within a worksharing
construct.

4.2.4.3 Interpretation

Coded directly inside of a worksharing construct, the PDONE statement
is used to indicate that no more units of work need to be distributed.
Any units of work that have been distributed shall be completed.

A standard conforming implementation may complete all of the work
specified by the worksharing construct even though a PDONE statement
is encountered.

4.2.4.4 Examples

Subroutine EX58(x,y)
Double precision x(100),y(100)
parallel do i=1,100
if (y(i) .eq. 0.0D0) then
print* i
pdone
cycle
endif
x(1)=1.0/y(i)
end parallel do
return
end

In example 58, a process that findsa 0 in Y will print the index and
indicate that no more iterations need to be done. The other processes
will complete execution of any iterations the have begun. The CYCLE
statement must be specified if the iteration setting PDONE is to skip
the rest of its current iteration.

4.3 GROUP Construct

The Group construct is a grouping construct. By default there is a barrier at the end of the
Group construct. The barrier isremoved by coding the NOWAIT option for the Group construct.

4.3.1 Syntax

[nane:] GROUP [(group-option)]
par al | el - body
END GROUP [nane]

20

where
group-option is NOWAIT
4.3.2 Coding Rules

The Pdo, Psections, and Group constructs may be coded outside of the lexical scope of a paralel
region. In addition, PDO and PSECTION may be coded outside of the lexical scope of an
associated Group.

4.3.3 Examples

Exanpl e 52 SUBROUTI NE EX52 (A)
REAL A(*)
GETLOCK B
GUARDS B(SUM
UNLOCK(B)
SUMEO. 0
PARALLEL
NEW SUM
SUML = 0.0
GROUP
PDO =1, N
SUML = SUML + A(l)
END PDO
CRI TI CAL SECTI ON (B)
SUM = SUM + SUM
END CRI TI CAL SECTI ON (B)
END GROUP
END PARALLEL
END

Example 52 shows a typica method for computing a reduction on a machine with a relatively
small number of processes. All of the processes initialize their new copy of SUML to zero, then
sum up the elements of A that correspond to the iterations assigned to each process, then, without
waiting for the other processes on the team, update the global SUM from their loca sum
(SUML). All of the processes on the team wait at the END GROUP statement before continuing.

Exanpl e 53 SUBROUTI NE EX53 (A, B,C,DN, M
REAL A(N), B(N), C(N), D(N)
PARALLEL
PDO I =1, N
ACL) = B(I) * (1)
END PDO
:5‘]_’
|

PDO |
X
END PDO
END PARALLEL
END

M
= A1) - 1)

Example 53 shows a typical method for reducing fork/join overhead by placing two adjacent
parallel loopsinside asingle Parallel Region. Because GROUP is not coded, the team members
wait at the end of the first Pdo construct for all of the work to be complete, and then begin
working on the second Pdo construct.

21

OO~NOUIRWN -

15

16
17
18
19
20

21

22
23

25
26

27

28
29

30

31

32

Exanpl e 54 SUBROUTI NE EX54 (A, C, N, M
REAL A(N,0: M, C(N, M
PARALLEL
DO 10 J=1, M
PDO | =1, N
AL, = C(1,3) 1AL, J-1)
END PDO
10 END DO
END PARALLEL
END

Example 54 shows a typical method for greatly reducing fork/join overhead by floating the
Parallel Region outside of a serial loop.

4.4 Single Process Section

When executing inside a Parallel Region construct, it is often convenient to use a single process
to update objects that are shared among the team. The Single Process construct is a worksharing
construct with exactly one unit of work.

4.4.1 Explicit Syntax

Statement Forms
SI NGLE PROCESS

END SI NGLE PROCESS

Structured As

SI NGLE PROCESS

statenents
END SI NGLE PRCCESS

4.4.2 Explicit Syntax
The Single Process construct follows all of the rules of Fortran block structured constructs.
4.4.3. Interpretation

A block of code surrounded by a Single Process construct is executed by exactly one process of
a team per encounter.

Exanpl e 55 SUBROUTI NE EX55 (A, B, N)
REAL A(N), B(N)
PARALLEL
PDO | =1, N
A(l) = 1.0/ A(l)
END PDO

SI NGLE PROCESS
IF (A(1) .GT. 1.0) A(1) = 1.0
END SI NGLE PROCESS

22

1 PDO | =1, N

2 B(l) = B(l) / A(1)

3 END PDO

4 END PARALLEL

5 END

6 Exanpl e 56 SUBROUTI NE EX56 (A, B, N)

7 REAL A(N), B(N)

8 PARALLEL

9 PDO 1 =1, N

10 A(l) =1.0/7 A(l)

11 END PDO

12 PSECTI ONS

13 SECTI ON

14 IF (A(1) .GT. 1.0) A(1) =1.0

15 END PSECTI ONS

16 PDO | =1, N

17 B(1) = B(l) / A(1)

18 END PDO

19 END PARALLEL

20 END

21 Example 56 illustrates the equivalence between a worksharing construct with a single unit of
22 work and a Single Process construct demonstrated in Example 55. Examples 55 and 56 produce
23 the same results and exhibit the same degree of parallelism.

24

25 Exanpl e 57 SUBROUTI NE EX57 (A, AMAX, N)

26 REAL A(0: N)

27 AVAX = 0.0

28 PARALLEL

29 NEW ALNAX

30 BEG N GROUP

31 PDO 1 =1, N

32 IF (ABS(A(l)) .GT. ABS(ALMAX)) ALMAX = A(l)

33 END PDO

34 CRI TI CAL SECTI ON

35 | F (ABS(ALMAX) .GT. ABS(AMAX)) AMAX = ALMAX
36 END CRI TI CAL SECTI ON

37 END GROUP

38 SI NGLE PROCESS

39 ALMAX = A(1)+A(N)
40 IF (AMAX .LT. ALMAX) AMAX = 1.0 + AMAX

41 END SI NGLE PROCESS

42 PDO 1 =1, N

43 A(l) = ABS(A(l) / AMAX)

44 END PDO

45 END PARALLEL

46 END

47

48 In Example 57, after the maximum absolute value of an array is computed by the first Pdo
49 construct, a single process performs some manipulation of the maximum value prior to its use
50 in the final Pdo construct. Because AMAX is a shared variable being updated within a Parallel
51 Region construct, but outside of a worksharing construct, some synchronization mechanism must
52 be employed to ensure that only one process performs the update.

23

10
11

12

13

14
15

16

17

18
19

20

21

22
23

4.5 Inquiry Functions
The following intrinsic functions shall be provided:
45.1 Maximum peformance improvement at this time

DOUBLE PRECISION FUNCTION PERFMAX()
Returns an implementation dependent run-time measurement that
indicates the maximum improvement in performance the program could
reasonabley expect to achieve as described in the ANSI X3H5 LIM.
452 Team size

INTEGER FUNCTION NPTEAM()

Returns the number of processes (active and blocked) on the team for
the current parallel construct.

45.3 Looking for work
INTEGER FUNCTION NPLOOK()

Returns the number of processes that are currently looking for work as
defined in the ANSI X3H5 LIM.

4.5.4 Blocked processes
INTEGER FUNCTION NPBLOCK()

Returns the number of processes that are currently blocked as
defined in the ANSI X3H5 LIM.

455 Active processes
INTEGER FUNCTION NPACTIVE()

Returns the number of processes that are currently active as defined
in the ANSI X3H5 LIM.

24

~N o

©

10

11
12

13
14
15

16

17
19

20
21

22
23

24
25

5.0 Data Environments

This section describes the data environments of processes in a paralel Fortran 90 program.
5.1 Terminology

5.1.1 The model terminology mapped to Fortran

5.1.1.1 Object

An object as described by the the model is a Fortran data object' (constant, variable or
subobject), or a Fortran common block?.

Composite objects are variables that are Fortran arrays and Fortran structures (or derived data
types) ; and Fortran common blocks.

5.1.1.2 Read/Modify

An object or a subobject of the object is read as described by the the model when it is
referenced® as described by Fortran 90.

An object or a subobject of the object is modified as described by the model when it is used in
away that causes it to become defined as described by Fortran 90°. A Fortran constant cannot
be modified".

5.1.1.3 Data environment

'Fortran data object Section 2.4.3.1, page 13, line 39 of
Fortran 90. A Fortran structure is a variable. Fortran structure
Section 5.1.1.7, page 43, line 24 of Fortran 90.

Fortran common block Section 5.5.2, page 58, line 18 of
Fortran 90.

3referenced Section 2.5.5, lines 20-26; and Section 6, page 61
lines 3,4.

“defines Section 14.7.5, page 250, lines 4-10.
*Fortran constant Section 6, page 61, line 37, 38.

25

|_\

10

11

12
13

14

15
16
17

18
19

20
21
22
23
24

25
26
27
28

29

30
31

A data environment as described by the the model is a collection of objects as defined in
section 5.1.1.1. (Data enviroment as used in this document is distiguished from data environment
as used in Fortran 90° by the inclusion of common blocks.)

5.1.1.4 Private/Shared

An object that has a P/S attribute of private for a parallel construct shall be part of only one team
member’ s data environment. (Note that Fortran 90 uses the adjective private for access attributes
also. Thisisdistinct from P/S attributes.)

An object that has a P/S attribute of shared for a paralel construct shall be part of al team
members data environments for that parallel construct.

5.1.2 Fortran terminology extended for the model:
5.1.2.1 Scoping Unit

A scoping unit in the binding is a Fortran scoping unit’ augmented to include a parallel
construct.

5.1.2.2 Instance of a subprogram

An instance of a subprogram is restricted to a single process as defined in section ??? of model
document. The application of this statement modifies the Fortran 90 definition in the following
way: :hb5.

(NOTE - ??? was to be added to model document as of 3/93 meeting, but haven't seen latest
copy to get correct reference.)

An instance of a subprogram in the binding is defined with respect to a process. When a
function or subroutine defined by a subprogram is invoked, an instance of that subprogram is
created for the invoking process. Multiple instances of a subprogram may be active
concurrently. A process's instance of a subprogram is independent of all other processes
instances of the subprogram.

Each instance has an independent sequence of execution and an independent set of dummy
arguments and local nonsaved data objects. If an internal procedure or statement function
contained in the subprogram is invoked directly from an instance of the subprogram or from an
internal procedure or statement function that has access to the entities of that instance, the created

°Section 2.4, Data Concepts, page 13, line 2.

‘Section 2.2, page 9, lines 44-49 and Section 14, page 241,
lines 3,4.

26

N

o0k, W

O © oo~

12

13
14

15

16

17
18

19

20
21

22
23

24
25

26

27
28

29

instance of the internal procedure or statement function also has access to the entities of that
instance of the host subprogram.

All other data entities are shared by all instances of the subprogram within a process. For
example, the value of a saved data object appearing in one instance may have been defined in
a previous instance within the process or by initialization in a DATA statement or type
declaration statement.®

The definition of the save attribute is restricted to a single process as defined in section ??? of
model document. The application of this statement modifies the Fortran 90 definition in the
following way: (NOTE - ??? was to be added to model document as of 3/93 meeting, but haven’t
seen latest copy to get correct reference.)

Objects declared with the SAVE attribute in the scoping unit of a subprogram are shared by all
instances in a process of the subprogram.®

Items that receive the SAVE attribute implicitly shall be shared by all instances in a process of
the subprogram.*®

5.1.3 New terminology for the binding
5.1.3.1 Iterative Control Variables

Iterative control variables are defined to include do-variables, used in loop control™, implied
do control*?, and parallel loop control .3

5.1.3.3 Hidden

Hidden in this binding is used to clarify that a private access attribute is being referenced rather
than a private P/S attribute.

8Section 12.5.2.4, Instances of a 5.1.2.3 Save Attri bute.
°Section 5.1.2.5, SAVE attribute, page 47, lines 37-38.

Section 5.1, page 41, lines 9-12. Section 5.2.9, page 52,
lines 1-3.

"Section 8.1.4.1.1, page 100, line 37.

2Section 9.4.2 (Data transfer input/output list), page 123,
line 27.

13Section 4.5 (Construction of array val ues), page 37, |ine 40.

27

apbrownN =

(o2}

10
11
12

13
14
15
16

17
18

19

20
21
22

23
24

25
26

27
28
29
30

5.2 Allowable Parallel Access Attribute

All Fortran objects, except common and objects in common, have an APA attribute of default
private, explicitly shared. Objects that are declared default private may be explicitly shared for
a parallel construct if they are host associated™ with a scoping unit> containing the parallel
construct.

Common blocks and the objects contained in the common block have the same APA attribute.
Modules and the objects defined by the module have the same APA attribute.

The APA attribute of a common block or module is defined by the instance attribute specified
in a Fortran program. If the instance attribute is single then the common block or module has
an APA attribute of always shared. Neither common blocks nor the objects contained in the
common blocks shall be made private. Similarly, neither modules nor the objects contained in the
module shall be made private.

If the instance attribute is parallel then the common block or module has an APA attribute of
default private, explicitly shared. Objects that are declared default private may be explicitly
shared for a parallel construct if they are host associated™® with a scoping unit'’ containing
the parallel construct.

Objects declared within program units declared in modules follow the same rules as other
program units.

5.2.1 Definition of Instance Attribute
An instance attribute for globa data objects is defined. The instance attribute specifies whether
there shall be a single instance of the global object for the entire parallel program or if there may

be multiple parallel instances of the global object.

An instance attribute may only be specified for the following global entities. - common blocks
- module program units.

The instance attribute shall be the same for all references to the global object throughout the
program.

YSection 12.1.2.2.1, page 163, 164, lines 33-39, 1-33.
15Section 2.2, page 9, line 45-49,
%Section 12.1.2.2.1, page 163, 164, lines 33-39, 1-33.
Section 2.2, page 9, lines 45-49.

28

10
11

12

13
14
15
16
17

18

19
20

21
22

23
24
25

26
27

All objects specified in a module program unit shall have the same instance attribute.

The default instance attribute for COMMON blocks shall be single.

Blank common shall only have an instance attribute of single.

The default instance attribute for modules shall be single.

A global object with an instance attribute of single shall have an APA attriute of "always shared”.
A global object with an instance attribute of parallel shall have an APA attribue of "default
private, explicitly shared".

A common block with a parallel instance attribute may have the save attribute. If it has the save
attribut, it shall have the same lifetime as its data environment.

A common block with the parallel instance attribute may be initialized by a block data program.
This shall occur once per process.

5.2.1.1 Instance Statement Syntax

INSTANCE (single or paralldl)
or

INSTANCE (single or parallel) list_of _common_block names
or

INSTANCE (single or parallel) module _name

An instance statement shall appear in the specification statements of a program unit.

If an INSTANCE statement occurs in a program unit without any names specified, then it shall
define the instance attribute for al globa objects in that program unit.

If an INSTANCE statement occurs in a module program unit, it shall specify only the name of
the containing module program unit.

If an INSTANCE statement occursin a main, subroutine or function, or block data program unit,
it shall specify only names of common blocks defined within the program unit.
5.3 Private/Shared Attribute

When aparallel construct is encountered all objects that are read or modified within it shall have
their P/S attribute determined as follows:

29

N

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

- All iterative control variables contained within the parallel construct shall have a P/S
attribute of private with respect to the parallel construct.

- All objects that are host associated with a containing scoping unit shall have a P/S attribute
of shared with respect to the parallel construct.

- All common blocks and objects contained in common blocks shall have a P/S attribute of
shared with respect to the parallel construct.

- All objects that are declared within the scope of the parallel construct shall have a P/S
attribute of private with respect to the parallel construct.

- All other objects shall have a P/S attribute of private with respect to the parallel construct.
All Fortran 90 subobjects of an object shall have the same P/S attribute as their containing
object.

5.3.1 References through Pointers

The P/S attribute of a pointer object will be used to determine synchronization requirements when
the value of the pointer is referenced or modified. (Examples of modification include - allocate,
dedllocate, and pointer assignment.)

The P/S attribute of the target of a pointer shall be used to determine synchronization requirments
when the value of the target is referenced or modified thru the pointer in addition to the pointer’s
sycnhronization requirements in determining the validity of the address.

A program shall not assign the value of a private pointer to a shared pointer if the target of the
pointer is private and if the target of the pointer may be inaccessible when referenced with the
shared pointer.

These rules are given as interpretations of the statement in the model document, Section 5.4
Basic Mechanics - paragraph discussion early departure of team members: "A team member shall
not read or modify an object which is private to another member of the team.”

5.4 Basic Mechanics

All objects in a parallel Fortran program shall be part of a data environment.

5.4.1 Types of Data Environments

54.1.1 Initial Data Environment

The initial data environment for a parallel Fortran program shall begin with a new data
environment. In addition, the initial data environment contains all common blocks and modules

30

(o2} aprwN -

O 00

10

11
12
13

14

15
16

17
18

19
20
21
22

23
24

25
26

27

28
29

30

for the Fortran program. During program execution, the initial data environment may contain
additional objects that come into scope during program execution. Objects that come into scope
during execution of paralel constructs shall not be part of the initial data environment unless
the initial process is participating in the execution of the parallel construct as a base process and
it encounters the scoping unit.

5.4.1.2 New Data Environment

A new data environment shall consist of objects with the save attribute (also referred to in
Fortran 90 as saved objects).”® The objects that are initially defined" as described in Fortran
90 shall have their initial values defined.

5.4.1.3 Looking for Work Data Environment

A looking for work data environment shall consist of objects with the saved attribute with the
appropriate association status, allocation status, definition status and value®® maintained from
earlier participation in the execution of a parallel construct.

5.4.2 Data Environments upon encountering a parallel construct

When a parallel construct is encountered, the objects that are read or modified within it shall
have their P/S attributes determined as specified in section 5.3 Private/Shared Attribute.

If the object is private or not available it shall not be part of the data environment of any
member of the new team formed to execute the parallel construct.

If an object is classified as shared but another instance of the object is declared lexically within
the parallél construct, then new private instances of the object shall be used by all team members.
The base process shall not use the shared instance of the object if it participates in the execution
of the parallel construct. (A shared object shall not be made private.)

Only objects that are in scope at the time the paralel construct is encountered shall be shared
for the paralel construct.

All other objects shall only be shared for a parallel construct if they are accessible and visible
at the paralel construct.

8Section 5.1.2.5, SAVE attribute, page 47, lines 31-33.

°Section 14.7.3, Variables that are initially defined, page
249, lines 35-39.

0Section 5.1.2.5, SAVE Attribute, page 47, lines 31-33.
31

10
11

12

13

14
15
16
17
18
19

20

21
22
23

24
25

26

27
28

29
30

5.4.3 Object creation

Objects may be created when program units or scoping units are entered or when the objects
are explicitly allocated.

When an object is created it is added to the data environment of the creating process. (Note that
Fortran 90 initialized data objects have the save attribute implied.” Since all saved objects are
part of a new data environment, al initialization of data objects has occurred.)

All objects shall have a P/S attribute determined when a parallel construct is encountered.

Objects with the allocatable attribute may be alocated prior to encountering a parallel construct
for which their P/S attribute will be shared. If an allocatable object is shared for a parallel
construct and is to be allocated during the execution of a parallel construct, the program shall
ensure the allocation is done with appropriate synchronization.

5.4.4 Destroying Objects
Objects are destroyed as follows:

- Data objects without the saved attribute are destroyed when they exit the scoping unit for
which they were created.

- Data objects with the saved attribute are destroyed when the data environment which they
belong to is destroyed.

- Allocatable objects are destroyed when they are deallocated.?

- Some allocated objects are destroyed when their scope is exited.”

5.4.5 Exiting parallel constructs
All objects without the saved attribute that were created for a scoping unit are destroyed upon
exiting the scoping unit. If the scoping unit is contained within the parallel construct, then these

objects shall not exist in the data environments of the processes exiting the parallel construct.

All objects without the saved attribute that were created for the scoping unit that is the parallel
constructs are destroyed.

21Section 5.2.9, page 52, lines 1-3.

22Section 6.3.3.1, Deallocation of allocatable arrays, page 69,
i nes 2-15.

23Section 6. 3. 3.1, Deallocation of allocatable arrays, page 69,
i nes 2-15.

32

A WNPE

ol

©

10

11
12
13
14
15
16
17

18

19
20

21

An implementation may destroy objects with the saved attribute in a data environment only if
al objects.ehp3 with the saved attribute for that data environment are destroyed. (If an object
with a P/S attribute of private whose lifetime is longer than that of this parallel construct is
destroyed, then all such objects shall be destroyed.)

5.4.6 Early Departures of Team Members
5.5 Binding Considerations
5.5.1 APA and P/S Attributes with Fortran Scoping Rules

Fortran 90 defines the following scopes for names: global entities, local entities, statement
entities.® The binding provides the following APA attributes for these scopes of named
entities:

- global entities

- always shared

- default private, explicitly shared
- local entities

- default private, explicitly shared
- statement entities

- default private, explicitly shared

The binding does not provide an option for the APA attributes of always private.®

The binding does not provide an option for the APA attributes of default shared, explicitly
private.”®

5.5.2 Data Environments and Lifetime of Fortran Objects

24Section 14, Scope, association and definition., page 241.

> Rationale - In order to facilitate the use of nested
parall el constructs at any point in the parallel program An
i npl enentati on may map sonme objects to process private storage when
t hose objects cannot be read or nodified by other processes in a
standard-conform ng program (Note: Statenent entities will appear
to be always private because in current binding there are no
paral l el constructs within a statement for which they could be
explicitly shared.)

Rationale - In order to restrict the "accidental sharing" of
objects anong parallel constructs. Progranms shall explicitly
identify objects to be shared at parallel constructs or shall
explicitly identify objects to be always shared.

33

N B

10

11

12
13

14

27

28
29

30

31

All entities that are associated shall have the same P/S attributes for a given parallel construct.
Association may be by name, argument, use, pointer or storage.”

Lifetime of an object istied to the lifetime of the data environment it belongs to. An object shall
not exist before or after the data environment it belongs to.

Saved objects shall exist for the lifetime of a data environment. Saved objects shall only be
accessible by a process if the saved object is in scope.

Objects without the saved attribute may exist only when they are in scope. Objects without the
saved attribute shall only be accessed when they are in scope.

An allocatable object shall only be accessed when its status is allocated.
An object with the private (hidden) access attribute within a given scope shall not be accessible.
5.5.3 New Instances of Objects for Parallel Constructs

Objects declared within the scope of a parallel construct shall have a P/S attribute of private for
that parallel construct.

The binding allows the following specifications within a parallel constructs:

55.3.1 Syntax

dat a- shari ng-spec i s newstnt |
use- st nt
type-decl aration-stnt |
speci fication-stm |
par anmet er - st m |
format-stnt |
poi nter-stnt

[dat a- shari ng- spec]

new-stnt is NEWvari abl e-1i st

Constraint: specification-stnt shall not contain an access-stnt, common-stnt,
data-stnt, optional-stnt, equival ence-stnt, derived-type-stnt, or save-stnt.

5.5.3.2 Interpretation

The binding alows objects with the following attributes to be declared lexically within the
scope of a paralel construct:

- type

*’Section 14.6, Association, page 245-247.
34

A WNPE

o O1

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30

31

- dimension
- allocatable
- pointer

- target

The following objects shall not be allowed to be specified lexically within the scope of a paralel
construct:

- the declaration of an assumed size array, dummy argument common block, function or
function entry point

- character type with an assumed length

- eguivalence associated with any object that is shared for this parallel construct

- have the saved attribute

- be datainitialized

The dimensionality of adjustable arrays inherited is that defined at the procedure entry for the
corresponding adjustable array declarator.

5.5.3.3 New Statement
The NEW statement is defined to alow new instances of common blocks and modules with the
parallel instance attribute to be created within a parallel construct.

55.3.3.1 NEW Statement Syntax

NEW external_name list

where external_name_list - /<common_name >/ or <module_name>

Constraint: only common block names and module names that have the parallel instance attribute
shall be specified on the NEW statement. A common block or module with an instance attribute
of single shall not be specified on the NEW statement.

55.3.4 Iterative Control Variables

All iterative control variables defined by and within the parallel construct shal have a P/S
attribute of private for the parallel construct and shall be exist only for the scope of the parallel
construct. This shall occur even if the iterative control variables are not declared within the
scope of the parallel construct. The values of the iterative control variables shall be undefined
upon exit from the parallel construct. Only the type attributes of the iterative control variables

shall apply within the scope of a parallel construct.

5.5.4 Alternative APA Attributes for Always Shared

35

|_\

10
11

12
13
14
15
16

17
18

19
20

21
22
23

24
25

26
27
28

29
30
31

Common blocks and the objects in common blocks that have an instance attribute of single shall
have a P/S attribute of shared for al paralel constructs. Modules and the objects in modules that
have an instance attribute of single shall have a P/S attribute of shared for all parallel constructs.

5.5.4 External Data Objects and Multiple Processes

Fortran 90 global named entities alow objects to be shared across scoping units. The binding
provides the instance attribute as a mechanism of providing global; default private, explicitly
shared objects.

Additional rules with respect to new language features:
5.5.5.1 Common and Modules

A common block or module shall have a storage sequence whenever such a storage sequence
would be required by Fortran 90 for a common block regardless of its instance attribute.

Within a process, all program units access the same named common block and modules. The
instance attribute of parallel provides a means of associating entities in different program units
among a team of processes. It alows different teams of processes to have different storage
associations for common blocks and modules There may be multiple common blocks or modules
of the same name if they have the parallel instance attribute specified in a parallel program.)

When a parallel construct is encountered, three possibilities exist for common blocks and
modules:

- shared - the common or module is lexically visible in the scoping unit containing the paralel
construct and has an instance attribute of single or parallel.

All team members that participate in the execution of the parallel construct share access to the
same common block/module that is lexicaly visible. Any modifications to that common block
or module by any team member are retained and accessible after the parallel construct is exited.

- explicitly private - the common or module is specified on the NEW statement within the
parallel construct and has an instance attribute of parallel

All team members that participate in the execution of the parallel construct access their own
distinct storage sequence for the common block or module. The storage sequences for the
common block or modules are not accessible outside of the scoping unit of the parallel construct.

- implicitly private - the common or module is not lexically visible in the scoping unit

containing the parallel construct and is not specified within the parallel construct and has an
instance attribute of parallel.

36

H

©

10
11
12

13
14

28

29
30

31
32

33

If the common block or module is referenced by a process executing the parallel construct, then
the process references its private copy of the common block or module.

5.6 Objects and Synchronization

Between synchronization points, objects shall be read and modified as follows:
- read

An object isread if it is referenced as described by Fortran 90%

- modified

An object is modified if it an action occurs that causes it to become defined® or become
undefined as described by Fortran 90%°

Fortran 90 subobjects (array-element, array-section, structure-component, or substring)® are
objects in the model and may be read and modified independently of other subobjects by
different processes. :efn.

In parallel programs, it is the users responsibility to protect shared objects in common with the
proper synchronization if they are read and modified by multiple processes.

5.7 Examples

Subroutine EXDO1(A B, C N
Real A(n),B(n), C(n)
parallel do i=1,n

Real t

t=a(i)*b(i)

c(i+1)=t* (t-1.0)
end parallel do
end

In EXDO1, the variable | has a P/S attribute of private for
the parallel construct because it is the iterative control variable for the parallel do. The variable
T has a P/S attribute of private

8Section 6, Use of Data (bjects, page 61, lines 3-7.

2Section 14.7.5, Events that cause variables to becone
defined, page 250, 251, lines 3-42, 1-10.

0Section 14.7.6, Events that cause variables to becone
undefi ned, page 251, 252, lines 11-45, 1-33.

31Section 6, Use of Data objects, page 61, l|ines 16-109.
37

for the parallel do because it is declared within the parallel construct. The arrays A,B,C, and D
are shared objects for the parallel construct. The variables| and T are undefined upon exit from
the parallel do.

Subr outi ne EXDO2(B)
Real , Di nension(100) :: B,C
paral l el do i=1,100
call subxl(b(i))
call subx2(c(i))
end parallel do
print*, (c(i),i=1,100)
end

subrouti ne subx1(x)
real, save:: a

a=x

return

entry subx2(x)

X=a

end

In EXDO2, the SAVE attribute ensures that the value of A defined by SUBX1 will be available
for entry SUBX2 to use within any iteration of the parallel do construct. Thus, the effect of this
example is to copy B to C and print the result. If the SAVE attribute was not specified, the
results are undefined; (Note that if the parallel do was a serial do and the save attribute was not
specified the results are also undefined.)

Subr outi ne EXDO3()

Real , Di nension(100) :: B
conmon /abc/ b

cal I subx1(100)

print*, (b(i),i=1,100)
end

subroutine subx1(icnt)

parallel do i=1,icnt
call work(i)

end parallel do

return

end

subroutine work(i)

Real , Di nmension(100) :: B
common /abc/ b

b(i)=i

return

end

In EXDO3, there is only one copy of the common block /abc/, that all processes share access to.
The modifications made to the array elements, or subobjects, of b are data independent. No
explicit synchronization is required.

subrouti ne EXDO4(in, A)

real, dinension(in,in):: A

real, dinension(:,:), allocatable:: B, E
all ocate B(in,in)

38

OO~NOUTRWNEF

parallel do i=1,in
real, dinmension(:), allocatable:: C
Al l ocate C(in)
q(:)=0 o
parallel do j=1,in
c(j)=c(j)+A(i,])
if (fn(c(j)).neq.0) then
Critical section
if (.not.allocated(E)) then
al l ocate E(in,in)
endi f
end critical section
CE(i,) =C())
endi f
end parallel do
B(i,:)=C(i)
deal | ocate C
end do
A(:,:)=B(icnt:1:-1,:)
return
end

In EXDO4, the allocateable array B is shared for both paralel constructs and the allocateable
array Cisprivate for the paralel do i loop but shared for the parallel do j loop. The alocateable
array E is shared, but is only allocated based on a function of C(j). The user is responsible for
providing the proper synchronization to ensure that only one team member allocates the shared

array.

subrouti ne EXDO6(i n)
integer pi(in),i(in)
poi nter pi
target i
al l ocate |
Pl =>|
icnt=0
paral | el
integer pj(in),j(in) ,id
poi nter pj
target j
critical section
icnt=icnt+1
i d=i cnt
end critical section
if(id .eq.1) then
PJ=>I
el se
all ocate J
PJ=>)
endi f
pdo i=1, 100

end pdo
if(id .gt.1) then
deal | ocate |j
endi f
end parall el

39

OO, WN B

In EXDOG, references with pointer Pl in the parallel do loop will be appropriately synchronized
among all processes executing the parallel construct. In this example, the user wants to use the
alocated array | for the first process, and only allocate additional private arrays if additional
processes execute part of the parallel construct. References with pointer PJwill be to objects with
P/S atributes of shared or proivate; an implementation must ensure that the proper
synchronization is done for the shared target.

subroutine exdl()
conmon/ abc/ a(100), b(100)
common/ def / d(100) , e(100)
common/ ghi / g(100), h(100)
i nstance parallel /def/,/ghi/
parall el do i=1,100

new def/

ehd'parallel do

subrouti ne exd2()
conmon/ abc/ a(100), b(100)
conmon/ def / d(100), e(100)
conmon/ ghi / g(100), h(100)
i nstance parallel /def/,/ghi/
i nstance single /abc/
parallel do i=1,100

new def/d(100), e(100)

ehd'parallel do

In both examples exd1 and exd2, common /abc/ is always shared. There is only one copy for
the entire program. All processes share the same copy. Common /def/ and /ghi/ are default
private, explicitly shared. Since /def/ is specified within the paralel do construct, each team
member participating in the execution of an iteration of the parallel do will have its own copy.
The variables in common /def/ may be referenced without synchronization. Since /ghi/is visible
at the paralle point it will be shared among all team members participating in the execution of
the paralléel construct.

nodul e data

di mensi on a(100), b(100)
real a,b

private b

public a

end data

Module data will be an aways shared globa object. All team members of all teams will
reference same A and B. Both A and B have an instance attribute of single and therefore have
APA attributes of always shared. The Fortran access attribute of private (or hidden) does not
affect the APA attribute.

nodul e exd7

40

HWNE

38

40
M
42

i nstance parallel

di mensi on a(100), b(100)
real a,b

end exd7

Module exd7 will be default private, explicitly shared. If the program unit containing a parallel
construct has a use of exd7 then a and b will be shared for team members of that parallel
construct. If not, then each team member will have private copies of the module exd7 created.

nodul e data

i nstance parallel
di mensi on a(100), b(100)
real a,b
common/ abc/ a, b
subroutine x()

i nstance parall el
common/ abc/ a, b

di nensi on y(10)
end

end data

The common block /abc/ has a parallel instance attribute.

The reference to /abc/ within subroutine x must specify the same instance attribute for /abc/ as
the containing module. The rules stated that objects defined within program units within modules
would have their instance attribute determined based on the program unit rules. The object y is
a local object to subroutine x - it does not have an instance attribute.

Exanpl e 33 LOG CAL FUNCTI ON EX33 (A, | ZERO, N)
REAL A(N)
PARALLEL PDO I=1, N
IF (AN .EQ 0.0) THEN
CRI TI CAL SECTI ON
| ZERO = |
END CRI TI CAL SECTI ON
EX33 = . TRUE.
PDONE
ENDI F
END PARALLEL PDO
EX33 = . FALSE.
END

Example 33 demonstrates how to carry the value of a new object out of a parallel construct. The
loop index of the Parallel Do is new by default, so the loop index value is undefined outside of
the scope of the Parallel Do. The Critical Section ensures that updating the global variable
IZERO is performed by one process at a time. Note that this code does not ensure that the
smallest index of a zero element of A is returned. Also, multiple processes may set IZERO.

41

PR
NP OO~ OUTRWNE

13

Exanpl e 41

Exanpl e 42

Exampl e 43:

SUBROUTI NE EX41 (B)
REAL B(100)
PARALLEL PDO I =1, 100
CALL SUB(B(1))
END PARALLEL PDO
END

SUBROUTI NE SUB (X)
| NSTANCE PARALLEL
COVMON / BLOCKA/ A

SUBROUTI NE SQUARE
| NSTANCE PARALLEL
COMMON / BLOCKA/ A
A = A*A

END

SUBROUTI NE EX42 (B)
| NSTANCE PARALLEL
COWVON / BLOCKA/ A
REAL B(100)
PARALLEL PDO I =1, 100
NEW / BLOCKA/
CALL SUB(B(1))
END PARALLEL PDO
END

SUBROUTI NE SUB (X)
| NSTANCE PARALLEL
COVMON / BLOCKA/ A
A= X

CALL SQUARE

END

SUBROUTI NE SQUARE
| NSTANCE PARALLEL
COWON / BLOCKA! A
A = A*A

END

Example 42 and Example 41 provide the same results. Both ensure that within the parallel
construct, team members have their own copies of common blocka for communication among
program units within a process. Example 41 uses an implict private copy of blocka for the
parallel construct.

Example 42 specifes an explicit private copy of blocka for the parallel construct.

C This exanpl e is NON STANDARD CONFORM NG C
| NSTANCE PARALLEL / NC/

COVMON / NG/ A(100)

42

~NOoOUIRWNEF

26

27
28

29
30

31
32

y_calls: PARALLEL PDO I =1, 100

CALL Y
10 END DOy calls

RETURN
END

SUBROUTI NE Y
PARALLEL PDO J=1, 100

CALL Z
END DO

RETURN
END

SUBROUTI NE Z
| NSTANCE PARALLEL / NC/
COVMON / NG/ A(100)

RETURN
END

In this example, the scommon block, NC, is shared for the parallel y calls loop in the main
program. However, NC, is implicitly private at the paralel do loop subroutine Y and is
referenced within that parallel construct in subroutine Z.

Possible modifications to make it standard conforming include:

1. Specify /INC/ on a NEW statement in the parallel y_calls loop
in the main program.

2. Include the COMMON statement defining /NC/ in subroutine Y.
Then /NC/ will be shared for all parallel constructs.

3. Include the COMMON statement defining /NC/ in subroutine Y and
specify /NC/ on a NEW statement for the parallel do loop.

Exanpl e 45 SUBROUTI NE EX45
REAL B(100), C(1
PARALLEL PDO I =1,
CALL SUBL(B(1))
CALL SuB2(C(1))
END PARALLEL PDO
PRINT *, (C(l1), | =1, 100)
END

(B)
00)
100

SUBROUTI NE SUBL (X)
| NSTANCE PARALLEL
COMMON / BLOCKA/ A

43

Ooo~NOOUIR™ WNEF

36
37
38

SAVE / BLOCKA
A= X
END

SUBROUTI NE SUB2 (X)
| NSTANCE PARALLEL
COVVON / BLOCKA/ A
SAVE / BLOCKA/

X = A

END

In Example 45, the SAVE statement ensures that the value of A defined SUB1 will be available
for SUB2 to use within any iteration of the Parallel Do contruct. Thus, the effect of SC6 is to
copy B to C and print the result. If the SAVE statement is not coded, the results are undefined.
Note that without the SAVE statement, the serial form of this program would not conform to
Fortran section 15.9.4.

Exanpl e 46 SUBROUTI NE EX46 (B)
REAL B(100), C(100)
| NSTANCE PARALLEL / BLOCKA/
COWON / BLOCKA/ A
PARALLEL PDO I =1, 100
NEW / BLOCKA/
CALL SUBL(B(1))
CALL SuB2(C(1))
END PARALLEL PDO
PRINT *, (C(1), | =1, 100)
END

SUBROUTI NE SUBL (X)

| NSTANCE PARALLEL / BLOCKA/
COWVON / BLOCKA/ A

A= X

END

SUBROUTI NE SUB2 (X)

| NSTANCE PARALLEL / BLOCKA
COVMON / BLOCKA! A

X =A

END

Example 46 demonstrates an alternative to coding the SAVE statement. It is sufficient to declare
/blockal in the calling program and code a NEW statement for /BLOCKA/ inside the parallel
construct. Examples 45 and 46 both compute the same result.

Exanpl e 39 SUBROUTI NE EX39 (B, C, N)
REAL B(N), C(N)
PARALLEL PDO | =1, N
REAL A
A=B(1)+C(1)

CALL EX39A(A B, 1)
END PARALLEL PDO
END

SUBROUTI NE EX39A (AA BB, N)

44

~NOoOUIRWNEF

© 00

In Example 39, the variable BX has a data sharing attribute of newfor the parallel do insubroutine
EX39, but a shared data sharing attribute for the Parallel Doin subroutine EX39A.The DATA
statement initializing BX applies on aper process basis. Thefirst time a process calls subroutine
EX39A, the value of BX for thatprocess is guaranteed tobe that specified by the DATA
statement. Subsequent calls of subroutineEX39A by the sameprocess use the value of BX from

REAL BB(N), BX

DATA BX/ 1. 0/

BX= AA * (AA-4.0)/BX

PARALLEL PDO J=1, N
BB(J) = BB(J)*BX

END PARALLEL PDO

END

the end of the previous call to BX bythe same process.

Exanpl e ??

EXPLANATI ON
COMMONS :

PROGRAM MAI N
COVMON/ COML/ CA(100)
| NTEGER LA, MS, ND
DATA / ND, 1/

SAVE / COML/ , MB
PARALLEL PDO I =1, 100
NEW LA, NS, ND

CALL Y
END'PéraIIeI DO
END

BLOCK DATA X
COVMON/ COML/ CA(100)

| NSTANCE PARALLEL / SCOML/
COVMON/ SCOML/ SC(100)

DATA / CA, 100*0. 0/, / SC, 100* 0. 0/
END

SUBROUTI NE Y
COVMON/ COML/ CA(100)

COVMON/ COVR/ CB(100)

| NSTANCE PARALLEL / SCOML/ , / SCOVR/
COVMON/ SCOML/ SC(100)

COVMON/ SCOMR/ SD(100)

| NTEGER | S(100), JA(100) , KD

DATA KD/ 0/

SAVE / COML/ , / SCOML/ , | S

END

COML i s singl e_copy_external, static storage
COW2 is single_copy_external, dynam c storage

SCOML is parallel _external, static storage
SCOMR is parallel_external, automatic storage

45

oo~NOYOT AWNE

Local vari abl es:
IS, M5 is construct | ocal
JA, LA is construct | ocal
KD, ND i s construct | ocal

NEW vari abl es:
LA is construct |ocal, au
M5 is construct_local, ??
ND' is construct_local, ??

static storage
aut omati c storage
data initialized static storage

tomati c storage
(auto or static)

46

wN

~N o o1 b~

O ©

11
12

13
14

15
16
17

18
19
20
21

22
23
24

25
26
27
28
29

30

6.0 Input/Output

Each Fortran unit number is shared among all processes of a parallel program. An
implementation shall provide synchronization among all processes accessing a specified unit.

When a unit number is connected to a file (for example through the use of an open statement),
then all processes are able to access that file by using the same unit number. The unit shall
not be explicitly connected to a file by an OPEN statement if it is currently connected to a file
by a previous OPEN statement.

The effect of executing a data transfer input/output statement shall be as if the operations were
performed in the order specified on page 125, lines 17-26 in the Fortran 90 standard. If multiple
processes are executing the program, then the order of operations shall be augmented as follows:

Insert the following step between steps 2 and 3:
(2.5) Obtain an implementation lock associated with the unit

Insert the following step between steps 7 and 8:
(7.5) Free the implementation lock obtained for the unit

The result shall be that once a process obtains the lock for a given unit, the data transfer of the
input/output list specified for the I/O statement will be completed prior to another process
transferring data to or from the same unit.

The implementation lock obtained for the unit shall control the synchronization of the file pointer
to the unit among all processes. The I/O statements shall not be synchronization points for
program data objects. A program shall use the explicit or implicit synchronization points defined
by the model for program data objects.

If the user wishes to cause I/O statements executed by distinct, simultaneously-executing
processes to be applied to a unit number in a particular order, explicit, user-coded
synchronization shall be used.

A program shall control synchronization of concurrent 1/O to multiple units if required.

When a READ statement detects an end-of-file for a unit, all subsequent reads issued by other
processes to that unit number - prior to afile repositioning statement (REWIND, BACKSPACE,
CLOSE followed by OPEN, direct-access READ, direct access WRITE) will aso detect
end-of-file.

6.1 Multiple End-of-File Records

47

aprhwnNBE

(o2}

For cases where multiple end-of-file records can be detected on a unit after executing a single
open (example, unlableled tapes with multiple files in many implementations) it is necessary to
provide an additional 1/O statement to skip past the current end-of-file record. Implementatins
that allow only a single end-of-file per file may implement this statement as a CONTINUE
Statement.

6.1.1 Explicit Syntax
SKIP PAST EOF just-like-backspace-both forms
6.2 Examples

6.2.1

subroutine exi ol()
di nensi on a(100)
paral l el sections 10 i=1,n
section /al/
read (*,7) n

section /b/
section /c/ wai t (a)

if (n.gt.100) print*,"error’, n
read (*,7) a(l:n)

end parallel sections

In example EXIO1, section ¢ waits for section a to complete so that it knows the number of
elements of A toread. The user must program the required synchronization to ensure that the
read of the n value occurs before trying to read n elements of A.

6.2.2

subroutine exi 02()
di mensi on a(100)
paral l el sections 10 i=1,n
section /al/
i =6
wite(*,6) f1(i)
section /b/
i =8
wite(*,8) f1(i)

end paféilel sections
return

end

function f1(i)

read (*,i+1) ...
return

end

48

~No ok, wWN R

In example EX102, the user is responsible for ensuring that there is no synchronization required
between 1/O to units; or for providing the necessary synchronization. The example as written is
correct since the process executing section A will write to units 6 and 7; while the process
executing section B will write to units 8 and 9. However, if function f1 tried to read from unit
8 when i=6 and to read from unit 6 when i=8 there would be a chance of deadlock. To prevent
the deadlock, the user would have to use explicit synchronization to ensure that only one process
was executing the write statements in sections a and b.

49

'_\

Qoo~NOOIRW N

'_\

'_\
'_\

[EEN
N

25

26

27
28
29
30
31

32
33
34

7.0 Synchronization

Implicit synchronization occurs at the following statements:

PARALLEL
END PARALLEL

END PARALLEL PDO

END PDO (\WAI T)
PARALLEL SECTI ONS
END PARALLEL SECTI ONS
END PSECTI ONS (WAI T)
END PGROUP

and after the execution of the statement that terminates a "labeled” PDO or PARALLEL PDO.
7.1 Explicit Synchronization

(The following is material suggested by Bruce Leasure on March 7,1993)

The X3H5 module defines new types to support explicit synchronization. As a group, these types

are referred to as control types. These types have no public fields. Use of objects of these types
is restricted by the Fortran 90 typing mechanism. The control types defined are

TYPE (LATCH) for latch
TYPE (LOCK) for lock
TYPE (EVENT) for event
TYPE (ORDI NAL) for sequence

* k k k% ASIde to X3J3 * k k k%

In the next revision of Fortran, consider extending R502 to make these types base types. Two
possibilites seem plausible: make each of these types a base type (such as INTEGER is now),
or make them all different KINDs of the same base type.

7.1.1 Extensions Shared by Many Synchronization M ethods
7.1.1.1 Representing States

The X3H5 module defines defines 7 symbolic INTEGER constants to represent the states of
objects of TYPE (LATCH), TYPE (LOCK), and TYPE (EVENT). An implementation shall
assign unique values to each of the symbolic constants representing a state of a single type. An
implementation should assign unique values to each of these constants. The symbolic constants
representing states are

for TYPE (LATCH):

STATE_UNINITIALIZED for state uninitialized
STATE_UNLATCHED for state unlatched

50

aprwdN =

©O© o0o~NO®

10

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

STATE_LATCHED for state latched

for TYPE (LOCK):

STATE_UNINITIALIZED for state uninitialized
STATE_UNLOCKED for state unlocked
STATE_LOCKED for state locked

for TYPE (EVENT):

STATE_UNINITIALIZED for state uninitialized
STATE_CLEAR for state clear

STATE_SET for state set

7.1.1.2 Testing for Uninitialized State
The X3H5 module defines the unary operator .UNINITIALIZED. where the single argument is
an object of a control type and the result type is LOGICAL. The operator returns ".TRUE." if
the corresponding object is uninitialized, otherwise the operator returns ".FALSE.". When
applied to an array argument, the operator is elemental.
An implementation may aways return ".FALSE." as the result of this operator, if the
implementation does not detect an error when any operation except initialize is performed on an
object of a control type that has state "uninitialized".
7.1.1.3 SYNCHRONIZE Statement
7.1.1.3.1 Proposed X3H5 Extended Syntax Rule
X701 sync-stmt is SYNCHRONIZE(sync-param-list) [guards-spec |
X702 sync-param is[CONTROL=] sync-object

or [OPERATION=] sync-operation

or [POSITION=] ordinal-position

or [STATUS=] sync-status
X703 sync-operation is scalar-character-expression
X704 sync-object is scalar-latch-variable

or scalar-lock-variable

or scalar-event-variable

or scalar-ordinal-variable

X705 ordinal-position is scalar-integer-expression

X706 sync-status is scalar-integer-variable

51

'_\

11
12
13

14

15

16
17

18
19
20

21
22
23

24

25
26
27
28
29

30

CONSTRAINT: Exactly one sync-object shall be specified in each
sync-param-list.

CONSTRAINT: Exactly one sync-operation shall be specified in each
sync-param-list.

CONSTRAINT: More than one ordinal-position shall not be specified in
any sync-param-list.

CONSTRAINT: An ordina-position shall be specified only if sync-object
is of TYPE (ORDINAL).

CONSTRAINT: More than one sync-status shall not be specified in any
sync-param-list.

If the sync-status variable is coded, the variable is assigned the integer corresponding to the final
state of the sync-object after the execution of the sync-operation. The sync-status variable may
be undefined when execution of the SYNCHRONIZE statement begins.

A SYNCHRONIZE statement shall not be executed if sync-object has a state of "uninitialized".
7.1.1.3.2 Consistency Rules for the SYNCHRONIZE Statement

If the sync-stmt specifies a guards-spec, the implementation shall make the objects in the
guarded-obj-list consistent as a part of the execution of the sync-stmt.

If the sync-stmt specifies a sync-obj with a GUARDS attribute then the implementation shall
make the objects in the guarded-obj-list from that attribute consistent as a part of the execution
of the sync-stmt.

If the sync-stmt has no guards-spec and has a sync-obj with no GUARDS attribute, the
implementation shall make all shared objects, used or defined as a result of the execution of
"block", consistent as a part of the execution of the sync-stmt.

7.1.1.4 Representing Synchronization Operations

The X3H5 module defines defines symbolic CHARACTER constants to represent the operations
on objects of TYPE (LOCK), TYPE (EVENT) and TYPE (ORDINAL) that act as explicit
synchronization points. An implementation shall assign unique values to each of the symbolic
constants representing a operations on a single type. An implementation should assign unique
values to each of the operations.

TYPE (LOCK)

52

~N o o1 b~ WN -

©

10

11

12
13

14

15
16

OP_CONDITIONAL_SET for operation conditional set
OP_SET _WITH_WAIT for operation set with wait

OP CLEAR for operation clear
TYPE (EVENT)

OP_SET for operation set
OP _CLEAR for operation clear
OP_WAIT for operation wait

TYPE (ORDINAL)
OP_WAIT_THEN_POST_VALUE for operation post a value with wait
OP_WAIT_VALUE for operation wait for a value

7.1.1.5 Use of Control Types and Assignment

The X3H5 module defines the assignment operator to represent the initialize operation, the
destroy operation, and the query operation.

7.1.2 Limiting Synchronization Overhead

A new attribute is defined that only has meaning for the synchronization types defined in the
X3H5 module. R503 is extended to accomplish this.

7.1.2.1 Proposed X3H5 Extended Syntax Rule

R503 attr-spec i s PARAMETER

or access-spec
or ALLOCATABLE
or DI MENSION (array-spec)
or EXTERNAL

NEW or guards-spec
or I NTENT (intent-spec)
or I NTRINSIC

or OPTI ONAL

or PO NTER

or SAVE

or TARGET
X707 guar ds- spec is GQUARDS (guarded-obj-list)
X708 guar ded- obj i s variabl e-nane

or array-el enent
or array-section
or substring

CONSTRAI NT: each subscript, substring, or section-subscript in a
guards-spec nust be an integer initialization expression
(see Fortran 7.1.6.1)

7.1.2.2 GUARDS Attribute

53

W (o

0o ~N O Ol

23
24

25
26
27

28
29
30

31
32
33

The GUARDS attribute specifies that the entities whose names are declared on this statement
control the consistency of the objects in the guarded-obj-list.

The GUARDS attribute may only be used with an object of a control
type.

The GUARDS attribute reduces the default list of objects that the implementation must make
consistent at a SYNCHRONIZE statement with an associated object of a control type from all
shared object to only those shared objects listed in the GUARDS attribute of the associated
object.

7.1.3 Critical Sections

7.1.3.1 Proposed X3H5 Extended Syntax Rule

X709 critical-bl ock is critical-stnm
bl ock
end-critical -stnt

X710 critical-stm is CRITICAL SECTION[(scalar-latch-variable)]
[guards-spec]

X711 end-critical-stnt is END CRITI CAL SECTION [(scal ar-latch-variable
) 1

CONSTRAINT: If the end-critical-section-stnmt specifies a
scal ar-l atch-variable, the correspondi ng
critical -section-stm shall specify the sane
scal ar-1at ch-vari abl e.

7.1.3.2 Consistency Rules for CRITICAL SECTION

If the critical-stmt specifies a guards-spec, the implementation shall make the objects in the
guarded-obj-list consistent at entry and exit to the critical-block.

If the critical-stmt specifies a scalar-latch-variable with a GUARDS attribute then the
implementation shall make the objects in the guarded-obj-list from that attribute consistent at
entry and exit to the critical-block.

If the critical-stmt has no guards-spec and no scalar-latch-variable, the implementation shall
make all shared objects, used or defined as a result of the execution of "block”, consistent at
entry and exit to the critical-block.

If the critical-stmt has no guards-spec and has a scalar-latch-variable with no GUARDS
attribute, the implementation shall make all shared objects, used or defined as a result of the
execution of block, consistent at entry and exit to the critical-block.

7.1.3.3 Operations on Objects of TYPE (LATCH)

54

~N O O1 W =

© 00

10
11

12

13
14
15

16

17
18

19
20
21
22

23
24
25
26
27
28
29

30
31

The initialize operation is performed on an object of TYPE (LATCH) by assignment of the
value STATE_UNLATCHED to the object.

The enter_critical_section operation is performed on an object of TYPE (LATCH) by executing
a CRITICAL SECTION statement referencing the latch.

The exit_critical_section operation is performed on an object of TYPE (LATCH) by executing
an END CRITICAL SECTION statement that corresponds to a CRITICAL SECTION statement
referencing the latch.

The destroy operation is performed on an object of TYPE (LATCH) by assignment of the value
STATE_UNINITIALIZED.

The query operation is performed on an object of TYPE (LATCH) by assignment of the object
to a variable of type INTEGER.

7.1.3.4 Default Latch

If a critical-stmt does not specify a scalar-latch-variable, the critical-stmt behaves as if the
critical-stmt referenced a unique, initialized, scalar-latch-variable that is shared with every
process. This scalar-latch-variable does not have a GUARDS attribute.

7.1.4 Locks

The initialize operation is performed on an object of TYPE (LOCK) by assignment of the value
STATE_UNLOCKED to the object.

The conditional set operation is performed on an object of TYPE (LOCK) by executing a
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of
OP_CONDITIONAL_SET. The program should use either the query operation or a sync-status
variable to determine if the lock was obtained.

The set with wait operation is performed on an object of TYPE (LOCK) by executing a
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of
OP_SET WITH_WAIT.

The clear operation is performed on an object of TYPE (LOCK) by executing a
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of
OP_CLEAR.

The destroy operation is performed on an object of TYPE (LOCK) by assignment of the value
STATE_UNINITIALIZED.

55

w N -

oo~NO O~

11

12
13
14

15
16

17

18
19
20
21
22
23
24
25
26
27

28
29
30

31
32

33

The query operation is performed on an object of TYPE (LOCK) by assignment of the object
to a variable of type INTEGER.

7.1.5 Events

The initialize operation is performed on an object of TYPE (EVENT) by assignment of the
value STATE _CLEAR to the object.

The set operation is performed on an object of TYPE (EVENT) by executing a
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of OP_SET.

The clear operation is performed on an object of TYPE (EVENT) by executing a
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of
OP_CLEAR.

The wait operation is performed on an object of TYPE (EVENT) by executing a
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of
OP_WAIT.

The destroy operation is performed on an object of TYPE (EVENT) by assignment of the value
STATE_UNINITIALIZED. No more processes.

7.1.6 Sequences

The initialize operation is performed on an object of TYPE (ORDINAL) by assignment of
either an scalar-integer-exp or aone-dimensional INTEGER array with 2 elements to the object.
When a scalar-integer-exp is used, the arithmetic sequence begins at the value of
scalar-integer-exp and has a stride of 1. When a one-dimensional INTEGER array with 2
elements is used, the arithmetic sequence begins at the value of the first element of the array, and
has a stride of the second element of the array. A program shall not use a stride of zero. The
implementation shall detect a zero stride as an error. The post a value with wait operation is
performed on an object of TYPE (ORDINAL) by executing a SYNCHRONIZE statement
specifying the object as sync-object, a sync-operation of OP_WAIT_THEN_POST_VALUE, and
an ordinal-position of the value of the arithmetic sequence to post.

The clear operation is performed on an object of TYPE (ORDINAL) by executing a
SYNCHRONIZE statement specifying the object as sync-object, a sync-operation of
OP_WAIT_VALUE, and an ordina-position of the value of the arithmetic sequence to wait for.

The destroy operation is performed on an object of TYPE (ORDINAL) by assignment of the
value STATE_UNINITIALIZED.

(The following is material put in during the march 1-3, 1993 meeting.)

56

23
24
25
26
27
28
29

30
31

32
33

35

36
37

39

7.2 Explicit Synchronization

Derived Types are defined in the X3H5 module for each of the synchronization objects specified
by the model.

Relationship between model synchronizer types and Fortran synchronizer types:

model synchronizer type derived type name
lock Type (lock)
latch Type (latch)
event Type (event)
sequence Type (ordinal)

A new attribute, the "guards® attribute for synchronizers is defined only for use with these
derived types. This attribute associates one or more objects with the synchronizer:

GUARDS (guarded-1list) sync-object
or
GQUARDS :: sync-guards-|i st
where guarded is vari abl e- nane,
array- nane,
array- el enent,
array-section,
nodul e- name, or
/ common- bl ock-nanme/ and
sync-guards-list is sync-object (guarded-list) [, sync-guards-Ilist]

7.2.1 Critical Sections

Critical sections provide an easy to use method of allowing only one process at atime to execute
the enclosed portion of code. Only one process is allowed within al critical sections that share
alLock. Critical sections are a structured use of lock synchronization. The structured approach
is much more reliable than using the equivalent unstructured synchronization. Critical section
synchronization can be used anywhere in the program. Most uses of critical sections preserve
execution order independence so use within a worksharing construct without the ORDERED
qualifier is standard conforming.

7.2.1.1 Explicit Syntax

Statement Forms

[1abel:] CRI TI CAL SECTION [(1 ock)] [GUARDS(object-nane-Ilist)]
END CRITI CAL SECTION [(lock)] [Iabel]

Structured As

[label :] CRITICAL SECTION ...
statenents
END CRI TI CAL SECTION ... [l abel]

57

35

36
38

Where
lock is a variable name or array element of type lock
object-name is a data object
7.2.1.2 Coding Rules
The Critical Section construct is a block structured construct. The Critical Section construct
follows al of the rules of Fortran block structured constructs. <* so we mean EXIT and Cycle

WORK?*>

If the lock is coded on the END CRITICAL SECTION statement, it must match the
corresponding lock on the CRITICAL SECTION statement.

7.2.1.3 Interpretation

A program that executes a CRITICAL SECTION statement with a lock that has a value of
undefined is not standard conforming.

Entering a Critical Section construct, is equivalent to executing a GET_LOCK statement on the
specified lock with an identicall GUARDS clause. Leaving the critical section, by executing the
END CRITICAL SECTION statement or executing a PDONE statement, is equivalent to
executing an UNLOCK statement on the lock controlling the section with an identical GUARDS
clause, and then resuming execution at the appropriate statement outside the block.

An unnamed Critical Section (one without alock specified) isfunctionally equivalent to a Critical
Section that specifies a lock that is

a) shared among all teams

b) initialized at program start-up to "unlocked"

c) isonly referenced by that Critical Section construct
These rules cause lexicaly distinct unnamed Critical Sections to function independently. Any
single unnamed Critical Section controls all processes, allowing at most one process within the

Critical Section at any point in time.

7.2.1.4 Examples

Exanple 12 SUBROUTI NE EX12 (A, B, SUM
REAL B(0:100)
Lock A

58

CO~NOYOUTRWNEF

PARALLEL PDO 1=1, 10

NEW T
CRI TI CAL SECTI ON (A)
T =8B(l1) * B(I-1)

SUM= SUM + T
END CRI TI CAL SECTI ON (A)
END PARALLEL PDO
END

In Example 12, the lock A is used to control access to al shared objects and limit access to the
enclosed block of code. The implementation must ensure that the shared object SUM is
consistent upon entry and exit to the Critical Section construct, and that the shared array B is
consistent upon entry to the Critical Section construct. (Note that B may be changed by a
process that is not visible and that A and SUM must be initialized outside of the EX12
subroutine.)

Exanpl e 13 SUBROUTI NE EX13 (A, B, SUM
REAL B(0:100)
Lock A
GUARDS A(SUM
PARALLEL PDO I =1, 10
NEW T
CRI TI CAL SECTION (A)
T = B(I) * B(I-1)
SUM=SUM+ T
END CRI TI CAL SECTI ON
END PARALLEL PDO
END

In Example 13, the lock A is used to control access to the variable SUM. Because of the
GUARDS statement, the implementation need only ensure that the shared variable SUM is
consistent upon entry and exit to the Critical Section construct. This differs from the previous
example in that shared array, B, is not required to be consistent during the critical section.

Exanpl e 14 SUBRQUTI NE EX14 (A, B, SUM
REAL B(0: 100)
Lock A
PARALLEL PDO I =1, 10
NEW T
CRI TI CAL SECTI ON (A) GUARDS(SUM
T = B(l1) * B(I1-1)

SUM= SUM+ T
END CRI TI CAL SECTI ON (A)
END PARALLEL PDO
END

In Example 14, the lock A is used to control access to the variable SUM. Because of the

GUARDS clause on the CRITICAL SECTION statement, the implementation shall ensure that

the shared variable SUM is consistent upon entry and exit to the Critical Section construct.
Example 14 isidentical in functionality to Example 13.

Exanpl e 15 SUBROUTI NE EX15 (A, B, MAXA, GVAXA, N)
REAL A(N), B(N), MAXA
Lock GVAXA

59

OO~NOUTRWNEF

PARALLEL SECTI ONS
NEW AM
SECTI ON
AM = A(1)
DO 10 =2, N
| F(CAM LT. A1)) AMEA(1)
10 CONTI NUE
CRI TI CAL SECTI ON (GVAXA)
| F(MAXA. LT. AM) MAXA=AM
END CRI TI CAL SECTI ON

SECTI ON
CRI TI CAL SECTI ON (GVAXA)
AVEMAXA
END CRI TI CAL SECTI ON
DO 20 | =1, N
B(1)=B(1)/AM
20 CONTI NUE
END PARALLEL SECTI ONS
END

In Example 15, the lock GMAXA is used to control access to the variable MAXA. The scaling
of array B by the maximum element of the array A is performed in a nondeterministic fashion,
depending upon the number of processes available, the assignment of the sections to processes,
and the relative execution speed of the processes. In particular, the scaling may be done with
the value of MAXA that was available upon invocation of this routine, or it may be done with
the value of MAXA that will be returned to the caling program. This is an example of a
program that is non-deterministic but standard conforming.

Exanpl e 16 SUBROUTI NE EX16 (A, B, MAXA, GVAXA, N)
REAL A(N), B(N), MAXA
Lock GVAXA

GUARDS GVAXA(MAXA)
PARALLEL SECTI ONS
NEW AM
SECTI ON
CRI TI CAL SECTI ON (GVAXA)
AVENAXA
END CRI TI CAL SECTI ON (GVAXA)
DO 10 1=2, N
| F(AM LT. A(1)) THEN
CRI TI CAL SECTI ON (GVAXA)
| F(MAXA. LT. A(1)) MAXA=A(1)
AVENVAXA
END CRI TI CAL SECTI ON
ENDI F
10 CONTI NUE
SECTI ON
DO 20 1=1,N
CRI TI CAL SECTI ON (GVAXA)
B(1)=B(1)/ MAXA
END CRI TI CAL SECTI ON
20 CONTI NUE
END PARALLEL SECTI ONS
END

In Example 16, the lock GMAXA is used to control access to the variable MAXA. The scaling
of array B by MAXA is performed in a non-deterministic fashion because the scaling does not

60

O ~NouhwWNE

wait for the computation of MAXA to be complete. The value of MAXA used at any point in
the scaling process depends upon the number of processes available, the assignment of the
sections to processes, and the relative execution speed of the processes. In particular, the scaling
of an individual element of B may be done with the value of MAXA that was available upon
invocation of this routine, or it may be done with the value of MAXA that will be returned to
the calling program, or with some intermediate value. All elements of B need not be scaled with
the same value. While non-deterministic, this program is standard conforming.

Exanmpl e 17 SUBROUTI NE EX17 (B, SUM
REAL B(0: 100)
SUM = 0.0
PARALLEL PDO I =1, 10
NEW T
CRI TI CAL SECTI ON GUARDS(SUM)
T =B(l) * B(I-1)

SUM= SUM+ T
END CRI TI CAL SECTI ON
END PARALLEL PDO
END

In Example 17, an unnamed Critical Section construct is used to control access to the shared
variable SUM. Behavior isasif all processes used the same lock variable to control the access,
even if the processes that called this routine happened to be on distinct teams, and SUM was a
new object at those higher levels of parallelism (think of nested parallelism).

Exanpl e 18 SUBROUTI NE EX18 (B, SUM PROD)
REAL B(100)
PARALLEL SECTI ONS
NEW T
SECTI ON
T=0.0
DO 10 1=1, 10
10 T=T+B(I)
CRI TI CAL SECTI ON GUARDS(SUM)
SUM =T
END CRI TI CAL SECTI ON
SECTI ON
T=1.0
DO 20 1=1, 10
20 T=T* B(l)
CRI TI CAL SECTI ON GUARDS(PROD)
PROD = T
END CRI TI CAL SECTI ON
END PARALLEL SECTI ONS
END

In Example 18, unnamed Critical Sections are used to control access to distinct shared variables
SUM and PROD. Each lexical occurrence of an unnamed Critical Section construct operates
independently, so one process can be executing inside the first Critical Section and another
process can be executing inside the second Critical Section.

Exanple 19 SUBROUTI NE EX19 (A, B, MAXA, N)
C
C >>> NOT STANDARD CONFORM NG <<<
C

61

OO~NOUTRWNEF

REAL A(N), B(N), MAXA
PARALLEL SECTI ONS
NEW AM
SECTI ON
AM = A(1)
DO 10 1=2, N
| F(AM LT. A(1)) AMEA(1)
10 CONTI NUE
CRI TI CAL SECTI ON GUARDS(MAXA)
| F(MAXA. LT. AM) MAXA=AM
END CRI TI CAL SECTI ON

SECTI ON
CRI TI CAL SECTI ON GUARDS(MAXA)
AVENVAXA
END CRI TI CAL SECTI ON
DO 20 1=1,N
B(1)=B(1)/AM
20 CONTI NUE
END PARALLEL SECTI ONS
END

In Example 19, two unnamed Critical Section constructs are used in an attempt to control access
to the variable MAXA. But, because each unnamed Critical Section construct has its own unique
lock variable, this program is not standard conforming because it alows one process to be
reading the value of a shared variable while another process is updating it.

Exanpl e 20 SUBROUTI NE EX20 (B, SUM
REAL B(0:100)
Lock A
UNLOCK(A)
PARALLEL PDO I =1, 10
NEW T

T =B(l) * B(I-1)
CRI TI CAL SECTI ON' (A)
SUM = SUM + T
END CRI TI CAL SECTI ON (A)
END PARALLEL PDO
END

In Example 20, the lock A is used to control access to al shared objects and limit access to the
enclosed block of code, but a good implementation can remove the shared array B from the list
of controlled objects because the lock A is new to the team created by the Parallel Do construct.
(Note that B may be not changed by a process that is not visible because the visibility of the lock
A does not extend outside of this program unit.) It isimportant for an implementation to reduce
the amount of code within a Critical Section to a minimum. This can easily be done if only
updated objects or read objects are listed in the GUARDS clause or applicable GUARDS
statement. The programmer should also make an effort to code small Critical Sections, but the
easy optimizations should be done by an implementation.

Exanpl e 21 SUBRQUTI NE EX21 (A B, SUM
REAL B(0:100)
Lock A
PARALLEL PDO I =1, 10
CRI TI CAL SECTION (A) GUARDS(SUM
SUM = SUM + B(I) * B(I-1)
END CRI TI CAL SECTI ON

62

o1 b W

10
11
12

13
14

15
16
17
18
19

20
21

23
24

25
26

27
28

29
30
31
32
33

END PARALLEL PDO
END

In Example 21, the a good implementation would move the multiplication of elements of B out
of the Critical Section.
7.2.2 Event Synchronization

Event synchronization is most often used to signify when something has occurred, especialy in
those cases where more than one process is interested in the occurrence.

Event synchronization provides operations to indicate that an event has not occurred (CLEAR),
to indicate that an event has occurred (POST), and to ensure that an event has occurred (WAIT).

Event synchronization may be used anywhere in the program. Care shall be taken to

1. preserve execution order independence if used within aworksharing construct without the
ORDERED quadlifier.

2. ensure that the synchronization pattern described does not require more than one process
for correct execution.

7.2.2.1 Explicit Syntax

Statement Forms
POST (event) [GUARDS(object-name-1list)]

VAIT (event) [GUARDS(object-nanme-1ist)]
CLEAR (event) [GUARDS(object-name-1ist)]

Where
event is a variable or array element of type event

object-name is a variable name, an array name, an array element, or a common block
name enclosed in /'s

7.2.2.2 Coding Rules
POST, WAIT and CLEAR are executable statements.
7.2.2.3 Interpretation

An event may assume one of two values. "cleared” or "posted”.

63

N

~No o1k~ w

10
11
12

13
14
15
16
17
18

When a CLEAR statement is executed,

a) the appropriate shared variables are made consistent

b) event is set to "cleared", no matter what its value was previously.
When a POST statement is executed,

a) the appropriate shared variables are made consistent

b) the value of event is set to "posted”, no matter what its value was previoudly.
When a WAIT statement is executed,

a) the appropriate shared variables are made consistent

b) the value of event istested to seeif it is "posted” if it is not, the process retry’s this step
a alater time,

The initial value of an event is undefined. It becomes defined only upon the execution of a
CLEAR or POST statement. A program that executes a WAIT statement on an event with an
undefined value is not standard conforming.

7.2.2.4 Examples

Exanmpl e 22 SUBROUTI NE EX22 (B, E)
REAL B(100),C
EVENT E(100)

PARALLEL PDO I =1, 97
IF (I .LT. 4) THEN
POST E(1)
ELSE
CLEAR E(1)
ENDI F
END PARALLEL PDO
PARALLEL PDO (ORDERED) | =4, 100
NEW C
C = SIN(B(1))
VAI T E(I-3)
B(l) = B(1) + B(1-3)*C
POST E(1)
END PARALLEL PDO
END

Example 22 computes a recurrence to solve for B. Each computed value of B is used in the
computation of the value of B three iterations later of the loop. The code above permits the SIN
calculations to be done completely in parallel, while the computation of B is synchronized.

7.2.25 Intrinsic Functions for Events

41

42
43

45
46

LOGICAL FUNCTION POSTED(event)

This intrinsic function returns a logical value that is .TRUE. if the event is "posted’ and
otherwise it returns .FALSE..

Exanmpl e 23 SUBROUTI NE EX23 (C, D)
C
C >>> NOT STANDARD CONFORM NG <<<
C
REAL C, D
EVENT A, B
CLEAR A
CLEAR B
PARALLEL SECTI ONS (ORDERED)
SECTI ON
VAIT A
C=C+1
POST B
SECTI ON
POST A
VAIT B
D=C+ 2
END PARALLEL SECTI ONS
END

If Example 23 is executed by a single process, it will deadlock because that process will be
assigned to the first section and immediately go into a permanent wait. Example 23 is not
standard conforming.

Deadlock avoidance is the responsibility of the programmer. Here are some hints that can help
in avoiding deadlock. (A standard conforming program need not follow these hints.)

(1) Do not use event synchronization in unordered parallel loops or unordered parallel
sections.

(2) In Paralel Do and Pdo constructs with the ORDERED qualifier, make sure that POST
statement is executed for an iteration earlier in the seria order than the iteration
containing the corresponding WAIT statement.

In Parallel Sections and Psections constructs with the ORDERED qualifier, make sure that the
section containing the POST statement occurs lexically before the section containing the
corresponding WAIT statement.

7.2.3 Sequences: Ordinal Synchronization

Ordinal synchronization is used to communicate between iterations of aloop, or to communicate
between distinct loops. Any series of events that can be numbered can be synchronized with
ordinal synchronization.

Ordinal synchronization describes an arithmetic sequence. It provides operations to define an
arithmetic sequence (SET), indicate that computation for a particular element of the sequence is

65

OO, WN B

o~

9
10

11
12

13
14
15
16
17
18
19

20
21

22

23
24

25

26

27
28
29
30
31
32

complete (POST), and to ensure that the computation for a particular element of the sequence
completes (WAIT).

Ordinal synchronization may be used anywhere in the program. If a Parallel Do or Pdo construct
is used to create the arithmetic sequence being synchronized, then the ORDERED qualifier is
required. Care shall be taken to

1. preserve execution order independence if used within aworksharing construct without the
ORDERED qudlifier.

2. ensure that the synchronization pattern described does not require more than one process
for correct execution.

Most uses of asingle ordinal synchronizer do not describe a synchronization pattern that requires
more than one process for correct execution.

7.2.3.1 Explicit Syntax

Statement Forms
POST (seq, iexpl) [GUARDS(object-nane-list)]

WAIT (seq, iexp2) [GUARDS(object-name-1ist)]
SET (seq [, iexp3[, iexpd]]) [GUARDS(object-nanme-1ist)]

Where
seq is a variable or array element of type ordinal

iexpl, iexp2 and iexp3 are integer expressions
iexp4 is an integer expression not equal to zero

object-name is a variable name, an array name, an array element, or a common block
name enclosed in /’s

7.2.3.2 Coding Rules

POST, WAIT and SET are executable statements.

7.2.3.3 Interpretation

All integer expressions are evaluated just once, before any of the statement specific actions are
performed.

When a SET statement is executed,

66

\‘

10
11

12

13

14
15

16
17

18
19
20
21
22
23
24
25
26

1. the appropriate shared objects are made consistent as specified by the Language
Independent Model, X3H5 Language Independent Model.

2. iexp3isthe initial value of seq. If iexp3 is not coded, an initial value of O is assumed.
iexp4 is the increment between elements of the sequence. If iexp4 is not coded, an
increment of 1 is assumed.

When a POST statement is executed,

1. the appropriate shared objects shall be made consistent as specified by the Language
Independent Model, X3H5 Language Independent Model.

2. the value of seq is compared with iexpl - increment. If seq is less than, and increment
>0, or if seq is greater than, and increment <0 then the process repeats step 1) at a later
time

3. if the value of seq is equal to iexpl - increment then set the value of seq to be iexpl.

When a WAIT statement is executed

1. the appropriate shared objects shall be made consistent as specified by the Language
Independent Model, X3H5 Language Independent Model.

2. the value of seq is compared with iexp2 If seq is less than, and increment >0, or if seq
is greater than, and increment <0 then the process repeats step 1) at a later time

The initial value of an object of type ordinal is undefined. It becomes defined only by execution
of a SET statement.

A program that executes a POST or WAIT with a seq that has an undefined value is not standard
conforming.

Anything that can be done with ordinal synchronization, can also be done with an array of type
event, but the reverse is not true. In the cases where ordinal synchronization can be used, it
permits a significant storage savings.

7.2.3.4 Examples

Exanpl e 24 SUBROUTI NE EX24 (B, SUM

REAL B(100), SUM 100)

ORDI NAL A

GUARDS A(SUM

SUM1) = 0.0

SET A

PARALLEL PDO (ORDERED) |=2, 10
NEW T
T =B(l) * B(I-1)

67

OO~NOUTRWNEF

Exanpl e 25

VAIT (A I-1)
SUMI) = SUMI-1) + T
POST (A 1)

END PARALLEL PDO

END

SUBROUTI NE EX25 (B, SUM)
REAL B(100), SUM 100)
EVENT AA(100)
GUARDS AA(SUM
POST(AA(1))
PARALLEL PDO I =2, 100
CLEAR AA(I)
END DO
SUM1) = 0.0
PARALLEL PDO (ORDERED) =2, 10
NEW T
T =B(l) * B(I-1)
WAI T AA(I - 1)
SUMI) = SUMI-1) + T
POST AA(I)
END PARALLEL PDO
END

To illustrate, consider Examples 24 and 25 which perform exactly the same computation using
ordina and event synchronization. However, Ordinal synchronization is not general enough to
code every program that can be built with events with equivalent efficiency.

Exanpl e 26
10
20

SUBROUTI NE EX26 (B, C, N)
REAL B(N), C(N)
PARAVETER (MAXN=1000)
EVENT E(MAXN)
PARALLEL PDO 10 I=1, N
IF (I .It. 4) THEN
POST E(1)

CONTI NUE

PARALLEL PDO (ORDERED) 20 |=4, N
C(I') = FUNC(B(1))
WAI T E(1-3) GUARDS(B(I-3))
B(1) = B(1) + B(1-3)*C(1)
POST E(1) GUARDS (B(1))

CONTI NUE

END

Consider Example 26 where the user function FUNC may have widely varying execution times

Exanmpl e 27

SUBROUTI NE EX27 (B, C, N)
REAL B(N), C(N)
ORDI NAL E
GUARDS E(B)
SET (E, 3)
PARALLEL" PDO (ORDERED) 20 | =4, N
C(1) = FUNC(B(I))
VWAI T (E, 1-3))
B(1) = B(1) + B(1-3)*C(1)

68

© 00 ~N O 01 »WNEF

POST (E, 1)
20 CONTI NUE
END

and the obvious transcription to ordinal synchronization provided by Example 27. Examples 26
and 27 both compute the same result as long as the value of N is less than MAXN. Both
examples are standard conforming. Example 26 alows 3 processes to execute totally
independently, but uses more storage, and must know the maximum value of N. Example 27
requires that all of the POST statements be completed in serial iteration order (recall that posting
aordina synchronizer has an implied wait for the previous value in the sequence to be posted),
thus providing more synchronization than is absolutely necessary to compute the result. Example
27 does not require as much storage for synchronizers.

Exanpl e 28 SUBROUTI NE EX28 (A, B, C, N1, N2, N3)
REAL A(*),B(*), C(*)
ORDI NAL D
GUARDS DY C)

SET (D, Ni, N3)
PARALLEL SECTI ONS
SECTI ON
DO 10 |=N1, N2, N3
C(1) = MAX(A(T), ACT-N3))
POST(D, 1)
10 CONTI NUE
SECTI ON
DO 20 |=N1, N2, N3
WAI T(D, I)
B(l1) = B(1)/C(l)
20 CONTI NUE
END PARALLEL SECTI ONS
END

Example 28 demonstrates use of Ordinal synchronization to perform pipeline style
synchronization. In this case, the result of one DO loop is piped into another DO loop operating
on the same index set. In Example 28, the first loop computes the maximum element of A
encountered so far, and stores this local maximum in C. The second loop scales the array B
based upon the local maximum.

Exanpl e 29 SUBROUTI NE EX29 (B)

REAL B(100)

ORDI NAL A

SET (A 2)

PARALLEL PDO (ORDERED) |=1, 99
NEW T
T = B(I+1)
POST (A, | +1)
B(1) = T
END PARALLEL PDO
B(100) = 0.0

END

Example 29 demonstrates the use of ordinal synchronization utilizing the implied wait function
that is built-in to the POST statement. This subroutine shifts the array B to the left, throwing

69

H

away B(1). Thereis no need to wait, because when the POST statement is executed, the implied
wait insures that the previous iteration has already been posted.

7.2.3.5 Intrinsic Functions for Ordinals

INTEGER FUNCTION INT(seq)

Thisintrinsic function, which is already defined for other Fortran data types, is extended to return
the integer value of the current position in the arithmetic sequence described by seq, which is of
type ordinal.

Avoiding Deadlock

As with event synchronization, deadlock is a possibility with ordinals.

Exanpl e 30 SUBROUTI NE EX30 (B, C)

C

C >>> NOT STANDARD CONFORM NG <<<

C
REAL B(100), C
ORDI NAL A
SET (A, -99)
PARALLEL PDO (ORDERED) 10 | = 1, 99

VAI T (A -(1+1))
B(l) = B(I+1) + C
POST (A -1)
10 CONTI NUE
END

In Example 30, the program will deadlock with any number of processors less than 99, because
the iterations are handed in order from first to last. If there are only 98 processors, they will al
wait for the last iteration to execute its POST statement. This program unit is not standard
conforming because it requires at least 99 processes to avoid deadlock. To be standard
conforming, a program unit must be capable of completing execution with any number of
processes.

7.2.4 Unstructured synchronization - Locks
Unstructured control of LOCKs should not be used if some other LOCK synchronization

mechanism is more appropriate (try critical sections or ordinal synchronization). Unstructured
control of LOCKSs is prone to many, hard to find, programming errors.

Unstructured control of LOCK's can be used anywhere within the program. Care should be taken
to preserve execution order independence if used within a worksharing construct without the
ORDERED qualifier. Care should be taken to ensure that the synchronization pattern described
does not require more than one process for correct execution.

7.2.4.1 Explicit Syntax

70

WN -

10

11
12
13
14
15

16
17
18
19

20

21

22

23
24
25
26
27
28
29
30
31
32
33

Statement Forms
CGET_LOCK (1 ock) [GUARDS(object-nane-lis
UNLOCK (I ock) [GUARDS(object-nane-1ist)

)]
]

Where
lock is a variable or array element of type lock
object-name is a data object>

7.2.4.2 Coding Rules

The GET_LOCK and UNLOCK statements are executable statements.
<GET_LOCK and UNLOCK are subroutines defined in the X3H5 module. >

7.2.4.3 Interpretation
A lock may assume one of two values: "locked" and "unlocked". Execution of UNLOCK causes
the value of the specified LOCK to become "unlocked", no matter what the value was previously.
When UNLOCK is executed, these actions take place:

uUl) the appropriate shared objects are made consistent

u2) if the current value of the lock is "locked", the value is changed to "unlocked".
GET_LOCK has the following effect:

L1) appropriate shared objects are made consistent
L2) if the current value of the specified LOCK is "unlocked" then
L2a) the valueis changed to "locked"
L2b) execution continues with the next statement
L3) if the value of the specified LOCK is"locked", the process retries step L2) at alater time.
Step L2) and L2a) above are executed as a single atomic operation.

The initial value of a LOCK is undefined. It becomes defined only at the execution of
UNLOCK.

A program that executes GET_LOCK on lock with an undefined value is not standard
conforming.

If a GUARDS clause is specified then for the duration of the synchronization statement, the
names listed shall be used to augment the set of objects guarded by that synchronizer if the

71

aprhwnNBE

synchronizer was specified in a <sync-list> of the GUARDS statement. The merged set of
guarded objects shall be made consistent when the synchronization statement is encountered. By
explicitly identifying names of objects that shall be made consistent, the GUARDS clause and
GUARDS statement remove a requirement for the implementation to make any other objects
consistent when the synchronization statement is encountered.

7.2.4.4 Examples

Exanple 7 REAL FUNCTI ON SUM A, B)
REAL B(0: 100)
LOCK A
sunpr oduct : PARALLEL PDO I =1, 10
NEW T
GET_LCCK (A

T=B(l) * B(I-1)

SUM = SUM + T

UNLOCK (A)
END PARALLEL PDO sunproduct
END

In Example 7, the Lock A is used to control access to the variable SUM. The implementation
must ensure that all necessary shared objects, SUM and B are consistent at the GET_LOCK
statement and the UNLOCK statement. Because of the possibility that another process executing
some other parallel construct might change elements of the array B, both elements of B would
have to be read from shared memory on every iteration of the loop unless the implementation
could determine that those elements of B would not change while this parallel construct was
executing.

Exanpl e 8 SUBROUTI NE EX8 (A, B, SUM
REAL B(0: 100)
LOCK A
GUARDS A(SUM
PARALLEL PDO | =2, 10
NEW T
GET_LOCK (A)
T =8(1) * B(I-1)
SUM = SUM + T
UNLOCK (A)
END PARALLEL PDO
END

In Example 8, the variable A is used as a lock to control access to the variable SUM. Because
of the GUARDS statement, the implementation need only ensure that the shared variable SUM
is consistent at the GET_LOCK statement and at the UNLOCK statement. No action is required
with respect to array B because B is not changed during this operation.

7.2.45 Intrinsic Functions for Locks

LOGICAL FUNCTION TRY LOCK(lock)

72

ooo~NOoOUITA, W N -

The value of an object of type lock may be determined using the intrinsic function TRY _LOCK.
TRY_LOCK accepts a single argument of type lock, returning a result of type logical. If the
value of the lock is locked, the result is .TRUE., otherwise it is .FALSE..

Exanpl e 9 SUBROUTI NE EX9 (NAME, A)
CHARACTER* (*) NAME
CHARACTER* 10" PG
LOCK A
IF (TRY_LOCK (A)) THEN

PG = "LOCKED'

ELSE
PG = " UNLOCKED'
ENDI F
PRI NT *, "Lock ", NAME," was ", PG
END

In Example 9, the subprogram prints the current value of the lock A. Theintrinsic TRY_LOCK
is used to obtain the current value of the lock without modifying it.

LOGICAL FUNCTION GET LOCK(lock)

This intrinsic function locks the lock if possible, but does not wait if it is already locked.
GET_LOCK accepts a single argument of type lock, returning a result of type logical. The
GET_LOCK intrinsic attempts to lock the lock. If the GET_LOCK intrinsic is successful in
locking the lock, then the GET_LOCK intrinsic returns .TRUE.. If the lock is already locked,
then the GET_LOCK intrinsic returns .FALSE.. The GET_LOCK intrinsic works exactly like
the GET_LOCK statement, except that the GET_LOCK intrinsic does not wait if the lock is
aready locked.

Exanpl e 10 SUBRQUTI NE EX10 (A)
Lock A
5 I F (.NOT. GET_LOCK(A)) THEN

CALL USEFUL
GO TO 5

ENDI F

CALL UPDATE

UNLOCK (A)

END

In Example 10, the subprogram does some useful work rather than waiting for the lock to change
values.

Exanple 11 SUBROUTI NE EX11 (A)
Lock A
5 IF (TRY_LOCK (A)) THEN
CALL USEFUL
GO TO 5
ELSE
GET_LOCK(A)
CALL UPDATE
UNLOCK (A)
ENDI F

73

ga b wWwNEF

END

Notice the subtle difference between Examples 10 and 11. The TRY_LOCK intrinsic does not
actually lock the lock, so it is possible for another process to lock the lock A in between the test
performed with the TRY _LOCK intrinsic and the lock performed by the GET_LOCK statement.

74

'_\

OO, WN

O © 00~

8.0 Nondeterministic Programs

In parallel programming, there are situations in which the same program when run twice may not
produce the same results. Such a program is nondeter ministic. The X3H5 Fortran standard
allows some standard conforming programs to be nondeterministic. In such cases, it is the
programmer’s responsibility to ensure that nondeterministic behavior is acceptable to the
functioning of the program.

If a program is nondeterministic, an implementation is free to choose between the possible
nondeterministic results. An implementation may always produce the same vaue for a
nondeterministic result, or an implementation may be nondeterministic, and produce different
results from one run to the next.

75

25

26
27
28
29

30
31
32
33

A.0 X3H5 Directive Binding
A.1 Directives - Introduction

The use of directives to provide information to a compiler is an established practice. The ability
to parallelize programs with directives has been demonstrated to be useful on a number of
parallel systems. Given an appropriate set of directives, an advantage of this approach has been
that the directives may be treated as comments and the program will still run correctly. This has
allowed programs that are parallelized with such directives to be run serially on a computer that
may not understand those directives by treating them as comments.

This is understood to be particularly important to some code devel opers who must support both
parallel and seria targets with a single source code. This is viewed by the committee to be an
interim problem, given that there may be some time before compilers on serial systems handle
the parallel statements defined herein in an appropriate serial manner.

The system of directives described in this appendix is imperative -- they are not advisory. The
directives assert specific behavior for the parallel program or for the implementation.

Directive syntax and structure are specified in this appendix. Because of a basic one to one
association between the directives and corresponding language statements, the specification for
the directives will not replicate specifications given in this document for those associated
language statements. Interpretations and coding rules are provided only when they are in addition
to those provided for the corresponding language statement.

Examples in this appendix have been derived from those in the body of this document when
useful for illustrating some aspect of the directive binding. Corresponding example numbers
have been used to facilitate comparison between language and directive bindings, athough this
does not result in a sequential numbering of the examples in this appendix.

A.1.1 Role of the Directive Binding

This directive binding is specified for the Fortran-77 language only and is provided as a
conversion aid. It will not be specified or extended to use additional features of the Fortran-90
language. To aid as an interim conversion aid, this set of directives has been designed to be
easily replaced, either manually or mechanically, by their corresponding language statements.

The directive binding has a direct correspondence to statements in the language binding and these
directives instruct the implementation just as if the corresponding language statement were
present. When they are coded, they result in exactly the same interpretation being taken by the
implementation as if it encountered the corresponding language statements.

A.1.2 Single Process Execution Requirement for Compliant Programs

76

A WNPE

ol

H
R O WOWOoWNO®

'_\

13

14
15

16
17

18
19
20

21

22
23
24

25
26
27
28
29

30
31

32
33

The X3H5 LIM requires that a compliant parallel program be written so that it may be executed
with an arbitrary number or processes. Notably, the program must be executable by a single
process. A key implication of this rule is that when a compliant program is being executed by
a single process, the process shall never encounter a barrier that would cause it to be blocked.

Equivalent Serial Execution:

A compliant parallel program using this binding can be written so that it has an "equivalent serial
execution”. A program has an "equivalent serial execution”, if that program is written so that
the semantic features introduced by the parallel directives are rendered superfluous by the
construction of the code. Serial execution of such a program, achieved by ignoring directives, will
produce a result that is one of the possible results from the parallel execution of that paralel
program.

There are two features of a X3H5 parallel directives to be discussed when considering the serial
interpretation of a X3H5 compliant program:

A) Implicit and explicit synchronization points, and
B) The introduction of scoping at parallel constructs.

Following this discussion, the X3H5 intrinsic functions will be examined in the context of serial
execution.

Coding to provide an equivalent serial execution is not a requirement when using the X3H5
directive binding, but ignores the primary advantage for use of directives. Unless otherwise
noted the examples in this appendix are coded so that they have an equivalent serial execution.

A.1.3 Synchronization and Serial Execution

A parallel program is similar to atraffic grid - synchronization is the system of traffic lights that
keep multiple processes from "running into each other". When those streets are used by a single
vehicle, it is free to ignore all of the lights without worry of a collision at an intersection.

The single process execution requirement guarantees that a "serial process’ may ignore the
synchronization points (implicit or explicit) in a compliant parallel program without hazard.
Those synchronization points can never block that single process. Because there is a single
process executing the program, there is not need to communicate values of shared objects at
synchronization points.

A.1.3.2 Scoping at Parallel Constructs and Serial Execution
The addition of a scope at the level of the parallel construct allows the mapping associated with
a construct private object to change at the construct boundary. The definition/reference pattern

for that object will determine whether change in storage association is significant to the semantics
of the program when the construct is ignored.

77

14

15
16
17

18
19
20

21

22
23
24

25

26
27
28
29
30
31

32

Naming private objects for a parallel construct uniquely from any objects used outside the scope
of that construct is sufficient to ensure an equivalent serial execution. Uniquely naming the
objects used within a parallel construct nullifies the effect of the new scope -- allowing the
directives to be safely ignored.

Alternate Intrinsic Functions

Because the synchronization points in a seria execution will be ignored, the values of
synchronizers between synchronization points are meaningless. Theintrinsicinquiry functionsthat
relate to binary states are specified to return fixed values that allow the serial process to proceed
undeterred.

Although the directive binding supports the INT function for ORDINALS, this function is not
supported under serial execution. Thisis because ORDINAL synchronizers do not have a binary
state and a suitable version of the INT function for serial use cannot be constructed. A program
using the X3H5 directive binding that is to be interpreted serially can not use the INT function.

A.1.4 Terminology

A program using this directive binding has an "equivalent serial execution" if coded in a fashion
that ensures the result of its seria interpretation will be one of the results of the parallel
execution of the program.

A "directive sentinel" is the special pattern of characters that appears beginning in column 1, and
indicates that the line is to be interpreted as an X3H5 parallel directive. The X3H5 directive
sentinel is'C$PAR'.

A.1.5 Directives - General Usage Requirementsin Parallel Programs

This set of directives isintended to be easily replaced, either manually or mechanically, by their
corresponding language statements. Because of this, they may only be coded at statement
boundaries.

A.1.5.1 Continued Directives

Unlike X3H5 parallel statements which may be continued by the conventional Fortran
continuation mechanism, there is no mechanism in Fortran for comments of which directives are
a specia case. In the case of a long directive in a construct, the optional clauses may be
combined with a "directive sentinel”, to form an additional directive. Such a directive must
immediately follow the base directive. The specifications of individual directives that may
reguire continuation in this manner contain specific instructions.

A.1.6 Parallel Intrinsic Functions

78

w N -

oo~NO O~

10
11
12
13

14

15

16

26
27

28
29
30
31
32

A program utilizing the X3H5 directive binding uses the same set of intrinsic functions asin the
case of the language binding. These functions are specified in the main portion of this document.

A.1.6.1 Parallel Intrinsic Behavior for Equivalent Serial Execution

When a program with these parallel directives is to be executed seriadly, it is linked with an
aternate library. In thislibrary, fixed values are returned by intrinsic to reflect the values that
are appropriate for a serial execution on a single processor computing system. The behavior of
these functions is defined in the appropriate sections of this appendix, paraleling the
corresponding sections in the body of this standard.

A.1.6.2 Functionality Not Supported Under Serial Interpretation

When the SET and POST directives for ORDINALSs are ignored, a value to be returned by the
INT function cannot be reconciled in a way that reflects the state of the sequence. Therefore,
the INT function for ORDINAL data types can not be coded in a program that is to be
interpreted serialy.

A.2 Syntax Rules
A.2.1 Parallel Do Construct
A.2.1.1 Syntax

Directive Forms for Component Directives:
C$PAR PARALLEL PDO [(option_list)]
C$PAR END [PARALLEL] DO

Structured As:

C3PAR PARALLEL PDO [(option_list)]
[C3PAR NEW obj _l'ist]

>> Fortran do-loop <<
[CSPAR END PARALLEL PDQ

A.2.1.2 Coding Rules

No executabl e statements may appear between the PARALLEL PDO directive and the beginning
of the do-loop.

The coding of the END PARALLEL PDO directive is optional. 1f the END PARALLEL PDO
directive is coded, no executabl e statements may appear between the last statement of the do-loop
and the END PARALLEL PDO directive.

A.2.1.3 Examples

79

Ooo~NOOUIR™ WNEF

37
38
39
40
41

Exanple 1
SUBROUTI NE EX1 (A B,C E T, N
REAL A(N), B(N), C(N+1) ,E(N), T

C$PAR PARALLEL PDO
DO 10 I=1, N
E(1) = A(1)*B(I)
c(1+1) = E(1) * (T-1.0)
10 CONTI NUE
END

Exampl e 2
SUBROUTI NE EX2 (A B,C E T, N)
REAL A(N), B(N), C(N+1),E(N), T

C$PAR PARALLEL PDO
DO 1=1, N
E(1) = A(1)*B(1)
o(1+1) = E(1) * (T-1.0)
END DO
C$PAR END PARALLEL PDO
END

A.2.2 Parallel Sections Construct
A.2.2.1 Syntax

Directive Forms for Component Directives:

C3PAR PARALLEL SECTIONS [(qual list)]
C$PAR SECTION [/sec_nnl] [WAIT (sec_nmlist)] [GUARDS (obj _nmlist)]
C$PAR END [PARALLEL] SECTI ONS

Structured As:

C3PAR PARALLEL SECTIONS [(option_list)]]
[C3PAR NEW obj _l'i st]
C3PAR SECTION . ..
>> statenents <<
[... zero or nore additional section blocks]
C$PAR END PARALLEL SECTI ONS

A.2.2.2 Interpretation

A "section block" is composed of a SECTION directive followed by some number of executable
Fortran statements. The end of a section block is signalled by the next SECTION or END
PARALLEL SECTIONS directive.

The WAIT and GUARDS clauses may appear as separate directives immediately following the
corresponding SECTION directive. Thisis achieved by coding a line with the directive sentinel
and the particular clause. Multiple instances of the WAIT and GUARDS clauses associated with
a particular SECTION directive are additive, having the same effect as if they had appeared in
a single clause for that section block.

80

H

Ooo~NOUT A~WN

A.2.2.3 Examples

Exampl e 3

C$PAR
C$PAR

10
C$PAR

20
C$PAR

Exampl e 4

C$PAR
C$PAR
C$PAR

C$PAR
C$PAR

C$PAR

Exanmpl e 5

C$PAR
C$PAR

C$PAR
C$PAR
C$PAR
C$PAR
C$PAR

Exanpl e 6

SUBROUTI NE EX3 (A, B, C,
REAL A(N), B(N), (N) , I

PARALLEL SECTI ONS
SECTI ON
DO 10 I=1,N

D,
N)

AC) = B(1) * 1)

CONTI NUE
SECTI ON
DO 20 J=1, M

(1)
CONTI NUE

END PARALLEL SECTI ONS

END

= F(J) 1 E(I)

EF,N
 E(N), F(N)

SUBROUTI NE EX4 (A, B, C,D,E F,N)
REAL A(N), B(N), (N, D(N), E(N), F(N)

PARALLEL SECTI ONS
SECTI ON
PARALLEL PDO
DO =1, N

END

SECTI ON
PARALLEL PDO
DO J=1, M

A(l) = B(1) * (1)
DO

(1) = F(J) / E(I)

END DO

END PARALLEL SECTI ONS

END

SUBROUTI NE EX5 (Z, ZA, ZB, ZC, ZD, ZE)

REAL Z(5)

PARALLEL SECTI ONS (ORDERED)

SECTION / A/
ZA = ZFUNC(Z(1))
SECTI ON / B/

ZB = 2*ZFUNC(Z(2))
SECTION /C/ WAI T (A)
ZC = ZA * ZA + ZFUNC(Z(3))
SECTION /DI WAIT (A B)
ZD = ZB - ZA + ZFUNC(Z(4))
SECTION /E/ WAI T (C, B)
ZE = ZC - ZB + ZFUNC(Z(5))
END PARALLEL SECTI ONS

END

SUBROUTI NE EX6
REAL Z(10)

C$PAR SCOWMON / Z/
COMMON / Z/ ZB, ZD, ZE, ZTOT

C$PAR
C$PAR

PARALLEL SECTI ONS
SECTION / A/
ZA = ZFUNC(Z(1))

81

OO~NOUTRWNEF

35
36
38
39
40
41

42
43

C$PAR SECTI ON / BC/
ZB = ZFUNC(Z(2))
ZC = ZFUNC(Z(3))
C$PAR SECTION / D/ WAIT (
ZD = ZFUNC(ZA)
C$PAR SECTION /E/ WAIT (

A)

A, BC) GUARDS (ZA, ZC)

ZE = ZJO N(ZA Z0))

C$PAR END PARALLEL SECTI
ZTOT = ZJO Ns(ZE, ZD, ZB)
END

Exampl e 6A
SUBROUTI NE EX6A
REAL Z(10)
C3PAR SCOWDN / Z/
COWDN / Z/ ZB, ZD, ZE, ZTOT

C$PAR PARALLEL SECTI ONS
C$PAR SECTION / A/
ZA = ZFUNC(Z(1))
C$PAR SECTI ON / BT/
ZB = ZFUNC(Z(2))
ZC = ZFUNC(Z(3))
C$PAR SECTION / D/ WAIT (
ZD = ZFUNC(ZA)
C$PAR SECTION / E/
C3PAR WAIT (A BC)
C$PAR GUARDS (ZA, ZC)

ONS

A)

ZE = ZJO N(ZA, ZO))

C$PAR END PARALLEL SECTI
ZTOT = ZJO Ns(ZE, ZD, ZB)
END

This example derived from example 6 illustrates how a long SECTION

ONS

"continued” by decomposing it into components.

A.2.3 Synchronization Declarations
A.2.3.1 Syntax

Directive Forms

C3PAR GATE decl arator _|i st
C3PAR EVENT decl arator _|i st
C$PAR ORDI NAL decl arator _|i st

C3PAR GUARDS guards_|i st

Directive Forms

C3PAR IMPLICI T sync_type

Structured As

CSPAR IMPLICIT sync_type

IMPLICIT fort_type >"

just-list-an-inplicit-range"_list<

82

directive may be

w N -

~N o o1 b

© 00

10
11
12

13

14

15

16
17

18
19
20
21
22

where
sync_type is one of GATE, EVENT or ORDINAL

A.2.3.2 Coding Rules

Variables identified in a GATE or EVENT declaration directive shall be Fortran variables that
occupy exactly one numeric storage location. Variables identified in an ORDINAL declaration
shall be Fortran variables that occupy exactly two numeric storage locations. An X3H5
compliant compiler shall verify the storage requirements and flag noncompliance as an error.

The GATE, EVENT and ORDINAL directives are specifications, and may be coded anywhere
a Fortran specification statement may be coded.

The IMPLICIT directive must appear immediately preceding the Fortran IMPLICIT statement
towhichit applies. The"IMPLICIT directive/IMPLICIT statement™ pairs may be coded anywhere
a Fortran IMPLICIT statement may be coded.

A.2.4 Unstructured Locking Synchronization
A.24.1 Syntax

Directive Forms

C$PAR GETLOCK (gate) [GUARDS (obj _nmlist)]
C3PAR UNLOCK (gate) [GUARDS (obj nmlist)]

The GUARDS clause may appear as separate directive immediately following the corresponding
GETLOCK or UNLOCK directive. Thisis achieved by coding a line with the directive sentinel
and the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with
aparticular GETLOCK or UNLOCK directive are additive, having the same effect asif they had
appeared in a single clause.

A.2.4.2 Examples

Exampl e 7
SUBRQUTI NE EX7 (A, B)
REAL B(0:100)
C3PAR GATE A
| NTEGER AA

C$PAR PARALLEL PDO
CSPAR NEWT
C$PAR DO I =1, 10

T =B(1) * B(I-1)

C$PAR LOCK (A)
SUM= SUM + T
C$PAR UNLOCK (A)
END DO

C$PAR END PARALLEL PDO

83

oo~NY O1hWN B

e N
O~NOUTRWNFROW

Exampl e 8

C$PAR
C$PAR
C$PAR

C$PAR
C$PAR
C$PAR
C$PAR
C$PAR

END

SUBROUTI NE EX8 (A, B, SUM
REAL B(0: 100)
GATE A

GUARDS A(SUM
UNLOCK (A)
SUM = 0.0

PARALLEL PDO
NEW T
DO | =1, 10
T =B(1) * B(I-1)
GETLOCK (A)
SUM = SUM + T
UNLOCK (A)
END DO
END PARALLEL PDO
END

Note that variable A defaults to type REAL, having one numeric

Exanple 9

C$PAR

Exampl e 10
C$PAR
5

C$PAR

Exampl e 11
C3PAR

C$PAR
C$PAR

SUBROUTI NE EX9 (NAME, A)
CHARACTER* (*) NANME
CHARACTER* 10° PG

GATE A

|F (LOCKED (A)) THEN
PG = " LOCKED'
ELSE
PG = " UNLOCKED"
ENDI F
PRINT *,"GATE ", nane," is ", PG
END

SUBROUTI NE EX10 (A)
GATE A

| F (.NOT. LOCK(A)) THEN
CALL USEFUL
G TO 5

ENDI F

CALL UPDATE

UNLOCK (A)

END

SUBROUTI NE EX11 (A)
GATE A

| F (LOCKED (A)) THEN
CALL USEFUL
O TO 5

ELSE
GETLOCK(A)
CALL UPDATE
UNLOCK (A)

ENDI F

END

storage unit asrequired.

(S IF -

~N O

10

11

12
13

14

15
17

18
19
20
21
22

23

A.2.4.2.1 Function Values for GATEs in Serial Execution

The X3H5 directive binding uses the same intrinsic functions as specified for the X3H5 Fortran
language. These functions are specified in the body of this standard.

A program containing these functions that is to be executed serially should be bound to a set of
corresponding intrinsic that always return a value that indicates that the synchronizer is "open".

function name value returned
LOCKED(gate_name) .FALSE.
LOCK (gate_name) .TRUE.

A.25 Critical Sections
A.2.5.1 Syntax

Directive Forms

C3PAR CRITI CAL SECTION [(gate)] [GUARDS (obj _nmlist)]
C$PAR END CRI TI CAL SECTION [(gate)]

Structured As

C$PAR CRITICAL SECTION ...
>st at enent s<
CSPAR END CRITI CAL SECTION ...

The GUARDS clause may appear as separate directive immediately following the corresponding
CRITICAL SECTION directive. Thisisachieved by coding aline with the directive sentinel and
the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with a
particular CRITICAL SECTION directive are additive, having the same effect as if they had
appeared in a single clause.

A.25.1 Examples

Exanpl e 12
SUBROUTI NE EX12 (A, B, SUM
REAL B(0:100)
C3PAR GATE A

CSPAR UNLOCK(A)
C$PAR PARALLEL PDO
CSPAR NEWT

DO | =1, 10

T =B(1) * B(I-1)
C$PAR CRI TI CAL SECTI ON' (A)
SUM = SUM + T
C$PAR END CRI TI CAL SECTI ON (A)
END DO
C$PAR END PARALLEL PDO
END

85

Ooo~NoHUT A~AWNEF

Exanpl e 13

C$PAR

C$PAR
C$PAR

C$PAR
C$PAR

C$PAR

C$PAR
C$PAR

Exanpl e 14

C$PAR
C$PAR
C$PAR
C$PAR
C$PAR

C$PAR
C$PAR
Exampl e 15
C$PAR
C$PAR
C$PAR

C$PAR
C$PAR

10
C$PAR

C$PAR
C$PAR
C$PAR

20
C$PAR

SUBROUTI NE EX13 (A, B, SUM
REAL B(0: 100)
GATE A

GUARDS A(SUM
UNLOCK(A)
SUM = 0.0
PARALLEL PDO
NEW T
DO | =1, 10
CRI TI CAL SECTI ON (A)
T =B(1) * B(I-1)
SUM = SUM + T
END CRI TI CAL SECTI ON
END DO
END PARALLEL PDO
END

SUBROUTI NE EX14 (A, B, SUM
REAL B(0: 100)
GATE A

UNLOCK(A)
SUM = 0.0

PARALLEL PDO
NEW T
DO | =1, 10
T =8B(1) * B(I-1)
CRI TI CAL SECTI ON (A) GUARDS(SUM)
SUM = SUM + T
END CRI TI CAL SECTI ON
END DO
END PARALLEL PDO
END

SUBROUTI NE EX15 (A, B, MAXA, GVAXA, N)
REAL A(N), B(N), MAXA
GATE GVAXA

GUARDS GVAXA(MAXA)

PARALLEL SECTI ONS
NEW AM
SECTI ON
AM = A(1)
DO 10 1=2,N
| F(AM LT. A1)) AMEA(1)
CONTI NUE
CRI TI CAL SECTI ON (GVAXA)
| E(MAXA. LT. AM) MAXA=AM
END CRI TI CAL SECTI ON (GVAXA)
SECTI ON
CRI TI CAL SECTI ON (GVAXA)
AVENAXA
END CRI TI CAL SECTI ON (GVAXA)
DO 20 I=1,N
B(1)=B(1)/AM
CONTI NUE
END PARALLEL SECTI ONS

86

O~ OUIhWN

Exampl e 16
C$PAR
C$PAR
C$PAR
C$PAR
C$PAR
C$PAR

C$PAR

C$PAR

C$PAR

10
C$PAR

C$PAR
C$PAR

20
C$PAR

Exampl e 17

C$PAR

C$PAR

C$PAR

C$PAR

Exanmpl e 18

C$PAR
C$PAR
C$PAR

10
C$PAR
C$PAR
C$PAR

20

END

SUBROUTI NE EX16 (A, B, MAXA, GVAXA, N)
REAL A(N), B(N), MAXA

GATE GVAXA

GUARDS GVAXA(MAXA)

PARALLEL SECTI ONS
NEW AM
SECTI ON
CRI TI CAL SECTI ON (GVAXA)
AVENAXA
END CRI TI CAL SECTI ON (GVAXA)
DO 10 1=2, N
| F(AM LT. A(1)) THEN
CRI TI CAL SECTI ON (GVAXA)
| F(MAXA. LT. A(1)) MAXA=A(1)
AVEMAXA

END CRI TI CAL SECTI ON (GVAXA)
ENDI F
CONTI NUE
SECTI ON
DO 20 I=1,N
CRI TI CAL SECTI ON (GVAXA)
B(1)=B(1)/ MAXA
END CRI TI CAL SECTI ON (GVAXA)
CONTI NUE
END PARALLEL SECTI ONS
END

SUBROUTI NE EX17 (B, SUM
REAL B(0: 100)

SUM = 0.0
PARALLEL PDO
NEW T
DO | =1, 10
T =B(l) * B(I-1)
CRI TI CAL SECTI ON' GUARDS(SUM
SUM= SUM + T
END CRI TI CAL SECTI ON
END DO
END

SUBROUTI NE EX18 (B, SUM PROD)
REAL B(100)

PARALLEL SECTI ONS
NEW T
SECTI ON
T=0.0
DO 10 1=1, 10
T=T+ B(l)
CRI TI CAL SECTI ON GUARDS(SUM)
SUM =T
END CRI TI CAL SECTI ON
SECTI ON
T=1.0
DO 20 1=1, 10
T=T* B(l)

87

O~ O1hWNEF

35
36
37
38
39
40
41
42
43

45
46

C3PAR

C3PAR

C3PAR
Exampl e 20

C$PAR
C$PAR
C$PAR
C$PAR
C$PAR

C$PAR

Exampl e 21

C$PAR

C$PAR
C$PAR

C$PAR
C$PAR

CRI TI CAL SECTI ON GUARDS(PROD)
PRCD = T
END CRI TI CAL SECTI ON
END PARALLEL SECTI ONS
END

SUBROUTI NE EX20 (B, SUM
REAL B(0: 100)
GATE A

UNLOCK(A)
PARALLEL PDO
NEW T
DO | =1, 10

T =B(1) * B(I-1)

CRI TI CAL SECTI ON (A)

SUM = SUM+ T

END CRI TI CAL SECTI ON (A)
END DO
END

SUBROUTI NE EX21 (A, B, SUM
REAL B(0: 100)
GATE A

UNLOCK(A)
PARALLEL PDO
DO I =1, 10

CRI TI CAL SECTI ON (A) GUARDS(SUM

SUM = SUM + B(1) * B(I-1)
END CRI TI CAL SECTI ON (A)
END DO
END

A.2.6 Event Synchronization

A.2.6.1 Syntax

Directive Forms

C$PAR POST (event) [GUARDS (obj _nmlist)]

C3PAR WAIT (event) [GUARDS (obj _nmlist)]

C$PAR CLEAR (event) [GUARDS (obj _nmlist)]

The GUARDS clause may appear as separate directive immediately following the corresponding
POST, WAIT, CLEAR directive. This is achieved by coding a line with the directive sentinel
and the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with
a particular POST, WAIT, CLEAR directive are additive, having the same effect as if they had

appeared in a single clause.

Exanmpl e 22

C$PAR

SUBROUTI NE EX22 (B, E)
REAL B(100),C
EVENT E(100)

88

CO~NOYOUTRWNEF

19
20

21
22

23

24

C$PAR PARALLEL PDO

DO | =1, 97
IE (I .It. 4) THEN
C$PAR POST (E(1))
ELSE
C$PAR CLEAR (E(1))
ENDI F
END DO

CSPAR PARALLEL PDO (ORDERED)
CSPAR NEWC

C$PAR VAI T (
C$PAR POST (

A.2.6.1.1 Function Values for Eventsin Serial Execution

A program containing these functions that is to be executed serially should be bound to a set of
corresponding intrinsic that always return a value that indicates that the synchronizer is "open".

function name vaue returned
POSTED(event_name) .TRUE.

A.2.7 Ordinal (Sequence) Synchronization
A.2.7.1 Syntax

Directive Forms
CSPAR POST (seq, iexpl) [GUARDS (obj _nmlist)]
CSPAR WAIT (seq, iexp2) [GUARDS (obj nmlist)]
CSPAR CLEAR (seq[, iexp3[, iexpd4]]) [GUARDS (obj _nmlist)]

The GUARDS clause may appear as separate directive immediately following the corresponding
POST, WAIT, CLEAR directive. This is achieved by coding a line with the directive sentinel
and the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with
a particular POST, WAIT, CLEAR directive are additive, having the same effect as if they had
appeared in a single clause.

Exanpl e 24
SUBROUTI NE EX24 (B, SUM
REAL B(100), SUM 100)
C3PAR ORDINAL A
C3PAR GUARDS A(SUM

SUM 1) = 0.0

C$PAR SET (A
C$PAR PARALLEL PDO (ORDERED)

89

CO~NOYOUTRWNEF

C$PAR

C$PAR
C$PAR

Exampl e 25
C$PAR
C3PAR

C$PAR
C$PAR

C$PAR
C$PAR
C$PAR

C$PAR
C$PAR

Exampl e 26

C$PAR
C$PAR

C$PAR
C$PAR

10
C3PAR
C3PAR
C$PAR

20

Exampl e 27

C$PAR
C$PAR

C$PAR
C$PAR

NEW T
DO | =2, 10

T =B(1) * B(I-1)
VAIT (A I-1)

SUMI) = SUMI-1) + T
POST (A 1)
END DO
END

SUBROUTI NE EX25 (B, SUM
REAL B(100), SUM 100)
EVENT AA(100)

GUARDS AA(SUM

POST(AA(1))

PARALLEL PDO

DO | =2, 100
CLEAR (AA(1))

END DO

SUM1) = 0.0

PARALLEL PDO (ORDERED)

NEW T

DO | =2, 10
T =B(l) * B(I
VAI T (AA(I-1))
SUMI) = SUMI-1) + T
POST (AA(1))

END DO

END

-1)

SUBROUTI NE EX26 (B, C, N)
REAL B(N), C(N)
PARAVETER (MAXN=1000)
EVENT E(MAXN)

PARALLEL PDO
DO 10 1=1,N
IE (1 .It. 4) THEN
POST (E(1))
ELSE
CLEAR (E(1))
ENDI F
CONTI NUE
PARALLEL PDO (ORDERED)
DO 20 1=4,N
C(I') = FUNC(B(1))
WAI T (E(I-3)) GUARDS(B(I-3))
B(1) = B(1) + B(1-3)*C(1)
POST (E(1)) GUARDS (B(1))
CONTI NUE
END

SUBROUTI NE EX27 (B, C, N)
REAL B(N), C(N)

ORDI NAL E

GUARDS E(B)

SET (E, 3)

PARALLEL" PDO (ORDERED)
DO 20 |=4,N

90

O~ OUIRWNEF

41
42
43

45

46

47

C(1) = FUNC(B(1))
C$PAR WAIT (E, 1-3))
B(l) = B(l) + B(1-3)*C(1)
C3PAR POST (E, 1)
20 CONTI NUE
END
Exanpl e 28

SUBROUTI NE EX28 (A, B, C, N1, N2, N3)
REAL A(*),B(*), C(*)

C$PAR ORDI NAL D

C$PAR GUARDS D(C)

C$PAR SET (D, N1, N3)
C$PAR PARALLEL SECTI ONS
C$PAR SECTI ON

DO 10 I=N1, N2, N3

C(1) = MAX(A(I), ACI-N3))
C$PAR POST(D, I)
10 CONTI NUE

C$PAR SECTI ON

DO 20 |=N1, N2, N3

C3PAR VAIT(D, |)
B(l) = B(1)/C(l)
20 CONTI NUE
CSPAR END PARALLEL SECTI ONS
END
Exanmpl e 29
SUBROUTI NE EX29 (B)
REAL B(100)

C$PAR ORDI NAL A

C$PAR SET (A 2)
C$PAR PARALLEL PDO (ORDERED)
C$PAR NEW T

DO | =1, 99
T = B(I+1)
C$PAR POST (A, | +1)
B(1) =T
END DO
B(100) = 0.0
END

A.2.7.1.1 Function Values for Countersin Serial Execution

The X3H5 intrinsic function INT(ordnl_var) will not produce a correct result under serial
interpretation. 1f one expects to run a directive based parallel program serialy, this function
should not be used.

A.3 Data Sharing

A.3.1 Data Sharing Directives

A.3.1.1 Syntax

Directive Forms

91

10

11
12

13

C$PAR NEW obj _nm |i st

A.3.1.2 Rules

The NEW directive may only appear within a PARALLEL, PARALLEL PDO or PARALLEL
SECTIONS construct. It appear with other NEW directives after the PARALLEL directive and
the first executable statement.

A.3.2 Partially Shared Common Blocks
A.3.2.1 Syntax

Directive Forms
C3PAR SCOMMON snamne_| i st

Structured As

C$PAR SCOMMON / COMML/
COWDN / COWL/ A(99), B(99,73), X Y, ZZ

A.3.2.2 Rules

The SCOMMON directive shall be located immediately before common block that is to be
interpreted as an SCOMMON block.

COMMONSs and SCOMMONSs occupy the same name space, therefore if a COMMON block is
associated with an SCOMMON directive anywhere in a paralel program, it shall have an
associated SCOMMON directive everywhere that it occurs.

Exanpl e 40
SUBROUTI NE EX40 (B)
C$PAR SCOVMON / BLOCKA/
COVMON / BLOCKA/ A(100)

REAL B(100)
C3PAR PARALLEL PDO
DO | =1, 100
ACL) =1 * |
B(l) = A(l) + B(1)
END DO
END
Exanpl e 41
SUBROUTI NE EX41 (B)
REAL B(100)
C3PAR PARALLEL PDO
DO | =1, 100
CALL SUB(B(I))
END DO
END

92

O ~NoOUIh~hWNEF

SUBROUTI NE SUB(X)
C$PAR SCOMMON / BLOCKAY
COWVON / BLOCKA/ A
A=X
CALL SQUARE
X=A
END

SUBROUTI NE SQUARE
C$PAR SCOVMON / BLOCKA/
COMMON / BLOCKA/ A
A=A* A
END

Exampl e 41A
SUBRQOUTI NE EX41A (B)
C$PAR SCOVMON / BLOCKA/
COWON / BLOCKA/ A
REAL B(100)

C$PAR PARALLEL PDO
C$PAR NEW / BLOCKA/
DO | =1, 100
CALL SUB(B(1))
END DO
END

SUBROUTI NE SUB (X)
C$PAR SCOVMON / BLOCKA/

COWVON / BLOCKA/ A

A= X

CALL SQUARE

END

SUBROUTI NE SQUARE
C$PAR SCOVMON / BLOCKA/

COMMON / BLOCKA! A

A = A*A

END

Exanpl e 45
SUBROUTI NE EX45 (B)
REAL B(100), C(100)

C$PAR PARALLEL PDO
DO | =1, 100
CALL SUBL(B(1))
CALL SUB2(C(1))
END DO
PRINT *, (C(l1), | =1, 100)
END

SUBROUTI NE SUBL (X)
C$PAR SCOVMON / BLOCKA/

COWVON / BLOCKA/ A

SAVE / BLOCKA/

A= X

END

SUBROUTI NE SUB2 (X)

C$PAR SCOVMON / BLOCKA/
COWVON / BLOCKA/ A
SAVE / BLOCKA/

93

O ~ooikhw N

47
48
49
50
51

Exanpl e 4

6
SUBROUTI NE EX46 (B)
REAL B(100), C(100)
C$PAR SCOMMON / BLOCKA/
COVMON / BLOCKA/ A

C$PAR PARALLEL PDO
C$PAR NEW / BLOCKA/
DO | =1, 100
CALL SUBL(B(1))
CALL SUB2(C(1))
END DO
PRINT *, (C(1), | =
END

SUBROUTI NE SUB1 (X)
C$PAR SCOVMON / BLOCKA/

SUBROUTI NE SUB2 (X)
C$PAR SCOVMON / BLOCKA/
COVMON / BLOCKA/ A

X=A
END
Exanpl e 39
SUBROUTI NE EX39(B, C, N)
REAL B(N), C(N)
C3PAR PARALLEL PDO
C3PAR NEW A
PARALLEL PDO I=1,N
A=B(1)+C(I)
CALL EX39A(A B, 1)
END DO
END

SUBROUTI NE EX39A(AA, BB, N)
REAL BB(N), BX
DATA BX/ 1. 0/

BX=
C$PAR
DO

AA* (AA- 4. 0) / BX
PARALLEL PDO
J=1,N

BB(J) =BB(J) * BX
ND DO

END

A 4 Paralle
A 4.1 Syntax

Directive Fornms - Parallel Region parallel

C$PAR
C$PAR

| Regi on Construct

PARALLEL [(roption_list)]
END PARALLEL

1, 100)

94

construct conponent directives

ghwWN

o N O

Structured As

C$PAR PARALLEL [(roption_list)]
[CBPAR NEW obj _|ist]
>> Statenents <<
C$PAR END PARALLEL

Directive Forms - Pdo worksharing construct component directives
C$PAR PDO [(poption_list]
C$PAR END PDO

Structured As:

C$PAR PDO . ..
>> | egal do |oop <<
[C3PAR END PDQ

Directive Forms - Psections worksharing construct component directives
C3PAR PSECTI ONS [(poption_list)]
C$PAR SECTION [/sec_nnl] [wait (sec_nmlist)] [GUARDS(obj _nmlist)]
C$PAR END PSECTI ONS

Structured As:

C$PAR PSECTI ONS . ..
C$PAR SECTI ON
>> statenents <<
[... zero or nore section blocks]
C$PAR END PSECTI ONS
Directive Forms - Grouping construct component directives
C3PAR GROUP [(poption_list)]

C$PAR END GROUP

Structured As:

C$PAR GROUP [(goption_list)]

>> statenments << ! replicated code for wsc 1
>> wor ksharing construct 1 <<
>> statements << ! replicated code for wsc 1

[... zero or nore redundant-code/ workshari ng bl ocks]
C$PAR END GROUP
The WAIT and GUARDS clauses may appear as separate directives immediately following the
corresponding SECTION directive. Thisis achieved by coding a line with the directive sentinel
and the particular clause. Multiple instances of the WAIT and GUARDS clauses associated with

a particular SECTION directive are additive, having the same effect as if they had appeared in
a single clause for that section block.

95

Ooo~NOOUIR™ WNEF

Exanpl e 48

C$PAR

C$PAR

Exanpl e 49

C$PAR
C$PAR
C$PAR

C$PAR

Exanpl e 50

SUBROUTI NE EX48 (A, B, C, N)
REAL A(N), B(N), C(N)

SUBROUTI NE EX49 (A B, C, N)
REAL A(N), B(N), C(N)

PARALLEL
NEW T
PDO
DO =1, N
T = A(1)*B(1)
C(1+1) =T * (T-1.0)
END DO
END PARALLEL
END

SUBROUTI NE EX50 (ZA, ZB, ZC, ZD, N)

C$PAR
C$PAR
C$PAR

10
C$PAR

20
C$PAR

Exanmpl e 51

REAL ZA(N), ZB(N), ZC(N), ZD(N)
PARALLEL SECTI ONS

NEW T
SECTI ON / DS5A/
DO 10 I=1,N

T = ZFUNC(ZA(1))
Zo(1) =T* T
CONTI NUE
SECTI ON / DS5B8/
DO 20 1=1,N
T = ZFUNC(ZB(I) ZA(1))
ZD(1) = T *
CONTI NUE
END PARALLEL SECTI ONS
END

SUBROUTI NE EX51 (ZA, ZB, ZC, ZD, N)

C$PAR
C$PAR
C$PAR
C$PAR

10
C$PAR

20
C$PAR

REAL ZA(N), ZB(N), ZC(N), ZD(N)

PARALLEL
NEW T
PSECTI ONS
SECTI ON / DS5A/
DO 10 1=1,N
T = ZFUNC(ZA(I))
Zo(1) =T *
CONTI NUE
SECTI ON / DS58/
DO 20 1=1,N
T = ZFUNC(ZB(I) ZA(1))
ZD(1) = T *
CONTI NUE
END PSECTI ONS

96

O ~ooikhw N

C$PAR END PARALLEL
END

Exanpl e 52
SUBROUTI NE EX52 (A)
REAL A(*)
GATE B
GUARDS B(SUM

UNLOCK(B)
SUME0. 0
C$PAR PARALLEL
C$PAR NEW SUM

SUM. = 0.0
C$PAR PDO
DO =1, N

SUML = SUML + A(l)

END DO
C$PAR CRI TI CAL SECTI ON

(B)

SUM = SUM + SUM

C$PAR END CRI TI CAL SECTI ON (B)

C$PAR END PARALLEL
END

All team members initialize SUML and execute the Critical Section construct regardless of
whether they participated in the execution of the Pdo construct.

Exanmpl e 52A
SUBRQUTI NE EX52A (A)
REAL A(*)
GATE B
GUARDS B(SUM

UNLOCK(B)
SUMEO. 0
C$PAR PARALLEL
C$PAR NEW SUM

C$PAR GROUP

SUML = 0.0
C$PAR PDO
DO 1 =1, N (NOMI T)
SUML = SUML + A(l)
END DO
C$PAR CRI TI CAL SECTI ON (B)

SUM = SUM + SUM

C$PAR END CRI TI CAL SECTI ON (B)

C$PAR END GRCUP

C$PAR END PARALLEL
END

In this example, derived from EX52, team members to not enter the Group construct once all
work in the Pdo construct has been assigned. Use of the Group construct helps prevent
unnecessary executions of the Critical Section construct. Typical of Group construct usage,
this example shows a pattern of private object initialization, worksharing construct execution,

and reduction into a shared variable.

Exanpl e 53
SUBROUTI NE EX53 (A, B, C, DN, M

97

PR
NP OWOONOUIRWN

REAL A(N), B(N), C(N), D(N)

C$PAR PARALLEL
C$PAR PDO
DO 1=1, N
A(l) = B(I) * 1)
END DO
C$PAR PDO
DO 1=1, M
D(1) = A(l) - 1)
END DO

C$PAR END PARALLEL
END

Exampl e 54
SUBRQUTI NE EX54 (A, C,N M
REAL A(N,0: M, C(N, M

C$PAR PARALLEL

DO 10 J=1, M
C$PAR PDO
DO | =1, N
AL, J) = O(1,3) /AL, J-1)
END DO
10 CONTI NUE
C$PAR END PARALLEL
END

A.4.2 Single Process Sections
A.4.2.1 Syntax

Directive Forms

C$PAR SI NGLE PROCESS
C$PAR END SI NGLE PROCESS

Structured as

C$PAR S| NGLE PROCESS
>> Statenents <<
C$PAR END S| NGLE PROCESS

Exanpl e 55
SUBROUTI NE EX55 (A, B/ N)
REAL A(N), B(N)

C$PAR PARALLEL
C$PAR PDO
DO 1=1, N
A(l) = 1.0/ A(l)
END DO
C$PAR SINGLE PROCESS
IF (A(1) .GT. 1.0) A(1) = 1.0
C$PAR END SI NGLE PROCESS
C$PAR PDO
DO 1 =1, N
B(1) = B(1) / A(1)
END DO

98

O~ O1hw N

47

48

49

C$PAR END PARALLEL
END

Exanpl e 56
SUBROUTI NE EX56 (A, B, N)
REAL A(N), B(N)

C$PAR PARALLEL
C$PAR PDO
DO 1 =1, N
A(l) = 1.0/ A(l)
END DO
C$PAR PSECTI ONS
C$PAR SECTI ON
IF (A(1) .GT. 1.0) A(1) =
C$PAR END PSECTI ONS
C$PAR PDO
DO 1 =1, N
B(1) = B(1) / A(1)
END DO
C$PAR END PARALLEL
END

Exanpl e 57
SUBROUTI NE EX57 (A, AMAX, N)
REAL A(O: N)

AVAX = 0.0
C3PAR PARALLEL
C3PAR NEW ALMAX

C$PAR GROUP
C$PAR PDO (NOWAI T))
DO =1, N

IF (ABS(A(l)) .GT. ABS(ALMAX)) ALMAX = A(l)

END DO
C$PAR CRI Tl CAL SECTI ON

|F (ABS(ALMAX) .GT. ABS(AMAX)) AMAX = ALMAX

C$PAR END CRI TI CAL SECTI ON
C$PAR END GRCOUP

C$PAR SI NGLE PROCESS
ALMAX = A(1) +A(N)

IF (AVMAX . LT. ALMAX) AVAX = 1.0 + AMAX

C$PAR END SI NGLE PROCESS

C$PAR PDO
DO 1=1,N
A(l) =
END DO

ABS(A(1) /| AMAX)

C$PAR END PARALLEL
END

A.5 Exits from Parallel Constructs
A.5.1 Syntax

Directive Forms

99

H
QOO OUIRWNEF

24

25

26
27
28

29

30
31
32
33

35
36
37
38
39
40
41

C$PAR PDONE

Exampl e 3
SUBROUTI NE EX3 (A N, *)
REAL A(N)
LOG CAL FOUND

FOUND=. FALSE.
C$PAR PARALLEL PDO
DO | =1, N
IF (A(1) .EQ 0.0) THEN
C$PAR PDONE
FOUND=. TRUE.
ENDI F
END DO

IF (.NOT. FOUND) THEN
PRI NT*,’ ALL ELEMENTS ARE NON- ZERO
RETURN 0
ELSE
PRI NT*,’ ERROR. THERE |'S A ZERO ELEMENT IN A
ENDI F
END

Note that because the PDONE directive/statement is not preemptive, it may be coded
anywhere in the conditional above with the same effect.

A.6 Extended Intrinsic
A.6.1 Paralld Intrinsic Functions

The X3H5 directive binding uses the same intrinsic functions as specified
for the X3H5 Fortran language. These functions are specified in the
body of this standard.

A.6.2 Definition of Serial Execution Library

Intrinsic Value Returned
INTEGER FUNCTION NPRCFG()
INTEGER FUNCTION MPRTOT()
INTEGER FUNCTION NPRAVL()
INTEGER FUNCTION NPRUSE()
INTEGER FUNCTION NPSCFG()
INTEGER FUNCTION MPSTOT()
INTEGER FUNCTION NPSAVL()
INTEGER FUNCTION NPSUSE()
INTEGER FUNCTION NPSTM()

SUBROUTINE SPRTOT(integer-expr) none, routine has no effect
SUBROUTINE SPSTOT (integer-expr) none, routine has no effect

PRPRORRRORR

100

A parallel-region-construct is:

[nane:] PARALLEL [(parallel-option)]
dat a- shari ng- spec
par al | el - body
END PARALLEL [nane]

wher e
paral l el -option is MAX PARALLEL = int-expr
ORDERED |
MAX PARALLEL = int-expr, ORDERED
ORDERED, MAX PARALLEL = int-expr
paral |l el -body is statenents
paral | el - const ruct
paral | el -construct 1s parallel-region-construct
pdo- const r uct
psections-construct |
gr oup- const r uct |
par al | el - pdo-construct |
paral | el - psecti ons-construct |
si ngl e- process-construct

Contstraint: If the parallel-construct has a nane prefix, then the it nust have
the sane name as a suffix.

dat a- shari ng-spec is newstmt |
use-stmt |
type-declaration-stnt |
speci fication-stm |
par anmet er - st |
format - st nt |
poi nt er-stnt

[dat a- shari ng- spec]

newstnm is NEWvari abl e-11i st

Constraint: specification-stnt shall not contain an access-stnt, conmmon-stnt
data-stnt, optional-stnt, equivalence-stm, derived-type-stnt, or save-stnt

[nane:] PDO [(paral |l el -options)]
par al I el - body
END PDO [nane]

[nane:] PSECTI ON
sections
END PSECTI ONS [nane]

where
sections is [sections section]
section is SECTION [name] [WAIT (name-list)]
parallel-region
[name:] PARALLEL PDO iter-specification parallel-option-list
dat a- shari ng- spec
par al | el - body
END PARALLEL PDO [name]

101

AWNER

~No o1

[nane:] PARALLEL
dat a- shar
sections

PSECTI ONS [paral | el - opti ons]
i ng- spec

END PARALLEL PSECTI ONS [nane]

[name:] GROUP [(g
paral | el -
END GROUP [nane

where

roup-option)]
body
]

group-option is NOWAIT

R503 attr-spec
or
or
or
or
NEW or
or
or
or
or
or
or

X707 guar ds- spec
X708 guar ded- obj
or
or
or
CONSTRAI NT: each subs

(see Fortran 7.

X709 critical-bl ock

X710 critical-stm
[guards-spec]

X711 end-critical-s
)]

CONSTRAINT: If the en

i s PARAMETER
access-spec
ALLCCATABLE
DI MENSI ON (array-spec)
EXTERNAL
guar ds- spec
I NTENT (intent-spec)
| NTRI NSI C
OPTI ONAL
PO NTER
SAVE
TARGET

is GQUARDS (guarded-obj-list)

i s variabl e-name
array- el enent
array-section
substring

cript, substring, or section-subscript
guards-spec nust be an integer initialization expression

1.6.1)

is critical-stm
bl ock
end-critical -stnt

is CRITICAL SECTION[(scalar-latch-variable)]

tmt is END CRITICAL SECTION [(scalar-latch-variable

d-critical-section-stnt specifies a

scal ar-1atch-variable, the correspondi ng

critical -section-stnt shal

scal ar-| atch-vari abl e.

GQUARDS (guarded-1i st)
or

GUARDS :: sync-guards
where guarded is vari

sync- obj ect

-1i st
abl e- nane,

array- nane,

array-ele
array-sec

nent,
tion,

102

specify the sane

WNF

nodul e- nane, or
/ conmon- bl ock- nanme/ and

sync-guards-|i st

i s sync-obj ect

(guarded-list) [,

103

sync-guards-1ist]

OO, WN B

o~

10
11
12

13
14
15
16
17
18
19

20
21
22
23
24
25

26
27
28

29
30
31
32
33

35
36

C.0 Lex/Yacc Syntax Rules (Informative)

The following is a ssimple Y acc grammar for recognizing X3H5 extensions for Fortran. Thisis
an informative exercise to help keep the X3H5 grammar consistent and parsable by a simple
parser.

It also might be a useful starting point for building real grammar rules for X3H5 Fortran
extensions.

%{
#include <stdio.h>

%}

%union {
char string[33];

}

%token PARALLEL MAX_PARALLEL WAIT GUARDS ORDERED NAME VARIABLE
%token SECTION BLOCK PARALLEL_PSECTIONS PSECTIONS PARALLEL_PDO
INTEGER

%token PDO INT_EXPRTYPE_STMTSEND_PARALLEL END END_PDO END_PSECTIONS
%token CODE_BLOCK DO_VARIABLE PARALLEL_PDO END_PARALLEL_PDO
%token PARALLEL_SECTIONS END_PARALLEL_SECTIONS GROUP NOWAIT

%token PARALLEL_SPECIFICATION_PART CONTINUE

%type <string> NAME
%type <string> name
%type <string> INTEGER
%%

pgm : blocks

blocks . [* empty */
| blocks block

block : unnamed_p_block
| named_p_block

| code block

unnamed_p_block : parallel_block
| parallel _pdo
| parallel_sections
| pdo_block

104

O©Coo~NOULE,WNE

27
28
29
30
31

32
33

35
36
37
38
39

| psection_block
| group_construct

L — e */

I* */
[* Constraint: An unnamed_p_block shall not contain an exit, return,
I* stop, or entry-statement. */
I* */
/* ___ */
named p block : name’: unnamed p block name

{

if(stremp($1,$4))

printf("The starting and ending names of a block are different\n”);

printf("They are %s, %s\n",$1,$4);

*/

}
}

I e x|
I* */
[* Constraint: The name coded at the beginning of a named_p block shall be
I* the same as the name coded at the end of the named p block. */
I* */
/* ___ */
parallel_block : PARALLEL ptoption blocks END PARALLEL
ptoption I* empty */

| poption

| parallel_specification_part

| poption parallel_specification part
parallel_specification part : PARALLEL SPECIFICATION_PART ;
/* ___ */
I* */
[* See ISO/IEC 1539:1991 (E) page 304 for Fortran 90 specifications. */
I* */
[* paralel_specification_part : use part decl_part */
I* ; */

105

*/

O©Coo~NOoOUh,WNE

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

35
36
37
38
39
40
41
42

[* use_part : *[[* empty */

I[* | use-stmt use part */
I* ;
[* decl_part : *[% empty */
I* | declaration_construct decl_part */
I* ; */
I* */
I* */
[* Constraint: specification-stmt must not contain an access-stmt,
[* allocatable-stmt(check with data section), common-stmt(check
I* with data section), data-stmt, intent-stmt, optional-stmt, */
I* pointer-stmt (check with data section) or save-stmt. */
[* The decl_part shall not contain the entry_stmt, or */
I* stmt_function_stmt. */
/* ___ */
poptions . [* empty */
| poption
poption 2 '(C popt ')
popt : MAX_PARALLEL "= INT_EXPR
| ORDERED

| ORDERED MAX_PARALLEL '=" INT_EXPR

psection_block : PSECTIONS poptions
sections
END_PSECTIONS

sections : section
| sections section

section : SECTION section_name wait_list guards list
block
section_name : /* empty */
| '/ name’/
wait_list : I* empty */

| WAIT *(wlist

wlist 7: [* empty */

106

*/

*/

O©Coo~NOULE,WNE

NP RRPRRRRERR R
QOVWOMNOUNMNWNRO

21
22
23
24
25
26
27
28
29

30
31
32
33

35
36

37
38

39
40

| wlist name
guards list : /* empty */
| GUARDS '(’ glist’)

glist : I* empty */
| glist name
pdo_block : PDO iter_spec poptions blocks END_PDO

| PDO INTEGER iter_spec poptions blocks
INTEGER CONTINUE

{
if(stremp($2,$6))
{

printf("The starting and ending labels of a pdo block are different\n");
printf("They are %s, %s\n",$2,$6);

}
}
iter_spec : do_variable '=" INT_EXPR ', INT_EXPR’,; INT_EXPR
| do_variable '=" INT_EXPR ', INT_EXPR
/~k ___ ~k/
I* */
[* Constraint: The pdo-variable must be a named scalar variable of type */
I* integer and cannot be an element of a common block. */
I* */
/* ___ */

group_construct : GROUP goption

blocks
END GROUP
goption [* empty */
| NOWAIT
[* eememememeeeceeeeens now provide for combined constructs------------ */

parallel_ pdo : PARALLEL_PDO iter_spec ptoption blocks END _PARALLEL_PDO

parallel_sections : PARALLEL_SECTIONS ptoption

107

O©Coo~NOoOULr,WNE

sections

END_PARALLEL_SECTIONS

[* memmmmmm - here we provide stubs for various productions from the */

I* native language (Fortran 90)
code_block : CODE_BLOCK ;
do variable : DO VARIABLE ;
name - NAME
{ strepy($$,$1); }

%%

#include "lex.yy.c"
main()

{

if (yyparse())

{ printf("error in line number: %d\n", line);
printf("Errors in this code\n");}
else
printf("Y IPPEE no errors\n®);

}

108

Dummy Lexical Analizer for X3H5 Fortran

%{

int line;

%}

name [azA-Z]+[azA-Z0-9]*

integer [1-9][0-9]*

endline [\n]

blank [\t]+

%p 10000

%0 10000

%a 19000

%%

{endline} line ++ ;

{ blank} ;

PARALLEL {return (PARALLEL);}

CONTINUE {return (CONTINUE);}

END" "PARALLEL {return (END_PARALLEL);}
PARALLEL_PDO {return (PARALLEL_PDO);}
END_PARALLEL_PDO {return (END_PARALLEL_PDO);}
PARALLEL_SECTIONS {return (PARALLEL_SECTIONS);}
END_PARALLEL_SECTIONS ({return (END_PARALLEL_SECTIONS);}
PDO {return (PDO);}

WAIT {return (WAIT);}

GUARDS {return (GUARDS);}
ORDERED {return (ORDERED);}
MAX_PARALLEL {return (MAX_PARALLEL);}
SECTION {return (SECTION);}
PSECTIONS {return (PSECTIONS);}
BLOCK {return (BLOCK);}

END {return (END); }

GROUP {return (GROUP);}

NOWAIT {return (NOWAIT);}

CODE{ blank} BLOCK {return (CODE_BLOCK);}
END{ blank} PDO { I* printf("Found pdo\n"); */

return (END_PDO);}
END{ blank} PSECTIONS {return (END_PSECTIONYS);}

INT_EXPR {return (INT_EXPR);}
VARIABLE {return (VARIABLE);}
DO_VARIABLE {return (DO_VARIABLE);}
{integer} {strcpy(yylval.string,yytext);

printf("Found integer %s\n",yytext);
return (INTEGER);}
INTEGER {return (INTEGER);}
PSPEC_PART {return (PARALLEL_SPECIFICATION_PART):}

109

aprwnNBE

{name}

%%

{ strepy(yylval.string,yytext);
return (NAME);}
{ I printf("Lex got %c\n",yytext[0]); */
return (yytext[0]);}

110

O©Coo~NOoOULr,WNE

Index
A
atomic operation 71
C
CLEAR 63
Critical Section 59
Critical sections 57
CLEAR 64
Critical Sections 57
D
deadlock 65, 70
E
Event synchronization 63
G
GATE synchronization 70
GUARDS 59
I
intrinsic 70
M
metalanguage conventions 11
N
nondeterministic 60, 75
O
ORDERED 63, 66
Ordinal 65
P
Parallel Sections 17
POST 64, 67
POST, 66
Ordinal 65
S
Sequence 69
Sequence synchronization 65
SET 66
standard conforming 10
Synchronization
Explicit synchronization 50
Implicit synchronization 50
Ordina 65
structured 57
synchronization objects 57
unstructured 70
SET
Define ordinal 65
Unstructured

111

N

w

synchronization 70

WAIT 64-67B.0 Syntax Rules (Informative)

112

