
        To: J3                                             J3/97−184
        From: Rich Bleikamp                              page 1 of 9
        Subject: Revised spec. for Derived Type I/O
        Date: May 14, 1997
        
        Major Changes since 97−101.

          − Added separate user defined routines for Formatted vs.
            Unformatted I/O.  Subgroup decided this would simplify
            writing these routines, and the improved clarity of the
            resulting routines is useful enough to outweigh the
            downside, duplicating the traversal of the derived type
            in twice as many routines.

          − Decided to pass in ONE unit #, to represent both internal
            and external units.  This eliminates the need to always
            test for which dummy argument is present (the UNIT or IFU
            dummy arg), simplifying these procedures considerably.

          − Deleted the REC dummy argument (direct access record
            number).  The recursive READ/WRITE calls may not specify a
            REC= specifier.  However, specifying NON−ADVANCING for
            formatted I/O is required when the I/O operation is
            direct access (INQUIRE may be used to find out if this is
            a direct access file).  Fortunately, most users will always
            want to specify non−advancing I/O for typical 2−3
            component derived types.

            Note: The derived type I/O routine cannot call INQUIRE
            with a negative unit #.  This implies the "*" external
            unit cannot be inquired (just like in F90).

          − Unformatted I/O statements executed in the derived type I/O
            routine which specify the passed in unit # will act sort of
            like non−advancing I/O, by concatenating the "buffer" produced
            with the buffer started by the original I/O statement
            (these recursive I/O statements will not start or end a
            record).  I need to find a better word than non−advancing
            to describe this behavior in the standard.

          − INQUIRE by IOLENGTH will not interact with user defined
            I/O routines.  An INQUIRE by I/O length will assume
            F90 semantics for derived type I/O.  Unlike normal I/O,
            the actual data type does not determine the length of
            an I/O buffer needed for unformatted I/O.

          − Added an intent out dummy arg, ERRMSG, which is used to
            return an error message to the I/O library.

          − Certain dynamic formatting state information
            (BN, BZ, S, SP, SS, P current setting) will be saved by
            the Fortran I/O library BEFORE calling the user defined
            I/O routine, and restored (from the saved setting) after
            the user defined I/O routine returns.

        Unresolved Issues

          − Unformatted I/O is now implicitly non−advancing, in some
            sense.  Formatted I/O isn’t.  An alternative is to allow
            non−advancing for unformatted I/O.



                                                           J3/97−184
                                                         page 2 of 9

          − At least one person has suggested allowing these routines
            to be called directly from a user program.  I think this
            is confusing, since there is no initiating I/O operation,
            and the standardese will be awkward.  Also, typically
            the user will use non−advancing I/O for these routines,
            and when called directly from a user routine, this seems
            less desirable.
     
        
        Management Synopsis (also see the Rationale and Conceptual
        Model at the end of this paper):
        
          − The provider of a derived type may also provide I/O
            routines for that type, called "user defined derived type
            I/O routines" (hereafter refered to as UDDTIO routines),
            which are called by the Fortran I/O library when certain
            conditions are met.  These UDDTIO routines perform
            input and output of list items of a particular derived
            type.  In essense, the effect is as if the UDDTIO routines
            were substituting list items into the original I/O
            list (where the derived type item was), and adding edit
            descriptors into the middle of the original format
            specification, under control of the provided routines.

          − The F90 way of doing formatted and unformatted I/O
            on derived types still works the same as before.  Only
            the presence of an interface for the appropriate UDDTIO
            routine triggers this new functionality.
        
          − FORMATs have a new edit descriptor, "DT".  When the
            I/O library encounters this, it must match up with a
            derived type list item.  The I/O library will call the
            appropriate UDDTIO routine, which will actually do the
            I/O.  Typically, the provider of a derived type (and
            corresponding module) would provide these UDDTIO routines
            as part of the module.

            NOTE: we have chosen not to implicitly overload the
            existing data transfer edit descriptors (I,D,E,F,G,L,...)
            when such an interface is visible, and call the UDDTIO
            routine for those edit descriptors (in addition to DTxxx
            edit descriptors).  This capability is easy to add should
            we wish too, buts makes it more difficult for the user to
            get to the F90 functionality.  Interval 2 may propose some
            additional syntax to address this issue.



                                                           J3/97−184
                                                         page 3 of 9
        
          − The UDDTIO routines will be called with a unit number, the
            derived type variable/value, and other misc.  information.
            The UDDTIO routine will use normal I/O statements
            (READ/WRITE) on the supplied unit to read/write the derived
            type item’s components.
        
          − Full support for complicated data structures is provided.
            These UDDTIO routines can invoke themselves (to traverse a
            linked list for example), and can invoke the UDDTIO routines
            for another derived type to handle nested derived types.
            Internal I/O may be used to easily construct or decompose
            character string values.
               
          − The UDDTIO routines will be able to inquire about, and in
            the most general (robust) case, might want to worry about
               −  list directed vs. namelist I/O vs. a format spec.
               −  the DELIM= and PAD= values for this file
                  (accessible via INQUIRE)
            on external (positive) unit numbers.
                    
          − List directed and NAMELIST I/O will also call these same
            UDDTIO routines under certain, F90 compatible
            circumstances (when the appropriate interface is visible).
        
        
        Detailed Specification:
        
        UDDTIO routines shall have the following interface (all 4
        routines for a particular derived type are not required, any
        subset can be provided):
        
          INTERFACE FORMATTED ( READ )
            SUBROUTINE my_read_routine  (unit,                  &
                                         dtv,                   &
                                         iotype, w, d, m,       &
                                         eof, err, eor, errmsg)
              INTEGER, INTENT(IN) :: unit ! unit number
              ! the derived type value/variable
              TYPE (whateveritis), INTENT(OUT) :: dtv
              ! the edit descriptor string
              CHARACTER, (LEN=*), INTENT(IN) :: iotype
              INTEGER, OPTIONAL, INTENT(IN) :: w,d,m
              LOGICAL, INTENT(OUT) :: eof, err, eor
              CHARACTER, (LEN=*), INTENT(OUT) :: errmsg
            END
          END INTERFACE



                                                           J3/97−184
                                                         page 4 of 9
          INTERFACE UNFORMATTED ( READ )
            SUBROUTINE my_read_routine  (unit,                  &
                                         dtv,                   &
                                         eof, err, eor, errmsg)
              INTEGER, INTENT(IN) :: unit
              ! the derived type value/variable
              TYPE (whateveritis) INTENT(OUT) :: dtv
              LOGICAL, INTENT(OUT) :: eof, err, eor
              CHARACTER, (LEN=*), INTENT(OUT) :: errmsg
            END
          END INTERFACE

          INTERFACE FORMATED ( WRITE )
            SUBROUTINE my_write_routine (unit,                  &
                                         dtv,                   &
                                         iotype, w, d, m,       &
                                         err, errmsg)
              INTEGER, INTENT(IN) :: unit
              ! the derived type value/variable
              TYPE (whateveritis), INTENT(IN) :: dtv
              ! the edit descriptor string
              CHARACTER, (LEN=*), INTENT(IN) :: iotype
              INTEGER, OPTIONAL, INTENT(IN) :: w,d,m
              LOGICAL, INTENT(OUT) :: err
              CHARACTER, (LEN=*), INTENT(OUT) :: errmsg
            END
          END INTERFACE
          INTERFACE UNFORMATED ( WRITE )
            SUBROUTINE my_write_routine (unit,                  &
                                         dtv,                   &
                                         err, errmsg)
              INTEGER, INTENT(IN) :: unit
              ! the derived type value/variable
              TYPE (whateveritis), INTENT(IN) :: dtv
              LOGICAL, INTENT(OUT) :: err
              CHARACTER, (LEN=*), INTENT(OUT) :: errmsg
            END
          END INTERFACE
        
        where the actual specific routine names (my_xxx_routine
        above) and the dummy argument names may be chosen by the
        user.  These routines shall not be invoked directly by the
        users program.

        The "dtv" dummy argument may also be given the TARGET attribute.
        It may not be given any other attributes.

        The UDDTIO routines are called when:

          − for unformatted, list directed, and namelist i/o, an
            appropriate interface for the derived type of a
            particular list item is visible

          − for I/O statements with a <format−specification>,
            there is be an appropriate interface visible AND the
            list item matchs up with a "DTxxx" edit descriptor.



                                                           J3/97−184
                                                         page 5 of 9

            A new edit descriptor, "DT", with the usual (optional)
            "[w[.d[.m]]]"  widths is provided for use with format
            specifications.  It must match up with a variable/value
            of a derived type.
          
            The DT characters may be followed by up to 253 alphabetic
            characters (interspersed blanks allowed) (ex. "DTLNKLST").
            The entire string of alphabetic characters, including the
            initial "DT", will be passed  into the UDDTIO routine
            (the "iotype" argument).

            This argument will be converted to UPPERCASE and have all
            blanks removed.  The user can support different types of
            formatting for one derived type via this extended edit
            descriptor.
          
            For example, the consecutive characters after the "DT"
            could be used to request different formatting rules for
            consecutive components in the derived type, or different
            formatting rules for nested derived types, etc.
        
            When a derived type variable/value matchs up with a "DT"
            edit descriptor, the user must have also provided the
            matching read/write procedure for that derived type, with
            a visible interface that matches the definition in this
            paper.  
        
        The "unit" dummy argument will have the same unit value as
        specified by the user in the originating I/O statement
        for all external units except "*".  When an internal unit or
        the "*" external unit was specified in the originating I/O
        statement, the "unit" dummy argument will have a processor
        dependent negative value.

        Note that an INQUIRE statement cannot be executed when "unit"
        is negative.
        
        The "iotype" argument (FORMATTED I/O routines only) will have
        the value:

          − "LISTDIRECTED" if the originating I/O statement specified
             list directed I/O,

          − "NAMELIST" if the original I/O statement contained an
            NML= specifier, or

          − "DTxxx" if the originating I/O statement contained a format
            specification and the list item matched up with a DT edit
            descriptor, where the "xxx" is the string of alphabetic
            characters (if any) that actually followed "DT" in the
            edit descriptor.

        If the original I/O statement is a READ statement, the "dtv"
        dummy arg should be assigned a value by the UDDTIO read routine.
        



                                                           J3/97−184
                                                         page 6 of 9
        
        If the original I/O statement is a WRITE or PRINT, the "dtv"
        dummy arg contains the value of the list item from the
        original I/O statement, to be output by the UDDTIO routine.
        
        The "w", "d", and "m" arguments contain the user specified
        values from the FORMAT (i.e.  FORMAT(DT12.5.2 ) ).  If the
        user did not specify "w", "d", and/or "m", those dummy
        arguments will not be present.  They will not be present if
        the original I/O statement was a list directed, or namelist
        I/O statement.
        
        The UDDTIO routines for reads shall assign a value of .FALSE.
        or .TRUE. to the "err", "eof", and "eor" dummy args.   The
        value assigned to these dummy arguments shall determine whether
        or not the corresponding condition will be triggered in the
        I/O library when the UDDTIO routine returns.

        If the value .TRUE. is assigned to the "err" dummy argument, 
        the "errmsg" dummy argument shall be defined also, before the
        UDDTIO routine returns.

        When "err" is set to true, and the originating I/O statement did
        not contain an ERR= nor an IOSTAT= specifier, the processor
        shall attempt to output the "errmsg" value (to something) and
        stop execution of the program.  If we add an ERRMSG= specifier
        to all read/write statements, this value would be returned
        thereto.
        
        In the absence of an appropriate visible interface in the
        scope of  the I/O statement, unformatted, list−directed, and
        namelist I/O will behave as it did in Fortran 90.
        
        When an appropriate interface is visible for a particular
        derived type, and either:
             1. The original I/O statement specified unformatted,
                list directed, or namelist I/O, OR
               
             2. the original I/O statement specified a FORMAT and
                the list item of derived type matches up with a "DT"
                edit descriptor, THEN
        
        the restrictions on derived  type I/O, such as no private
        components, all components must be defined,  no ultimate
        components with the pointer attribute, etc. do not apply to
        the list item of derived type, but
        the normal rules in F95 still apply, about not referencing
        undefined entities, not referencing/defining POINTERS which
        are not associated, etc.
        
        If NO appropriate interface is visible for a particular
        derived type, the processor will perform "F90" style I/O,
        and a "DT" edit descriptor which matches that derived type
        list item will cause an error (at runtime possibly).
        
        When F90 style I/O is selected, all the old F90 restrictions
        on derived type list items still apply.
        
        The users routine may chose to interpret the "w" argument as a
        field width, but this is not required.  If it does, it would be
        appropriate to fill an output field with "*"s if "w" is too small.



                                                           J3/97−184
                                                         page 7 of 9
        
        When the original I/O statement was a READ, the UDDTIO routine
        may not READ from any other external unit other than the one
        passed in via the dummy arg "unit, nor WRITE to any external unit.
        
        When the original I/O statement was a WRITE, the UDDTIO routine
        may not WRITE to any other external unit other than the one passed
        in via the dummy arg "unit, nor READ from any external unit.

        Thou shalt not call BACKSPACE, ENDFILE, or REWIND  while a
        UDDTIO routine is active.

        The UDDTIO routines ARE permitted to use a FORMAT with
        a DT edit descriptor, for handling components of the derived
        type which are themselves a derived type.  List directed and
        NAMELIST I/O are also permitted for the "recursive" I/O
        statement.
        
        WRITE statements contained in the UDDTIO routine
        which specify the same value as passed in via the "unit"
        dummy arg will insert the characters "written" into the record
        started by the original  WRITE statement, starting at the
        position in the record where the last edit descriptor left
        off.  Record boundaries may be created by WRITE statements
        in the UDDTIO routines.  Non−advancing I/O may be used to avoid
        creating record boundaries.

        READ statements contained in the UDDTIO routine which specify
        the same value as passed in via the "unit" dummy arg will
        "pick up" in the current record, where the last edit descriptor
        from the original I/O statement left off.  Multiple records can
        be read,  and the current position can be left within a record
        by the READ statement in the UDDTIO routine, thru the use of
        non−advancing i/o.
        
        Record positioning edit descriptors, such as TL and TR,
        used on "unit" while a UDDTIO routine is active, shall not cause
        the record position to be positioned before the record position
        at the time the UDDTIO routine was invoked.
        
        A very robust UDDTIO routine may wish to use INQUIRE
        to determine what BLANK=, PAD= and DELIM= are for the unit.
        
        Edit descriptors which affect subsequent edit descriptors
        behavior, such as BN, BZ, P, etc., are permitted in FORMATs in
        UDDTIO routines.  The Fortran I/O library will save
        the state of BN, BZ, S, SP, SS, and P before calling a UDDTIO
        routine, and reset the library’s state to those saved values
        when the UDDTIO routine returns.  The UDDTIO routine is free to
        use these state changing edit descriptors without having any
        effect on the formatting of list items in the originating I/O
        list.  If directed rounding mode edit descriptors are added,
        these will be added to the list of "saved" states.

        READ and WRITE statements executed in a UDDTIO routine, or
        executed in a routine called (directly or indirectly) from a 
        UDDTIO routine shall not have an ASYNCHRONOUS specifier.



                                                           J3/97−184
                                                         page 8 of 9
        −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
        Rationale

        The desire to allow users to implement new data types in a
        MODULE requires additional language features, including I/O
        support.  The provider of a module which implements a new
        datatype needs to be able to also provide I/O support.
        The approach chosen extends existing Fortran features to
        support derived types, is fairly easy to use, bypasses the
        restrictions on derived type I/O present in Fortran 90, and
        allows the I/O support to be bundled with the MODULE which
        supplies the derived type definition and implements the
        operations thereon.  This also provides the ability to
        protect these I/O operations from the user.

        The use of visible interfaces to trigger this functionality
        helps preserve Fortran 90 compatability, since no Fortran 90
        program can specify such an interface.

        −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
        Conceptual Model

        The key concept is that the UDDTIO routines can, more or less,
        be viewed as  adding individual components into the middle of
        the original item list, and edit desciptors into the middle of
        the original format−specification (if any).  They also have full
        control over how input values are processed, and how values are
        represented on output.  They can do so in an intelligent,
        dynamic, and arbitrarily complex manner.  They can also avoid
        the restrictions on F90 derived type I/O (pointers, etc.),
        handle nested derived types, and support complex data structures
        (such as linked lists).

        The UDDTIO routines provide a familar mechanism, Fortran I/O
        statements, to insert data into an output record, and to retrieve
        values from an input record.

        The user of a derived type uses familiar Fortran syntax
        to activate this capability.  Usually, the user only needs
        to "USE" the appropriate module, and possibly insert some
        "DT" edit descriptors into their format−specifications.

        All of the hard work is done by the provider/writer of the
        derived type.  Once that hard work is done, many users can
        easily adapt their programs to use it.

        The interface provides all the information necessary to
        accomodate all types of Fortran I/O.  A robust UDDTIO routine
        may be quite large, but not necessarily very complicated.
        A simple UDDTIO routine can be written quickly for one or two
        forms of I/O, and extended later to handle all the possible
        forms of Fortran I/O.

        



                                                           J3/97−184
                                                         page 9 of 9
        −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
        Example for a FORMATTED(WRITE) routine:

        TYPE linkedList
          TYPE (linkedList), POINTER :: next
          INTEGER :: value
        END TYPE linkedList

        RECURSIVE  SUBROUTINE my_write_routine (unit, dtv,
                                                iotype, w, d, m,
                                                err, errmsg)
          INTEGER, INTENT(IN) :: unit
          ! the derived type value
          TYPE (linkedList), TARGET, INTENT(IN):: dtv
          CHARACTER (LEN=*), INTENT(IN) :: iotype  ! the edit descriptor
          INTEGER, OPTIONAL, INTENT(IN) :: w,d,m
          LOGICAL, INTENT(OUT) :: err
          CHARACTER, (LEN=*), INTENT(OUT) :: errmsg

          TYPE (linkedList), POINTER :: ptr
          INTEGER :: ww, dd             ! local copies of w,d
          INTEGER :: en                 ! iostat= error value
          CHARACTER, (LEN=20) :: fmt    ! format specification
          
          err = .FALSE.

          ! handle the optional "w" and "d" arguments
          ww = 10
          IF ( present ( w ) ) THEN
            ww = w
          END IF

          dd = 1
          IF ( present ( d ) ) THEN
            dd = d
          END IF

          ! if we will need a format−spec, build it now
          IF ( iotype(1:2) == "DT" ) THEN
            write(fmt, "’(1X,I’,I4,1x,I4,’)’" ) ww, dd  ! (1X,Iw.d)
          END IF

          ptr => dtv

          DO            ! main loop thru the linked list
            IF ( iotype == "LISTDIRECTED" ) THEN
              WRITE (unit, *,  ADVANCE="NO", ERR=99, IOSTAT=en) ptr%value
            ELSE IF ( iotype(1:2) == "DT" ) THEN
              write(unit, fmt, ADVANCE="NO", ERR=99, IOSTAT=en) ptr%value
            ELSE
              ! unrecognized i/o type
              errmsg="Unsupported I/O request:type(linkedList):"//iotype
              err = .TRUE.
              RETURN
            END IF
            IF ( ASSOCIATED (ptr%next) ) EXIT
          END DO
        RETURN          ! normal exit

     99 write(errmsg, "(’Error writing linkedList%value, IOSTAT=’,I9)") en
        err = .TRUE.
        RETURN          ! error exit
        END


