

J3/98-102

page 1 of 3

Subject:

Command Line Arguments ala Java

Author: Jerry Wagener
Date: 11 Dec 1997

Java does command-line arguments in a nice, easy-to-use, almost-intuitive way:

class CommandLine

// note: “String” is the Java character-string type

{
 public static void main

(String args[])

 { . . . //

args[0] is the value of the first command-line argument

 . . . //

(space delimited), args[1] the second, etc.

 } //

args.length is the number of arguments

} //

args[i].length() is the length of the ith argument

The Fortran analogy would be:

program CommandLine

(args); character(*) args(:)

 . . . !

args(1) is the value of the first command-line argument

 . . . !

(space delimited), args(2) the second, etc.

 . . . !

size(args) is the number of arguments

 end !

len(args) is the length of the longest argument

In the example execution

 a.out Las Vegas 143

size(args) would be 3, args(1) would have the value

 "Las "

, args(2) the value

 "Vegas"

, and
args(3) the value

 "143 "

.

To accommodate command-line arguments in Fortran in this manner, the program statement is ex-
tended to optionally include a dummy argument list with one dummy argument; that argument must
be declared as a rank-one assumed-shape assumed-length character array. The corresponding ac-
tual argument is supplied by the system upon execution of the program and comprises the system-
tokenized (typically space-delimited) command-line argument character strings. The size of the ac-
tual argument is the number of such tokens in the command line, and the element length of the ac-
tual argument is (at least) that of the longest such token.

On the next page are the syntax and edits for incorporating this form of command-line arguments
into Fortran; following that are the syntax and edits for an extended such facility with additional
options. The latter "covers all bases", if that is deemed necessary, except that command-line argu-
ments still must be routed through the main program. (Though, arguably, the main program is the
"right" place to receive command-line arguments.)

J3/98-102

page 2 of 3

Syntax and edits for the basic facility

R1102

program-stmt

is

 PROGRAM

program-name

 [(

command-args-array-name

)]

Constraint: a

command-args-array-name

 shall be a rank-one assumed-shape assumed-length character array.

11.1.4

Command-line arguments

 {new section}
Command-line arguments are obtained in the program through the optional argument on the PRO-
GRAM statement. This (dummy) argument is a character array that assumes its size and element
length from the associated actual argument. The actual argument is provided by the processor upon
invocation of program execution. The elements of the actual argument array are the system-token-
ized (typically blank-delimited) character strings provided as command-line arguments at the time
of program invocation. The first such token is the value of the first element of the actual argument
array, the second is the second element of the actual argument array, and so on. The size (number
of elements) of the actual argument is the number of tokens extracted from the command line. The
length of each actual argument array element is no less than the number of characters of the longest
such token; tokens are placed in the actual argument array elements in accordance with the rules of
character assignment (that is, blank padded on the right if necessary).

Syntax and edits for a more extended facility

R1102

program-stmt

 is PROGRAM

program-name

 [(

command-line-input

)]

R1102a

command-line-input

is

command-args-array-name

 [

command-length-array-name

]

or

untokenized-command-line-name

Constraint: a

command-args-array-name

 shall be a rank-one assumed-shape assumed-length character array.
Constraint: a

command-length-array-name

 shall be a rank-one assumed-shape integer array.
Constraint: an

untokenized-command-line-name

 shall be an assumed-length scalar character variable.

Example:

program labAnalysis (

c_args

); character(*) c_args(:)
 . . .
end

execution of program labAnalysis with the command:

a.out -if lab.data

would result in:size(c_args) having the value 2
c-args(1) having the value

"-if "

c-args(2) having the value

"lab.data"

J3/98-102

page 3 of 3
11.1.4

Command-line arguments

 {new section}
Command-line arguments are obtained in the program through the optional argument list on the
PROGRAM statement. The program may receive these command-line arguments either as an al-
ready-tokenized list of character strings or as a single untokenized character string, depending on
the nature of the dummy argument list on the PROGRAM statement. When the (first) dummy ar-
gument is a character array, it assumes its size and element length from the associated actual argu-
ment. The actual argument is provided by the processor upon invocation of program execution.
The elements of the actual argument array are the system-tokenized (typically blank-delimited)
character strings provided as command-line arguments at the time of program invocation. The first
such token is the value of the first element of the actual argument array, the second is the second
element of the actual argument array, and so on. The size (number of elements) of the actual argu-
ment is the number of tokens extracted from the command line. The length of each actual argument
array element is no less than the number of characters of the longest such token; tokens are placed
in the actual argument array elements in accordance with the rules of character assignment (that is,
blank padded on the right if necessary).

In those cases where one or more blanks at the end of a command-line argument string is significant,
the optional integer array argument can be used to provide the system-supplied number of charac-
ters for each argument. The value of the first element of this array is the operable length of the first
command-line argument character string, the second is the length of the second character string, and
so on; the size of the integer array is the same as the size of the character array.

If a complete, untokenized command line is needed, the scalar character variable option is used.

Examples:

- - - - - - - - - -- -

program labAnalysis (

c_args

); character(*) c_args(:)
 . . .
end

execution of program labAnalysis with the command:

a.out -if lab.data

would result in:size(c_args) having the value 2
c-args(1) having the value

"-if "

c-args(2) having the value

"lab.data"

- - - - - - - - - -- -

program labAnalysis2 (

c2_args

); character(*) c2_args
 . . .
end

execution of program labAnalysis2 with the command:

a.out -if lab.data

would result in:c2_args having the value

"a.out -if lab.data"

