
From: Kurt W. Hirchert J3/99-108r1 (Page 1 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 1 of 18)

References: 97-209r1 (rationale), 97-256 (specifications), 98-138 (syntax), 98-229 (draft edits),
98-230 (additional specifications and syntax)

Proposal Note:

This revision of this document includes numerous corrections of minor editorial infelicities in
the original, but the principal change is the introductions of the terms “content” and “linkage”.5

A proposal note in the original observed that deficiencies in our terminology made much of 6.3
difficult to write. The subgroup found it also made the section difficult to read. We believe
that by introducing terms that distinguish what we need distinguished and treat collectively
what we don’t wish to distinguish, the readability of this section is significantly enhanced.

The terms themselves have been chosen to be plausible placeholders. They have been used in10

ways such that, if more appropriate terms are identified, they can easily be replaced, but they
are plausible enough terms that they could be left in place if no more appropriate terms come
to light.

The Main Edit

104:1-5 Revise section to read as follows: “

6.3 Initialization and Finalization15

Initialization is the process by which the status of a data object is established prior to any
explicit operations on that object. Finalization of a data object is the processing that follows
the explicit operations on that object. Every data object in a program undergoes both
initialization and finalization. Data objects shall not be referenced, defined, or used in any
other way before they are initialized or after they are finalized.20

Note:

Although every data object undergoes the conceptual processes of initialization and
finalization, for most objects those processes involve no operations and thus have no affect on
the object.

6.3.1 How initialization is performed25

Initialization of an object consists of two steps, performed in order:

(1) Preliminary initialization establishes a default status for the object, based on its
declared attributes.

(2) Overriding initialization may alter that status, based on explicit initialization declared
for the object.30

From: Kurt W. Hirchert J3/99-108r1 (Page 2 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 2 of 18)

6.3.1.1 Preliminary initialization

The effect of preliminary initialization depends on whether it is the content of the object that is
being initialized or the status of its linkage to content. Initialization of object content is
performed if one of the following is true:

(1) The object has neither the ALLOCATABLE nor the POINTER attribute.5

(2) The object has either the ALLOCATABLE or the POINTER attribute and is being
allocated in an ALLOCATE statement.

Initialization of object linkage is performed if the object has either the ALLOCATABLE or the
POINTER attribute and is not being allocated in an ALLOCATE statement.

6.3.1.1.1 Preliminary initialization of object content10

Preliminary initialization of object content is performed on each element of the entity (treating
a scalar entity as a single element), based on the type of the entity:

(1) If the data type is one of the intrinsic types INTEGER, REAL, COMPLEX, or LOGICAL,
the element is undefined.

(2) If the data type is the intrinsic type CHARACTER, each character position in the15

element is undefined.

(3) If the data type is a derived type, the following steps are performed:

(a) If the data type is an extended type, initialization is performed (recursively) for
the parent component subobject of the element.

J3 Note:20

It is editorially unclear whether there really is a parent component or only a notation that looks
like such a component exists. (This is unresolved issue 19.) Depending on which way this is
resolved, this text may need to be changed to say something like the “components from the
parent type” instead of the parent component and to allow for their default initialization.

(b) Initialization is performed (recursively) for the explicitly declared component25

subobjects of the element, in the order those components were declared. Default
initialization (4.5) for a component is treated like explicit initialization for the
recursive initialization of the component subobject.

Note:

The preliminary initialization of an object of derived type includes both the preliminary and30

the overriding initialization of its component subobjects.

From: Kurt W. Hirchert J3/99-108r1 (Page 3 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 3 of 18)

6.3.1.1.2 Preliminary initialization of object linkage

If an object has the ALLOCATABLE attribute, preliminary initialization of its linkage affects
only its allocation status (6.4.1.2). The allocation status is not currently allocated.

If an object has the POINTER attribute, preliminary initialization of its linkage affects only its
pointer association status (14.6.2.1). The pointer association status is undefined.5

6.3.1.2 Override initialization

The effect of override initialization also depends on whether initialization of object content or
object linkage is being performed (6.3.1.1). Additionally, it depends on which of the following
cases is applicable:

(1) There is no explicit initialization (5.1) for the object.10

(2) Explicit initialization for the object occurs in the type declaration statement for the
object. Such explicit initialization always applies to the entire object.

This case is also considered to apply if the initialization being performed is the recursive
initialization of a component subobject, as described in 6.3.1.1, and a default
initialization is specified in the component declaration statement for that component.15

Such an initialization applies to the entire component subobject.

(3) Explicit initialization for the object occurs in at least one DATA statement (5.3.13). Each
explicit initialization in a DATA statement applies to a scalar object, possibly a
subobject of a named object. There may be subobjects of the object for which no explicit
initialization is provided.20

6.3.1.2.1 Override initialization of object content

The effect of override initialization of object content further depends on whether the type of
the object is one for which an initial procedure (4.5.1.5) has been specified.

6.3.1.2.1.1 Override by assignment

If the type has no initial procedures, override initialization is handled in accordance with the25

rules of intrinsic assignment.

(1) If there is no explicit initialization, the status of the object remains as established by
preliminary initialization.

(2) If the object is explicitly initialized in a type declaration statement or component
definition statement, that initialization is assigned to the object, as a whole, in30

accordance with the rules of intrinsic assignment.

From: Kurt W. Hirchert J3/99-108r1 (Page 4 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 4 of 18)

(3) If the object is explicitly initialized in DATA statements, the identified scalar objects
(possibly elements or component subobjects of the object) are assigned their
corresponding initial values in accordance with the rules of intrinsic assignment. Any
portion of the object not identified in a DATA statement retains its status as established
by preliminary initialization.5

6.3.1.2.1.2 Override by initial procedure

If the type has at least one initial procedure, execution of initial procedures replaces intrinsic
assignment in override initialization.

(1) If there is no explicit initialization, override initialization is performed by invoking an
initial procedure for this type with an argument list that consists solely of the object10

being initialized, or, if no such procedure exists, by the object retaining its status as
established by preliminary initialization.

(2) If the object is explicitly initialized in a type declaration statement or component
definition statement, the initialization shall consist of a single defined structure
constructor (4.5.6.2) for the type. Override initialization is performed by invoking an15

initial procedure for the type with an argument list consisting of the object itself
followed by the argument list from the structure constructor.

(3) If the object is explicitly initialized in DATA statements, those initializations shall not be
for component subobjects of the object. Override initialization is performed separately
for each element of the object. Elements for which an initialization is provided are20

processed as in (2). Elements for which no initialization is provided are processed as in
(1).

Proposal Note:

The above points include technical material that was not in the specification and syntax (filling
in holes).25

6.3.1.2.2 Override initialization of object linkage

If an object has the ALLOCATABLE attribute, explicit initialization of its linkage is prohibited.
The status of the object remains as established by preliminary initialization.

If an object has the POINTER attribute, the only permitted initialization is to NULL(). If such
an explicit initialization is present, the pointer association status of the object becomes30

disassociated. Otherwise, the status of the object remains as established by preliminary
initialization (i.e. undefined)

From: Kurt W. Hirchert J3/99-108r1 (Page 5 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 5 of 18)

Note:

Since any explicit initialization for a pointer applies to its linkage, not its content, elements
allocated through a pointer are always treated as having no explicit initialization for purposes
of determining the nature of their override initialization.

6.3.2 How finalization is performed5

As with initialization, the effect of finalization depends on whether finalization of object
content or object linkage is being performed. Finalization of object content is performed for
objects not having the ALLOCATABLE or POINTER attribute and for objects having one of
those attributes and being deallocated in a DEALLOCATE statement. Otherwise, finalization
of object linkage is performed for objects having the ALLOCATABLE or POINTER attribute.10

6.3.2.1 Finalization of object content

If the type of the object is an intrinsic type, finalization of the object involves no further
operations.

If the type of the object is a derived type, finalization consists of the following steps, performed
in order:15

(1) If the type has at least one final procedure, a final procedure is invoked with an
argument list that consists solely of the object being finalized.

A standard-conforming program is required to provide for the finalization of each
object that has been initialized and whose finalization would include the execution of a
final procedure.20

Note:

For most objects this requirement is fulfilled automatically. The effect of this requirement on a
program is that it must deallocate any object it allocates through a POINTER if the type is one
with a final procedure.

It is not expected that processors will enforce this requirement. Rather, it allows processors,25

when faced with a program that violates this requirement, to process it as it wishes.
Reasonable handling might be to allow the program to “leak memory” and not finalize the
objects so leaked or to perform “garbage collection” to recover such objects so they can be
finalized and deallocated.

(2) Each element of the object is processed as follows:30

From: Kurt W. Hirchert J3/99-108r1 (Page 6 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 6 of 18)

(a) Finalization is performed (recursively) for the explicitly declared component
subobjects of the element, in the reverse of the order those components were
declared.

(b) If the data type is an extended type, finalization is performed (recursively) for
the parent component subobject of the element.5

J3 Note:

See note in section 6.3.1.1.1 about parent component subobject.

6.3.2.2 Finalization of object linkage

If an object has the ALLOCATABLE attribute, finalization of its linkage consists of checking
whether its allocation status is currently allocated and, if so, finalizing its content and10

deallocating the object.

If an object has the POINTER attribute, finalization of the object involves no further
operations.

6.3.3 When initialization and finalization are performed

Initialization and finalization are performed collectively for the data objects declared in a15

scoping unit. Additional initialization and finalization may result from the execution of
specific statements.

6.3.3.1 Initialization and finalization of scoping units

Scoping unit initialization and finalization are associated respectively with the creation and
destruction of instances of the main program, subprograms, and modules.20

An instance of the main program is created immediately before it is executed and destroyed
when a STOP statement or the END PROGRAM statement is executed.

When a procedure defined by a subprogram is invoked from an instance of a subprogram or
the main program, an instance of that subprogram is created. That instance is said to derive
from the instance that invoked the procedure. The derived instance is destroyed when its25

execution completes.

If a subprogram or main program directly or indirectly references a module, each instance of
the subprogram or main program accesses entities from an instance of the module determined
as follows. If the instance of a subprogram derives, directly or indirectly, from an instance of a
scoping unit that directly or indirectly references the same module, it accesses entities from the30

same instance of the module as the instance from which it derives. Otherwise, a new instance
of the module is created; this new instance of the module is the one accessed by the instance of

From: Kurt W. Hirchert J3/99-108r1 (Page 7 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 7 of 18)

the subprogram or main program; it is not destroyed until after the instance of the subprogram
or main program is destroyed.

If a subprogram or main program contains data objects in a named common block or directly
or indirectly references a module containing such data objects, each instance of the
subprogram or main program accesses an instance of the storage sequence for that common5

block determined as follows. If the instance of a subprogram derives, directly or indirectly,
from an instance of a scoping unit that contains that common block or directly or indirectly
references a module containing the common block, it accesses the same instance of the storage
sequence as the instance from which it derives. Otherwise, a new instance of the storage
sequence is created; this new instance of the storage sequence is the one accessed by the10

instance of the subprogram or main program; it is not destroyed until after the instance of the
subprogram or main program is destroyed.

A process is permitted, at its discretion, to merge instances of modules and common block
storage sequences that are not required to exist at the same time, eliminating the destruction
(and associated finalization) of the earlier instance and the creation (and associated15

initialization) of the later instance.

Note:

Taken to the extreme, if a processor uses a strategy in which an instance of a subprogram or
the main program always invokes procedures one at a time, none of the instances of modules
and common block storage sequences would be required to exist at the same time, and the20

processor would be permitted to merge all of the instances of a given module or common
block storage sequence into a single instance. Other strategies might allow merging to result
in one instance per hardware processor on a multiprocessor system.

If a subprogram is nested in another scoping unit and thus has access to entities in that scoping
unit by host association, an instance of the subprogram accesses those entities from the same25

instance of the host scoping unit from which the subprogram itself was accessed in order to be
invoked.

Scoping unit initialization and finalization can be further divided into the initialization and
finalization of objects that are distinct in separate instances of the scoping unit and the
initialization and finalization of objects that are shared among all the instances of the scoping30

unit in the program.

6.3.3.1.1 Instance initialization and finalization of scoping units

Instance initialization and finalization of a scoping unit applies to all objects local to the
scoping unit that are not accessed by use association or host association and that are not
dummy arguments and do not have either the SAVE or the PARAMETER attribute. Instance35

initialization of a scoping unit also applies to dummy arguments with the INTENT(OUT)
attribute, but instance finalization does not.

From: Kurt W. Hirchert J3/99-108r1 (Page 8 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 8 of 18)

Note:

6.3.3.2 provides for the corresponding actual argument to be finalized immediately before
invoking the procedure, so fresh initialization is appropriate. The dummy argument is not
finalized during execution of the procedure, but the corresponding actual argument is
eventually finalized, so everything still “balances”.5

Instance initialization of a scoping unit occurs after the instance initialization of any module it
references, and instance finalization occurs before the instance finalization of any referenced
module.

Except during the execution of initial and final procedures, instance initialization of a nested
scoping unit occurs after instance initialization of the host scoping unit and instance10

finalization occurs before instance finalization of the host. During execution of initial and final
procedures, the instance of the host scoping unit may be only partially initialized or finalized
and the program is restricted from using those objects which are not yet initialized or already
finalized.

Objects in common are initialized before objects not in common and finalized after. Objects in15

common are not initialized if the storage sequence is not newly created. Objects in common
are not finalized if the storage sequence is not about to be destroyed.

Objects in common are initialized in order of their first declaration and finalized in the reverse
of that order.

Objects not in common are initialized in order of their first declaration and finalized in the20

reverse of that order.

A processor is permitted, as an exception to the above orderings, to initialize function result
variables and INTENT(OUT) dummy arguments before the point indicated by that order and
to finalize function result variables after the point indicated.

Note:25

This exception allows a processor the option to put the initialization and finalization of a
function result and/or the initialization of INTENT(OUT) dummy arguments in the caller of a
procedure rather than the procedure itself.

Note:30

The purpose of these orderings is to establish which objects can and cannot be used in initial
and final procedures. Initialization and finalization may be performed in other orders as long

From: Kurt W. Hirchert J3/99-108r1 (Page 9 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 9 of 18)

as the same effect is achieved. For example, it is generally possible to perform all initialization
not involving initial procedures before that which does.

6.3.3.1.2 Program initialization and finalization of scoping units

Program initialization and finalization of a scoping unit applies to all objects local to the
scoping unit that are not accessed by use association or host association and that have either5

the SAVE or the PARAMETER attribute.

Program initialization of a scoping unit occurs before all instance initialization of that scoping
unit, and program finalization occurs after all instance finalization. If there is no instance
initialization or finalization of a scoping unit (e.g., because a procedure is never called or a
module is unreferenced), it is processor dependent whether the program initialization and10

finalization for that scoping unit occurs.

Note:

This allows the processor the choice of either unconditionally performing program
initialization for all scoping units at the beginning of the program or of deferring program
initialization of a scoping unit to the beginning of the first instance initialization for that15

scoping unit.

Program initialization of a scoping unit occurs after the program initialization of any module it
references, and program finalization occurs before the program finalization of any referenced
module.

Except during the execution of initial and final procedures, program initialization of a nested20

scoping unit occurs after program initialization of the host scoping unit and program
finalization occurs after program finalization of the host. During execution of initial and final
procedures, the program of the host scoping unit may be only partially initialized or finalized
and the program is restricted from using those objects that are not yet initialized or already
finalized.25

Objects in common are initialized before objects not in common and finalized after. Objects in
common are not initialized if the storage sequence is not newly created. Objects in common
are not finalized if the storage sequence is not about to be destroyed.

Objects in common are initialized in order of their first declaration and finalized in the reverse
of that order.30

Objects not in common are initialized in order of their first declaration and finalized in the
reverse of that order.

From: Kurt W. Hirchert J3/99-108r1 (Page 10 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 10 of 18)

6.3.3.2 Initialization and finalization resulting from statement execution

Execution of an ALLOCATE statement to allocate storage for a pointer or allocatable object
causes initialization of the object content. The pointer or allocatable object linkage is not
initialized by this process.

Execution of a DEALLOCATE statement to deallocate storage for a pointer or allocatable5

object causes finalization of the object content before it is deallocated. The pointer or
allocatable object linkage is not finalized by this process.

When an expression result is passed to a procedure, it is placed in an anonymous data object
that is then associated with the dummy argument. Such anonymous data objects are
initialized and finalized by the processor. Initialization occurs as part of the process that10

defines the expression result. Function result initialization is performed by the initialization of
the function result variable. Defined structure constructor initialization is performed by the
initial procedure (4.5.1.5) that implements that constructor. Finalization occurs at the
discretion of the processor when it no longer needs that expression result. Exactly when this
occurs may depend on whether a processor reuses a computed expression result or15

recomputes it each time it is needed.

An object or subobject, supplied as an actual argument associated with a dummy argument
with the INTENT(OUT) attribute, undergoes finalization reflecting the attributes of the
dummy argument immediately before the procedure is invoked. This finalization “balances”
the initialization of the dummy argument during the execution of the procedure.20

Note:

The attributes of the dummy argument control the nature of the finalization of the actual
argument. For example, if an ALLOCATABLE object is associated with an INTENT(OUT),
ALLOCATABLE dummy argument, its finalization reflects the ALLOCATABLE attribute and
includes the deallocation of the object. However, if the dummy argument does not have the25

ALLOCATABLE attribute, the finalization applies only to the elements of the object and the
object is not deallocated.

J3 Note:

It has been pointed out that the above is not the behavior called for in the TR, but that the TR30

was internally inconsistent in its specification of the handling of ALLOCATABLE objects and
of objects of derived type with ALLOCATABLE components under these conditions, so we
believe that this is the correct behavior to specify in the standard. We need to add something
to section 1 to note the change from the TR.

35

From: Kurt W. Hirchert J3/99-108r1 (Page 11 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 11 of 18)

Note:

In all cases where this finalization is non-trivial, the interface is required to be explicit, so the
processor may at its discretion perform the finalization in the caller and the initialization in the
procedure to minimize the amount of information that must be communicated to the
procedure.5

”

Secondary Edits

Proposal Note:

The first batch of secondary edits provides the rules for initial and final procedures.

42:5 Replace “binding-name” with “binding-id”.

42:5+ Insert new rule and constraints: “10

R439.1binding-id is binding-name
or (INITIAL)
or (FINAL)

Constraint: The :: and the => binding shall not be omitted if the binding-id is not a binding-
name.15

”

46:35+ Insert new paragraph: “

A procedure bound to a binding identifier of (INITIAL) is an initial procedure, as described in
4.5.1.5.1. A procedure bound to a binding identifier of (FINAL) is a final procedure, as
described in 4.5.1.5.2. All other type bound procedures are handled as described in this20

section.

”

47:20+ Insert new sections: “

4.5.1.5.1 Initial procedures

A type may have more than one initial procedure bound to it. If it does, they shall collectively25

satisfy the rules for unambiguous generic procedures (14.1.2.3).

From: Kurt W. Hirchert J3/99-108r1 (Page 12 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 12 of 18)

Each initial procedure shall have at least one dummy argument. The first dummy argument
shall be a non-optional dummy argument. It shall have the INTENT(INOUT) attribute and be
of the fixed type to which the initial procedure is bound. If it is an array, it shall have assumed
shape. It shall not have the ALLOCATABLE or POINTER attribute. Any additional dummy
arguments shall have the INTENT(IN) attribute or shall be dummy arguments for which5

INTENT shall not be specified.

If the type to which the procedure is bound is extensible, the initial procedure for the type is
used in the initialization process (6.3) for any extension types of that type, but it is not
inherited as a initial procedure for those extension types.

If a type has any initial procedures, it shall have one whose first argument is scalar.10

An initial procedure whose first argument is scalar, if it is not element (12.7), may be used
pseudo-elementally to initialize objects of higher rank. Actual arguments conformable with
the object being initialized may be associated with scalar dummy data objects not having the
ALLOCATABLE or POINTER attribute. The effect of the pseudo-elemental use is to initialize
the elements of the object in array element order, invoking the initial procedure for each15

element in sequence. Arguments to the initial procedure are as supplied, except that for
conformable arguments having the same shape as the object, the corresponding element is
provided. Resolution between pseudo-elemental references and references to initial
procedures explicitly for higher rank is handled as for elemental procedures (12.7).

Note:20

The effect of pseudo-elemental references to scalar initial procedures is similar to referencing
elemental procedures, but the repetition is performed in sequence rather than in parallel and
side effects are allowed.

4.5.1.5.2 Final procedures

A type may have more than one final procedure bound to it. If it does, they shall collectively25

satisfy the rules for unambiguous generic procedures (14.1.2.3).

Each final procedure shall have exactly one dummy argument. It shall have the
INTENT(INOUT) attribute and be of the fixed type to which the final procedure is bound. If it
is an array, it shall have assumed shape. It shall not have the ALLOCATABLE, POINTER, or
OPTIONAL attribute.30

If the type to which the procedure is bound is extensible, the final procedure for the type is
used in the finalization process (6.3) for any extension types of that type, but it is not inherited
as a final procedure for those extension types.

If a type has any final procedures, it shall have one with a scalar argument.

From: Kurt W. Hirchert J3/99-108r1 (Page 13 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 13 of 18)

As with initial procedures, the final procedure with scalar dummy argument, if it is not
elemental, may be used pseudo-elementally to finalize objects of higher rank. For final
procedures, the sequence of element finalization is in the reverse of array element order.

”

Proposal Note:5

The second batch of secondary edits provides for the use of structure constructor syntax to
access alternative initialization by an initial procedure.

53:38-40 Replace paragraph with the following: “

A derived type implicitly defines a corresponding structure constructor that allows
construction of values of that derived type from values of other types. A structure constructor10

is interpreted as an intrinsic structure constructor if the derived type has no initial procedures;
it is interpreted as a defined structure constructor if the derived type has at least one initial
procedure.

R448.9structure-constructor is intrinsic-structure-constructor
or defined-structure-constructor15

4.5.6.1 Intrinsic structure constructors

An intrinsic structure constructor allows a scalar value of the derived type to be constructed
from a sequence of values corresponding to the components of the derived type.

”

53:41 Change “structure-constructor” to “intrinsic-structure-constructor”.20

Proposal Note:

The rules for when a structure constructor is interpreted intrinsically and when it is
interpreted by an initial procedure were not in the specification passed. This is my attempt to
fill them in.

55:32+ Insert new subsection: “25

4.5.6.2 Defined structure constructors

A defined structure constructor allows a value of the derived type to be constructed by passing
arguments to an initial procedure for the type.

R450.1defined-structure-constructoris derived-type-spec ([argument-list])

From: Kurt W. Hirchert J3/99-108r1 (Page 14 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 14 of 18)

Constraint: The argument-list shall be a valid specification of actual arguments corresponding
to the dummy arguments other than the first for one of the initial procedures for the
type.

If a defined structure constructor is used as an explicit initialization (5.1), its argument list is
used in the initialization process (6.3) for the object to which the explicit initialization applies.5

If a defined structure constructor is in any other context, the argument list is used in the
initialization of an anonymous object of that type. If the argument list is valid in the
initialization process for objects of more than one possible rank, the anonymous object has the
minimum such rank. The anonymous object is the “value” of the structure constructor.

”10

Proposal Note:

The current syntax for declaring extension types provides no means for the extension type to
specify a different default initialization for its “parent component” or link alternative
initialization of the extension type to alternative initialization of the parent. One can work
around this by simply allowing the parent component to be initialized “wrong” and15

overriding that initialization in an initial procedure for the extension, but this is a bit awkward
and causes the processor to do more work during the initialization process. This is not
something I can fix in the proposal, but it might be something we should think about.

Related Minor Edits

39:10-13 Replace the first three sentences of the paragraph with “Initialization in a
component declaration specifies default initialization for that component. This default20

initialization contributes to the initialization process (6.3) for objects of that type.”

Proposal Note

Many of the details here have been incorporated into 6.3.

Sometimes we talk about default initialization and sometimes we talk about component
initialization. Is there a consistent reason for using one term or the other?25

44:17 Replace “is initially … (14.7.5)” with “is default initialized (6.3)”

44:18-25 Delete sentences after first two.

Proposal Note:

This material is covered in another way in 6.3.

From: Kurt W. Hirchert J3/99-108r1 (Page 15 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 15 of 18)

70:42-44 Replace second sentence in the paragraph with “On invocation of the procedure,
such a dummy argument undergoes the initialization process (6.3).”

Proposal Note:

The new complications are all described in 6.3.

72:17-18 Replace the final sentence in the paragraph with “Because an INTENT(OUT)5

variable has no access to any part of the previous status of the actual argument, the
initialization process is applied to it.”

75:11-19 Replace the first two paragraphs of the section:

“If an object has the SAVE attribute, a single copy of the object is shared among all instances
(6.3.3.1, 12.5.2.3) of the scoping unit in which it appears, allowing association status, allocation10

status, definition status, and value established in one instance to be referenced in another
instance. Such an object is called a saved object.

If an object in an executable scoping unit does not have the SAVE attribute, a separate copy of
that object exists for each instance of the scoping unit. For objects in a module that do not have
the SAVE attribute, the basis for sharing is that the instance of a module referenced by an15

executable scoping unit is the one available to all instances resulting from its procedure
invocations. Thus, two instances of executable scoping units referencing a module share the
same instance if and only if one is the direct or indirect result of the other or both are the direct
or indirect result of a third instance that also references that module.”

Proposal Note:20

In FORTRAN 77, the descriptive model was that variables existed for the life of a program, but
that in the absence of a SAVE statement, they became undefined between executions. In
Fortran 90, in order to accommodate features such as recursion and automatic array, we
switched to the model that in the absence of SAVE, each execution had its own copy of the
variable. However, many vestiges of the F77 descriptive model remain. Because the semantics25

of initial and final procedures are strongly tied to the F90 model, it is helpful to revise some of
the text that still reflects the F77 model.

The pointer part of this is handled elsewhere.

81:38-42 Replace the second sentence in the paragraph:

“For a common block declared in a SAVE statement, its common block storage sequence30

(5.6.2.1) in an instance of the scoping unit containing the common block is associated with the
common block storage sequence for every other instance of a scoping unit containing the
common block, thus making the values in those sequences available to all instances. For a
common block not having the SAVE attribute, the basis for sharing is that the common block

From: Kurt W. Hirchert J3/99-108r1 (Page 16 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 16 of 18)

storage sequence for a common block in an instance of an executable scoping unit is associated
with all such common block storage sequences in instances resulting from its procedure
invocations. Thus, the common block storage sequences in two instances of executable
scoping units containing a common block are associated if and only if one instance is the direct
or indirect result of the other or both are the direct or indirect result of a third instance that5

also contains that common block.”

93:10+ Insert note: “

Note:

A common-block-object must not be of a type with initial or final procedures, since initial and
final procedures are type-bound procedures and sequence types do not have type-bound10

procedures.

”

Proposal Note:

Yes, I really mean “must” here. This is an implied requirement, not a direct one.

107:20-43 Delete.15

Proposal Note:

This should be covered in 6.3.

108:2 Insert new sentence: “The effect of terminating execution of a procedure on an
allocatable object accessed by use association is affected by the presence or absence of
the SAVE attribute and by the processor-dependent merging of instance of modules20

(6.3.3).”

110:1-20 Delete.

Proposal Note:

This should be covered in 6.3.

110:22 Insert new sentence: “Processor merging of instances of modules (6.3.3.1) can make it25

processor-dependent whether an allocatable object accessed by use association is
deallocated when execution of a procedure is terminated.”

110:44-111:11 Delete.

From: Kurt W. Hirchert J3/99-108r1 (Page 17 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 17 of 18)

Proposal Note:

This should be covered in 6.3

245:23+ Insert new item into list: “

(d) A dummy argument that has the INTENT(OUT) attribute and is of a type whose
finalization process (6.3) includes the execution of a final procedure,5

”

Proposal Note:

This might have been missing from the version of the specification that was passed.

258:6-7 Replace final sentence in paragraph with sentence as for 72:17-18 above.

259:34-36 Replace second sentence with “No initialization (6.3) is performed on the10

dummy data object, even if it has INTENT(OUT).”

269:46+ Insert note: “

Note:

This includes any initial or final procedure invoked in the initialization process for data objects
local to the procedure.15

”

346:33-41 Replace both items with “(4) The pointer becomes disassociated by the
initialization process (6.3).”

347:1-5 Replace all three items with “(2) The target of the pointer is finalized (6.3) by
means other than deallocating the pointer.”20

Proposal Note:

This text covers both (2) and (3). (4) is covered by the pointer ceasing to exist, so it doesn’t
matter if it becomes undefined; the new instance of the pointer will be undefined anyway.]

350:13-19 Combine items (1)-(3) into “(1) Variables that are defined by the initialization
process (6.3).”25

351:29-30 Replace item with “(16) The initialization process (6.3) may cause part or all of
an object to become defined.”

From: Kurt W. Hirchert J3/99-108r1 (Page 18 of 18)
Subject: INITIAL / FINAL Edits Meeting 148

J3/99-108r1 (Page 18 of 18)

351:35-45 Delete.

Proposal Note:

Subsumed by the above.

352:15-28 Delete.

Proposal Note:5

These are the variables that cease to exist.

353:4-5 Replace item with “(11) Successful execution of an ALLOCATE statement for
a nonzero-sized object causes the object to become undefined unless the initialization
process (6.3) defines it.”

353:12-13 Replace “except … specified” with “unless is it defined by the initialization10

process (6.3)”

353:14-15 Delete.

Proposal Note:

This case is now covered by the fact that the actual argument is finalized and not usable until it
has been reinitialized through the dummy argument.15

353:19-20 Same replacement as for 353:12-13.

•

