J3/99-107

Page 1 of 7
Date: 4 February 1999
To: J3
From: Van Snyder
Subject: Comments and questions concerning 99-007

References: 98-221, 99-007, 99-105, 99-106

There is no pretense offered that remarks in this paper constitute complete edits necessary to
correct problems or answer questions noted here. Some of the alleged problems may not be
problems at all. Some of them should perhaps turn into unresolved issues.

The preference to use syntax terms instead of descriptive names begs for a way to get them
into the index.

Is the meaning of the phrase “does not imply that the object has the SAVE attribute” explained
somewhere? In the absence of default initialization, the distinction between having and not
having the SAVE attribute is clear. What does the absence of the SAVE attribute imply in
the context of default initialization? Does it mean that the object is re-initialized every time
it comes into existence? (I think so.) Or does it mean that the object has the value given by
initialization the first time it comes into scope, and it’s indeterminate thereafter? It should be
spelled out. If it is spelled out somewhere, a cross-reference at this point would help the reader.

It would clarify later discussions, that will be noted below, if R422 were changed to

R422 derived-type-def is derived-type-stmt

[data-component-part]

[type-bound-procedure-part |

end-type-stmt

R422A data-component-part is [private-sequence-stmt | ...

[type-param-def-stmt | ...

[component-def-stmt | ...
It would also help one remember that type parameters can’t have accessibility control if the
private-sequence-stmts were put after the type-param-def-stmits

It would more clearly express the intent if “CONTAINS” were replaced by type-bound-procedure-
part.

The constraint “If BIND(C) is present, there shall be no proc-component-def-stmts in the type
definition” compromises the usability of C interoperability. It is common in C programs that
structs have “pointer to function” components. In contrast, I don’t see that proc-component-
def-stmts cause any trouble for C interoperability, so why prohibit them? Maybe we need a
BIND(C) attribute for procedure pointers, and a constraint that BIND(C) pointers must be
pointed at BIND(C) procedures, and non-BIND(C) pointers must be pointed at non-BIND(C)
procedures, for it all to hang together. The ability to interface to the X-windows system has
been suggested as a “success test” for C interoperability, but interfacing to the X-windows
system requires the ability to put “pointer to function” components in structs (see the typedef
for the struct XImage in X1ib.h.)

Syntax rule R429 is improperly type-set.

Using the definition of D-expression given in discussion of 40:46-47, add the constraints “The
character length specified by the char-selector in a restricted-type-spec (5.1, 5.1.1.5) in a data-
component-def-stmt shall be a D-expression” and “A type-param-value used in a derived-type-
spec in a data-component-def-stmt shall be a D-expression.”

39:16

39:18-23

39:46

40:15-16

40:25-26

J3/99-107
Page 2 of 7

The constraint “Each bound of an explicit-shape-spec shall be a constant specification expression
(7.1.6)” essentially nullifies the value of parameterized data types. It also conflicts with 43:11-
13. Tt must surely be an oversight that this has not been liberalized. (By the way, a “constant
specification expression” seems to be no different from a “constant expression” —i.e. (123:36)
“A constant specification expression is a constant expression that is also a specification
expression.” I can’t find anything about specification expressions that constrains constant
expressions any more than they are by their normal definition.) It appears that we need a
term for an expression that consists of constants and type parameter names, perhaps with
the restriction on the exponentiation operator that appears in the definition of initialization
expressions. “Constant expression” and “initialization expression” are clearly too restrictive,
while “specification expression” would allow accessing dummy and common variables directly
from within a type declaration. It would be better to require them to be accessed by the
correspondence between type parameter values and type parameter names. For want of thinking
of a better name quickly, I will call expressions with the appropriate restrictions and privileges
“D-expressions.” Then, the constraint should be rephrased “Each bound of an explicit-shape-
spec shall be a D-expression.”

Using the definition of D-expression given in discussion of 40:46-47, replace the constraint by
“The character length specified by the char-length in a component-decl shall be a D-expression.”

A similar constraint is needed for type-param-values in restricted-type-specs within derived type
declarations.

“nonpointer dummy variable” — “nonpointer nonallocatable dummy argument”.

If the syntax of proc-binding were changed to
R439 proc-binding is PROCEDURE [[, binding-attr-list | :: | m
B binding-name | => procedure-name |
or PROCEDURE [([proc-interface-name |) | ®
B | [, binding-attr-list | :: | m
B binding-name => NULL()

Constraint: The procedure name specified by procedure-name or binding-name shall be the
name of an accessible module procedure or external procedure that has an explicit
interface. If PASS_OBJ is specified, it shall have a scalar nonpointer nonallocatable
dummy argument of type type-name. The first such dummy argument is called the
passed-object dummy argument and shall be polymorphic if and only if type-name
is extensible.

Constraint: The proc-interface-name shall be specified if and only if the NULL() binding is not
overriding (4.5.3.2) an inherited (4.5.3.1) binding.

Constraint: The proc-interface-name shall be the name of an accessible abstract explicit inter-
face. If proc-interface-name and PASS_OBJ are both specified, proc-interface-name
shall have a scalar nonpointer nonallocatable dummy argument of type type-name.
The first such dummy argument is called the passed-object dummy argument and
shall be polymorphic if and only if {ype-name is extensible.

then the amazing requirement to define a procedure only for the purpose of using it in a NULL
intrinsic in order to declare that there is no procedure to which to bind the proc-binding would
be eliminated. This form would also be more like the usual procedure declaration statement.

It would also be necessary to change binding to procedure-name at line 6, to eliminate R441,
and to delete the constraints at 42:14-19 and 42:21-24 (they’ve been moved and reworded).

If the change suggested for 42:4-6, 14-19, and 21-24 is not accepted, “procedure or abstract
interface” needs to be “procedure or proc-entity-name” and “nonpointer dummy variable” needs

40:46-47

41:9-14

41:33

42:4-6,
14-19, 21-24

42:16-19

J3/99-107
Page 3 of 7

to be “nonpointer nonallocatable dummy argument”.

We probably need a constraint that all of the nonkind parameters of the passed-object dummy
argument shall be assumed, and if the passed-object dummy argument has kind parameters the
proc-binding shall appear within a SELECT KIND construct (or constructs) that account for
all of the kind parameters. These problems could be avoided if it were allowed to declare type-
bound procedures within the body of the type (see 98-221), so that the argument declarations
and procedure body have access to the parameters — and then SELECT KIND wouldn’t be
necessary.

Note 4.19 would be more clearly explanatory if placed at 41:35+.

The word “parent” is almost certainly wrong here.

The sentence “The proc-entity-name ... parent type” should be deleted, because it’s covered
by the constraint at 42:23-24 (although there’s no explanation for the reason for the constraint
at that point).

The editor previously objected to the construction “The default is A but it may be changed to
B.” A construction parallel to 47:31-34 would presumably be less objectionable.

The phrase “If a type ... private-sequence-stmt” could be more clearly written “If the data-
component-part of a type definition statement contains a PRIVATE statement” if the change
suggested for 39:18-23 were made.

It would be clearer to use a construction parallel to 47:31-34.

The phrase “PRIVATE statement that is a private-sequence-stmt” could be more clearly written
“PRIVATE statement in a data-component-part” if the change suggested for 39:18-23 were
made.

“inany” should be “in any”.

Is it a problem to allow a dummy pointer with intent(OUT) to have an assumed type parameter.
Maybe not: The corresponding parameter of the associated actual argument can’t be deferred
(if edits from 99-106 are accepted).

The second alternative for R466, viz. or type-alias-name appears to be redundant to 61:41. Is
it needed in both places?

The phrase “that is an alias for a derived type” significantly cripples the usability of type aliases
for C interoperability. I could not find a similar constraint in section 5.

Is it necessary to impose a restriction on what assumed parameters can be used for? For
example, is it OK to assume the value of a nonkind parameter that is used to provide an array
dimension other than the last one?

The fact that a type alias does not define a new type will cause mutability and probably
problems when objects used for generic resolution are defined by using type aliases. The
reason for using type aliases in C programs is usually not for the purpose of “hiding” the
type, as asserted at line 40, but rather to make programs more mutable. Due to defects in
the C language, it is usually necessary to change the declaration of an object for portability
reasons, for example from “int” to “long int”. The purpose of type aliases is to allow to make
this change in one place, instead of numerous places (consider the ubiquity of the Unix type
“time_t”.) Presumably, the same reasons will arise in writing interfaces to C programs. If a
type alias does not define a new type, and one is required to change the kind parameter of
a C-interoperable type from, say, C_SHORT to C_.LONG, and the kind parameter C_LONG
corresponds to a Fortran kind, generic resolutions may have surprisingly different results, or

42:11+

42:35-37

43:41-43

47:14-16

47:22-23

47:31

47:40-42
48:5-6

48:44
53:4ff

53:18

53:14-15

93:34+

55:38-40

J3/99-107
Page 4 of 7

fail altogether. If type aliases are used in the declaration of procedure interfaces, generic sets
of interfaces that are unambiguous may become ambiguous.

Given the sentence “Each value is converted to the type and type parameters of the array-
constructor in accordance with the rules of intrinsic assignment,” why is kind type parameter
equality required? What is “(724)”?7 Should it be (7.5.1.5)7

Replace “used” by “restricted to use in” at line 25, and delete lines 32-33.

If there’s more to this constraint than just saying the length shall be 1 (see unresolved issue
89), then “assumed” needs to be “assumed or deferred”.

I don’t see any problem with a dummy argument that has the VALUE attribute becoming
associated with a pending I/O sequence. There may, however, be a problem if the associated
actual argument is associated with a pending I/O sequence — in that case, the copy-in takes
place at a time not well-determined with respect to the progress of the asynchronous I/0.
Similar considerations apply to VOLATILE.

The sentence should begin “In a type declaration statement, a...”.

expression” should be “type declaration statement”.

In line 40, “specification

The note suggests that a dummy function can have a result with a character length parameter
of “*”. This is not currently allowed by normative text at lines 14-25, which are specified at
line 13 to be the only ways allowed. Also see remarks at 78:301f.

The phrase “or DEALLOCATE (6.5.3)” should probably be removed. I don’t see how a poly-
morphic object can acquire a concrete type by execution of a DEALLOCATE statement.

Why put “that has the BIND(C) attribute” in normative text? It ought to be enough to put
it after the word “argument” at line 28.

“when” — “if” or “where”.

Is it permitted for the result type of a dummy function or dummy function procedure pointer
to have an assumed type parameter? Allowing an asterisk for the length parameter of the
character type of a dummy function is printed in small type at 67:44-45. If we go so far as to
allow a dummy function or dummy function pointer result type to have a type parameter that is
a specification expression (not just an initialization expression), I don’t see any extra difficulty
in the additional step of allowing the result type to be declared to have an assumed type
parameter, so long as it is spelled out that the parameter value is assumed from the associated
actual argument’s function declaration, not somehow assumed into the function associated as
an actual argument from the context of its invocation. If it’s OK, we also need a constraint at
or near 79:10+:

Constraint: If proc-interface is present and declares the declared procedure pointers to be func-
tions, and the result type has an assumed type parameter, the functions shall be
dummy procedures or dummy procedure pointers.

I agree that the result of a non-dummy function or function procedure pointer should not
be permitted to have an assumed nonkind parameter, except for the “grandfathered” case of
character length. This is different, however, from the case of deferred type parameters of a
function result, which indicate that the function sets those parameters — this is not a problem
because such a result is required to be allocatable or a pointer.

The same remarks apply to assumed shape of the result of a dummy function. That is, if we
allow it, the shape is assumed from the associated actual argument, not somehow assumed into
the function when it is invoked.

Set “procedure pointer” in bold face, and add it to the index.

58:30-31

61:25, 32-33

65:8-11

65:25-29

65:38,40

68:27-28

69:26-27

78:12

78:27
78:30ff

78:31

J3/99-107
Page 5 of 7

The presence of any of the attributes mentioned in the constraint at lines 1-2 implies that
the proc-entity in some sense behaves more like data, and therefore they don’t make sense for
external or dummy procedures. I don’t know precisely the words to say that, but that’s the
reason for the constraint.

The phrase “except in the scoping unit of the main program” appears to be prohibiting to
specify the SAVE attribute for a common block in the main program, while I think the real
intent is that it’s not necessary to specify the SAVE attribute for a common block in the main
program.

Do we allow type parameters in IMPLICIT that depend on, say, dummy arguments? l.e., is
the following allowed?

subroutine SUB (N)
implicit integer(N), my_type(N) (A-C)

Does it make sense to inquire about nondeferred parameters of the result type of a function
procedure pointer or dummy function? If we allow assumed parameters for the result type of a
dummy function procedure pointer or dummy function (see remark at 78:30ff above), it would
at least be useful to inquire about them, so why not allow the general case.

In many other languages, array bounds are what we call “nonkind type parameters.” I suggest
that we bundle together what we now call type, parameters, and array bounds, and call that
something like “complete type”. Use something like “element type” for the type and type
parameters of an array, if we ever need to discuss them while excluding the array bounds.

“character lengths (R510)” should be “nonkind type parameters”.

“or type parameter” is included in the list at 122:1-2, but not here. Is this a problem?

“or type parameter” is included in the list at 122:1-2, but not here. Is this a problem?

It should be specified whether intrinsic or defined assignment is used when objects of derived
type appear in input lists in READ statements, or after name= in namelist input, or for
purposes of the implied copy if a dummy argument has the VALUE attribute.

Do we need to say anything special about passed-object dummy arguments?

Should type parameters participate in type selection? It seems more reasonable that they should
than that they shouldn’t. If a type guard is TYPE IS, and the type (sans parameters) is the same
as the type of the type-selector, all the parameters are available for testing. Similarly, If a type
guard is TYPE IN, and the type is a descendant type of the declared type of the type-selector,
all the parameters are available for testing. Furthermore, allowing arbitrary combinations of
type parameters in the type guard statements gives a form of conditional compilation, viz.:

SELECT TYPE (FOO)
TYPE IS (DOUBLE PRECISION)
special double precision code -- not compiled if FOO is REAL
TYPE IS (REAL)
special default real code -- not compiled if FOO is DOUBLE PRECISION
END SELECT

If we do specify kind parameters, we will need a place-holder for nonkind parameters. I suggest
either asterisk or colon.

Remove one “the”.

79:2+

81:38

86:42

100:13+

119:1-8

121:18
123:29-39
124:32-33
7.5.1.3

141:24
156:31-33

157:8

J3/99-107
Page 6 of 7

What are the type parameters of the associate-name?

It would be nice to be able to change between sequential and stream access without closing the
file, at least for asterisk units.

[A3P%}]

is” should be “may be”. Otherwise, if sentences that begin “for example” are normative, this
sentence states it is always possible to reposition stream files, and always possible to write —
both of which contradict statements elsewhere. We also need to take care at line 29 to say that
“any file storage unit may be read” providing the file was not opened with ACTION=write’.

The PAD= specifier can be specified in an OPEN statement, but not in a READ statement. It
therefore can’t be specified for standard input. The most efficient way to discover the length
of an input record is to specify PAD="no", SIZE=var (unfortunately, the latter requires using
non-advancing input — see remark at 180:10-11). The former can’t be done for standard input
if 99-105 is not adopted. (This is a very old problem, not introduced in 99-007.)

Is there any benefit to restricting use of SIZE= to the case of ADV="no"? (This is a very old
problem, not introduced in 99-007.)

Replace “I/O on” by “I/O so that default rounding can be specified on”.

Perhaps “not equivalent” should be “not necessarily equivalent”.

The caveat “when execution of the statement begins” begs the question whether it is allowed
for a user-defined derived-type input/output routine to close or reopen the file. There appears
not to be a prohibition in 9.5.4.4.3. Should this be “throughout execution”?

Should “data transfer” be “data transfer and INQUIRE by output list”?

Begin the sentence “A preconnected file that has not been opened or an internal file....” As it
is, it makes one wonder if an internal file can be opened.

Put “value separator” in the index.

Remove slash from the list, and call it a terminator of some kind. Then we can use “separator”
instead of repeatedly spelling out “The separator is a comma if the decimal edit mode is POINT;
it is a semicolon if the decimal edit mode is COMMA.”

The r should almost certainly be r*.

It’s OK to have blanks or end-of-record between the real and imaginary parts of a complex
number, but not between the numbers and the parentheses. It would simplify the description,
processors, and users’ preparation of data if complex numbers could be separated by comma,
semicolon or blank, and if blanks could appear anywhere except within the numbers.

Remove “The separator ... COMMA.”

Replace “slashes, blanks, or commas” by “separators”.

Replace “characters blank, comma, and slash” by “separator characters”.

Replace “separators blank, comma, slash” by “separator”.

Replace “slash or comma” by “nonblank separator”.

Replace “one or more blanks or by a comma, or a semicolon if the decimal edit mode is comma”
by “separator”.

Insert “nonblank” before “separator”. (But “nonblank” ought not to be necessary — see remarks
at 225:43-2.)

Remove the sentence “The separator ... COMMA.”

157:24-31
167:20-21

168:28

162:31

180:10-11

180:30
186:36
189:36-37

192:20
223:43-44

225:10
225:11-17

225:17
225:43-2

225:47-1
226:3-4
226:12
226:14
227:7
227:31-32

227:45

227:46-1

J3/99-107
Page 7 of 7

Add (10.9.1.4) after “values”

Replace “comma” by “nonblank separator”. Come to think of it, is there a special reason a
blank wouldn’t be OK? (See remarks at 225:43-2.)

Replace “characters blank, comma, and slash” by “separator characters”.

Replace “slashes, blanks, equals, or commas” by “separators or equals”.

Replace “slash or comma, or a semicolon if the decimal edit mode is comma” by “nonblank
separator”.

Insert “nonblank” before “separator”.
Delete the sentence “The separator ... COMMA.”
Is it really necessary to have BIND(C) in this list?

Is it really necessary to have the VALUE attribute in this list?

Don’t we need the VALUE attribute in this list?
Discussions of pointer or nonpointer probably need to be extended to include allocatable or
nonallocatable. Do we need to address the question whether an allocatable dummy can be

associated with a pointer actual, or vice-versa? If this is addressed elsewhere, it probably
belongs in 12.4.1.2.

“may” — “shall”.

There is no discussion of what a dummy argument is. Should there at least be a reference to
12.4.17

Replace the first “or” by a comma, and add a comma before the second “or”.

Replace “then” by a comma.

We could just say that trailing blanks are significant. If they’re not, one can always use TRIM().

Replace “the definition ... (4.5.1)” by “the data-component-part of the type definition does not
include a PRIVATE statement (4.5.1)” if the change suggested for 39:18-23 is made.

7

Replace “as” by “is
Should (v) be in the list?

Replace “IEE” by “IEEE”.

Replace “COMPLES” by “COMPLEX”.

Allowing C_PTR to be a type alias is an invitation for portability problems, especially if used
for generic resolution. Yet another reason type aliases ought to introduce new types, not new
names for existing ones.

Replace “compatable” by “compatible with”.

Couldn’t we provide a means to convert between C pointers and Fortran pointers? E.g.
F_pointer => TRANSFER(C_pointer, <mold>)

together with some extensions of RESHAPE, and a new intrinsic, say

C_pointer = Transfer To.C (F_pointer)?

I can’t figure out what the word “original” does here.

Capitalize “Fortran”.

230:9
230:30, 34

230:45
230:36
231:31-32

232:42
232:43-44
244:5
244:15

245:20-29
12.4.1.2

257:21
12.5

300:40
301:4, 11
301:9-14

340:37-38

341:22
364:38
371:3
378:4
378:27

379:5
380:27

382:37
383:14

