J3/98-179

Page 1 of 6
Date: 11 July 1998
To: J3
From: Van Snyder

Subject: Thoughts on generic type-bound procedures
References: 97-230r1, 98-136, 98-140

1 Background

Paper 97-230r1 provided specifications for type-bound procedures; paper 98-136 proposed syn-
tax for type-bound procedures; paper 98-140 was a discussion paper for generic type-bound
procedures. This paper proposes specifications for generic type-bound procedures similar to
97-230r1 and 98-140, but with syntax developed partly from 98-140, and partly by extending
98-136. Tentative edits are proposed.

2 Introduction

A generic procedure name can be thought of as the name of a row-vector, in which each element
is a specific procedure. The column is selected by the argument characteristics, using generic
resolution rules in section 14.1.2.3.

A type-bound procedure name can be thought of as the name of a column vector, in which each
element is null or a specific procedure. When constructing the vector, the row is selected by
the type to which the procedure name is bound. There are three possibilities for each value:

e Null, if the procedure is declared to be abstract, or

e the same as the element in the row indexed by the parent type, if the type is an extended
type and the type-bound procedure name is inherited from the parent type, or

e the specific procedure declared to over-ride the one inherited from the parent type (con-
sider the inherited specific procedure to be null if there is no parent type).

When referencing the vector, the row is selected by the dynamic type (5.1.1.8) of the part name
immediately preceeding the type-bound procedure name.

A generic type-bound procedure name can be thought of as the name of a matrix, in which each
element is a specific procedure. The column is selected as for a generic procedure name, and
the row is selected as for a type-bound procedure name. The values in a column have the same
possibilities as for a column vector that represents a type-bound procedure name. In addition
to being null because a procedure with the characteristics that select the column is declared
to be abstract for a particular type, an element could be null if no specific procedure with the
characteristics that select the column is bound by the type-bound procedure name to the type
or any of its ancestors.

For example, in CALL AYBY%C (D, E), Cis the name of the matrix, the type of A%B is used to
select the row (declared type when creating the matrix, dynamic type when referencing it), and
the declared (not dynamic) characteristics of (D,E) are used to select the column.

In the absence of a PASS_OBJ declaration, the characteristics used to select a column include all
arguments. In the presence of a PASS_0BJ declaration, the characteristics include all dummy

J3/98-179
Page 2 of 6

arguments except the dummy argument to which the object that appears before % would be
associated.

3 Specifications — Summary of 98-1407?

Allow several specific procedures to be associated to a single type-bound procedure name,
defined operator, or equals sign.

If & procedure is bound to a type by the same name as one inherited from the parent type,
the same operator symbol, or the equals sign, and it has the same characteristics as a specific
procedure associated to the type-bound procedure name, operator symbol, or equals sign, inher-
ited from the parent type, it overrides that specific procedure’s association to the type-bound
name, operator symbol, or equals sign, inherited from the parent type. Otherwise it extends
the generic collection of specific procedures associated to the name, operator symbol, or equals
sign, by which it is bound to the type.

The specific procedure denoted by a type-bound procedure reference is resolved by using the
type-bound procedure resolution rules proposed in papers 97-230r1 and 98-136, and the generic
resolution rules in section 14.1.2.3.

The semantics proposed here may be slightly different from semantics proposed in paper 98-
140. This paper proposes that one may over-ride a subset of the procedures bound to a type,
as specified by their characteristics, while inheriting those bound to the same name that are
not over-ridden.

4 Syntax — Slightly simpler than 98-140

The derived-type-def is augmented to include a procedure bindings section introduced by a
CONTAINS statement, after all of the component definitions. After the CONTAINS statement,
specific module procedures, or abstract interfaces, are specified to be bound to

e aname by using a statement of the form PROCEDURE [[, PASS OBJ] ::] binding-name
=> binding-list, or

e a defined operator symbol by using a statement of the form OPERATOR (defined-operator)
=> binding-list, or

e the equals symbol by using a statement of the form ASSIGNMENT (=) => binding-list.

Within a single derived type definition, each binding name, each defined operator symbol,
and each equals symbol establishes a generic interface. If several type-bound procedures have
the same binding name, or several defined operations use the same symbol, or several defined
assignments are specified, the effect is as if each were established by a single statement (parallel
to the case for multiple generic interface blocks having the same name).

Each binding shall be the specific name of an accessible procedure pointer, external procedure,
dummy procedure, or module procedure, or a declaration that the type-bound procedure, de-
fined operation, or defined assignment for a particular characteristic is abstract by being of the
form NULL(abstract-interface-name), where abstract-interface-name is the name of an abstract
interface, as described in section 12.3.2.1.4.

J3/98-179
Page 3 of 6

The syntax proposed here is slightly different from the syntax proposed in paper 98-140, wherein
it is proposed to use a GENERIC keyword if more than one specific procedure is to be bound to
a name. This paper proposes to use the keyword PROCEDURE in both cases.

5 Edits

Edits refer to 98-007r2. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by —+
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[CONTAINS
[procedure-binding ...]

[Editor: Part of R428]

or proc-component-def-stmt
[Editor: Delete — Should be part of R428]

R432a proc-component-def-stmt is PROCEDURE([proc-interface]), m
W proc-component-attr-spec-list :: B

W proc-decl-list

R432b proc-component-attr-spec is POINTER] , PASS_OBJ]
or PASS_OBJ, POINTER

Constraint: If PASS_OBJ is specified the proc-interface shall have a dummy argument that has
the same type as the type-name, or an ancestor type (4.5.3) thereof.

[Editor: Add passed-object dummy argument to the index.]

If PASS_OBJ is specified, the first dummy argument of proc-interface that has the same type
as the type-name, or an ancestor type (4.5.3) thereof, is called the passed-object dummy
argument. It shall not be a dummy function procedure. The use of PASS_OBJ is explained
in [new section] 12.4.1.1.
RA432¢ procedure-binding is binding-by-name

or binding-by-operator

or binding-by-assignment

R432d binding-by-name is PROCEDURE [[, PASS.OBJ | :] m
W binding-name => binding-list

Constraint: If PASS_OBJ is specified each binding shall have a dummy argument that has the
same type as the type-name, or an ancestor type (4.5.3) thereof.

Constraint: If PASS_OBJ is specified it shall be specified for all procedure bindings, declared
within the same type definition or inherited from the parent type, that have the
same binding name.

If PASS_OBJ is specified, the first dummy argument of each binding that has the same type as

the type-name, or an ancestor type (4.5.3) thereof, is the passed-object dummy argument. It

shall not be a dummy function procedure. The use of PASS_OBJ is explained in [new section]
12.4.1.1.

R432e binding-by-operator is OPERATOR(defined-operator) => binding-list

[39:4+]

[39:29+]

[40:8-9]
[40:22-+]

J3/98-179
Page 4 of 6

R432f binding-by-assignment is ASSIGNMENT (=) => binding-list

RA432g binding is procedure-name
or NULL(abstract-interface-name)

Constraint: Each procedure name shall have an explicit interface and shall refer to an accessible
procedure pointer, external procedure, dummy procedure or module procedure.

Constraint: A procedure name that appears in a procedure binding shall not be one that pre-
viously had been specified in any procedure binding with the same binding name,
defined operation or equals symbol in the same derived type definition or any an-
cestor type (4.5.3) definition.

Constraint: Each abstract interface name shall be the name of an abstract interface (12.3.2.1.4).

If two or more bindings have the same identity, the effect is as though they were declared by a
single binding.

[Editor: Insert new section. Add type bound procedure and binding to the index.]
4.5.1.5 Type-bound procedures, operations and assignment

Each binding by name establishes a generic interface ([new section] 12.3.2.1.1), each binding
by operator establishes a defined operation ([existing section] 12.3.2.1.1), and each binding
by assignment establishes a defined assignment ([existing section] 12.3.2.1.2) for each of the
specified procedures.

The term identity is probably not ideal. Alternatives are solicited. Denotation anyone?

The identity of a binding is the binding name, defined operator, or equals symbol that appears
in its declaration. If two procedure bindings have the same identity, the effect is as though all
bindings for that identity were specified in a single statement.

The characteristics of a binding are as specified in 12.2; the characteristics of bindings having
the same identity shall differ as specified in 14.1.2.3.

The term interface is probably not ideal. Alternatives are solicited.

The interface of a binding is its identity and the characteristic of the specific procedure.

Each binding specifies a type-bound procedure. If a type is accessible and its components
are public, the identities of its type-bound procedures are accessible. The specific names of

procedures bound to the type are not automatically made accessible by accessing the type.
Note — The specific names may be private names.

[Editor: Add the following in the same paragraph. Add ancestor type to the index.]

An ancestor type of an extended type is its parent type, or an ancestor type of its parent
type.

An extended type includes all of the type parameters, components, and procedure bindings of

the parent type. These are said to be inherited by the extended type from the parent type.
Inheritance is transitive: entities inherited by the parent type from its parent type are inherited

by an extended type. Additional type parameters, components, and procedure bindings may
be declared in the derived type definition for the extended type.

The order of type parameters for an extended type is the type parameters inherited from the
parent type, followed by type parameters declared in the extended type, in the order declared.

For purposes of intrinsic input/output (9.4.2) and value construction (4.5.6), the order of the
components of an extended type is the components inherited from the parent type, followed
by the components declared in the derived type definition of the extended type, in the order
declared.

[44:224]

J3 note

J3 note

[47:36+]

[47:39-44]

J3/98-179
Page 5 of 6

[An extended type has a subobject name that is the same name and has the same type as its
parent type. This is not an additional component; it denotes a subobject that has the parent
type and that consists of all of the components inherited from the parent type. If the parent
type is an extended type, the first subobject of the subobject denoted by the parent type name
is the subobject name of the parent type’s parent type.

Editor: Replace “component” by “component or type parameter” twice.]

[Editor: Start a new paragraph, add override to the index.]

If a binding (4.5.1.5) has the same identity (4.5.1.5) as one inherited from the parent type, and
characteristics indistinguishable according to section 14.1.2.3, the newly specified one overrides
the one inherited from the parent type; the one inherited from the parent type is not bound to
the extended type, or any extension thereof. Other inherited bindings with the same identity
are not affected. If a binding has the same identity as one inherited from the parent, but
an interface that is distinguishable from any binding inherited from the parent, according to
section 14.1.2.3, it extends the generic interface, defined operation, or defined assignment for
the identity, and the type in which it is specified.

[Editor: Add a section title]
12.3.2.1.1 Generic interfaces

[Editor: Move to 222:11+]
[Editor: Delete (mostly moved to 222:20+).]

An interface block introduced by INTERFACE PROCEDURE() is an abstract interface
block.

[Editor: set “abstract interface” in bold face type.]

or type-bound-proc-name ([actual-arg-spec-list |)

type-bound-proc-name is data-ref % binding-name
Constraint: The binding-name shall be the name of a procedure binding (4.5.1.5) to the declared
type of the data-ref.

The procedure binding named by type-bound-proc-name is determined by the dynamic type of
the data-ref.

or CALL type-bound-proc-name |
B [([actual-arg-spec-list |) |

[Editor: add “that does not refer to a type-bound procedure for which PASS_OBJ is specified,”
after “function reference,”]

[Editor: Add a new section. Add passed-object dummy argument to the index.]
12.4.1.1 The effect of PASS_OBJ on argument association

In a reference to a type-bound procedure for which the binding includes the PASS_OBJ annota-
tion, the data-ref is associated, as an actual argument, to the passed-object dummy argument
(4.5.1). In a procedure reference that uses a structure component that is a procedure pointer
that has the PASS_OBJ annotation, the penultimate part-ref is associated, as an actual argu-
ment, to the passed-object dummy argument (4.5.1). The actual argument list identifies the
correspondence between the actual arguments supplied and the remaining dummy arguments.
In the absence of an argument keyword, an actual argument is associated to the dummy ar-
gument occupying what would be the corresponding position in the dummy argument list if
the passed-object dummy argument were removed. If an argument keyword is present, the ac-

[48:1-12]

[48:16-17]
[48:19+]

[219:26+]

[220:18-20]
[220:21-22]
[222:20+]

[222:22)]
[224:8+]
[224:10+]

[224:12+]

[225:11]

[225:36+]

J3/98-179
Page 6 of 6

tual argument is associated to the dummy argument whose name is the same as the argument
keyword. The passed-object dummy argument shall not be identified by an argument keyword.

[Editor: Start a new paragraph]

In a generic interface established by a procedure binding that includes the PASS_OBJ annota-
tion, the dummy argument list is considered not to contain the passed-object dummy argument
(5.4.1).

A type-bound procedure is always generic.

[Editor: Add “(12.4.1)” after “reference”.]

[Editor: Replace “interface block that provides that” by “generic”.]
[Editor: Add “(12.4.1)” after “reference”.]
[

Editor: Replace “interface block that provides that” by “generic”.]

ancestor type (4.5.3): The parent type of an extended type, or an ancestor type of its parent
type.

binding (4.5.1.5): An association, declared within a derived type definition, of a specific pro-
cedure to a name, defined operation or equals symbol.

[Editor: Add in the same paragraph]

(4.5.3)If a procedure is bound to an extensible type by the same binding name or operator
symbol or equals symbol as one that would be inherited from an ancestor type, it overrides the
one that would be inherited from the parent type.

passed-object dummy argument (4.5.1): The first argument of a specific procedure that is
bound to a type by a procedure binding that has the PASS_OBJ annotation, and that has the
same type as the type to which the procedure is bound.

type-bound procedure (4.5.1.5): A procedure that is declared to be associated to a type. It
is invoked using a component name, defined operation, or equals symbol. It is accessed if the
type to which it is bound is accessed, and the type’s components are public.

[305:33+]

[306:24+]
[307:47]
[307:7]
[307:97]
[307:12-13]
[341:14+4]

[342:34]

[346:37+]

[347:10+]

[349:26+]

